高 翔,王 飛,王國(guó)偉,雷勇剛
(太原理工大學(xué) 環(huán)境科學(xué)與工程學(xué)院,山西 太原 030024)
折角是供熱直埋熱水管道在施工過(guò)程中最易出現(xiàn)安全問(wèn)題的管段,但因?yàn)槭┕ざ惚茉O(shè)計(jì)未見障礙物以及隨高程敷設(shè)而改變方向,又不可避免.折角的不連續(xù)性會(huì)在其焊縫處出現(xiàn)應(yīng)力集中,從而產(chǎn)生很高的局部峰值應(yīng)力,導(dǎo)致管道局部破壞.
從國(guó)外研究學(xué)者Sobieszczanski[1]、A.M Gresnigt[2]等對(duì)單焊縫折角的研究,到近年來(lái)國(guó)內(nèi)學(xué)者王飛[3]、楊輝[4]、李明強(qiáng)[5]、趙文浩[6]等人利用ANSYS軟件對(duì)直埋管道的模擬研究,探究了折角的應(yīng)力分布規(guī)律和最大Mises應(yīng)力值.雖然至今已有較多利用有限元法對(duì)直埋管道分析的研究,但主要針對(duì)轉(zhuǎn)角[7]、彎管[8-10]、橢圓度[11]等,極少數(shù)針對(duì)折角的研究也沒有涉及到對(duì)供熱直埋小折角管道進(jìn)行結(jié)構(gòu)優(yōu)化,降低折角處的最大Mises應(yīng)力,使其滿足應(yīng)力驗(yàn)算等方面要求.
本文基于非線性有限元分析方法,建立管土接觸模型,探究用兩個(gè)更小角度的折角代替一個(gè)小折角并加厚折角部分管道的優(yōu)化結(jié)構(gòu)是否能夠使其最大Mises應(yīng)力滿足規(guī)范中對(duì)峰值應(yīng)力[12]的驗(yàn)算要求,通過(guò)對(duì)比分析得到最優(yōu)管件結(jié)構(gòu).
用雙線性等向強(qiáng)化材料模型[8]描述供熱管道的彈塑性特征,屈服準(zhǔn)則采用Von Mises屈服準(zhǔn)則[13].材料應(yīng)力-應(yīng)變關(guān)系如圖 1 所示.管道材料使用Q235B鋼材,材料參數(shù)如表 1 所示.
圖 1管材應(yīng)力應(yīng)變曲線Fig.1 Tube stress strain curve
土體采用D-P模型[14],該準(zhǔn)則比較符合土壤的材料特性.Drucker-Prager屈服準(zhǔn)則下屈服面不會(huì)因?yàn)椴牧现饾u屈服而改變,因此無(wú)相關(guān)強(qiáng)化準(zhǔn)則,塑性行為可以被假定為理想彈塑性[8].同時(shí),Drucker-Prager屈服準(zhǔn)則也有效避免了屈服面在角棱處引起的奇異點(diǎn).該屈服準(zhǔn)則需要三個(gè)參數(shù)來(lái)定義:土壤粘聚力c,內(nèi)摩擦角φ,膨脹角φf(shuō).
根據(jù)土壤的特性與實(shí)際情況,本文不考慮體積膨脹,故膨脹角φf(shuō)=0.土體為靠近實(shí)際工程選取三七土,材料參數(shù)如表 2 所示.
表 1Q235B鋼材材料參數(shù)值
表 2土體材料參數(shù)值
根據(jù)埋地管道管土相互作用的特點(diǎn),埋地時(shí)管道四周都會(huì)受到土壤對(duì)其的約束作用,本文將埋地管線與周圍土壤綜合考慮進(jìn)行建模.直埋管道使用ANSYS軟件提供的20節(jié)點(diǎn)的 SOLID95實(shí)體單元[15]進(jìn)行模擬,該單元具有塑性、蠕變、應(yīng)力剛化、大變形、大應(yīng)變等特性,可以很好地適應(yīng)曲線邊界,并表達(dá)出折角處的應(yīng)力集中狀態(tài).土壤使用六面體八節(jié)點(diǎn)的SOLID45結(jié)構(gòu)實(shí)體單元進(jìn)行模擬.將管土接觸視為面-面接觸,該接觸方式支持有大滑動(dòng)和有摩擦的大變形,協(xié)調(diào)剛度陣計(jì)算、不對(duì)稱單元?jiǎng)偠汝嚨挠?jì)算.管道的外表面為目標(biāo)面,選擇3D8節(jié)點(diǎn)的CONTA174單元;與管道接觸的土壤表面為接觸面,選擇3D的TARGE170單元.
以自下而上的方式建立一個(gè)寬8 m,高4.5 m的長(zhǎng)方體土壤模型和直管段長(zhǎng)20m的埋地管道模型.管道上方覆土考慮到垂直動(dòng)土壓和垂直靜土壓的共同作用,選擇1.5 m最為合適,也最符合施工中的實(shí)際情況.管道采用六面體掃略劃分,網(wǎng)格大小為0.05 m,土體采用六面體映射劃分,網(wǎng)格大小為1 m.
邊界條件采用如下假定:土體上面為自由面,土體底面與管體兩側(cè)端面為全約束,土體其他面約束法向位移.對(duì)管道整體施加溫度荷載,并在管道內(nèi)壁施加壓力荷載.
本文以趙文浩[6]針對(duì)小折角的研究?jī)?nèi)容為基礎(chǔ),由于論文《管土接觸作用下直埋供熱管道折角的強(qiáng)度分析》中已對(duì)本文所采用的建模方法進(jìn)行實(shí)驗(yàn)論證,本文不再贅述.
為降低焊縫處應(yīng)力集中水平,使其最大Mises應(yīng)力值滿足峰值應(yīng)力的驗(yàn)算條件,滿足強(qiáng)度要求,本文用兩個(gè)更小角度的折角代替一個(gè)小折角進(jìn)行建模,如圖 2 所示.
圖 2小折角代替大折角示意圖Fig.2 Small fold angle instead of large angle
2.1.1 優(yōu)化結(jié)構(gòu)的建立
結(jié)構(gòu)一:以厚度δ=10 mm的DN800管道為基礎(chǔ)管徑,埋深H=1.5 m,管道壓力p=0.5 MPa,溫度T=130 ℃,如圖 3 所示.
圖 3結(jié)構(gòu)一管線雙線圖Fig.3 The structure one a pipeline of two-lines figure
結(jié)構(gòu)二:在結(jié)構(gòu)一的基礎(chǔ)上,將一個(gè)a度折角管道變?yōu)橛袃蓚€(gè)a/2度的折角管道,過(guò)渡段長(zhǎng)L,如圖 4 所示.
圖 4結(jié)構(gòu)二管線雙線圖Fig.4 The structure two a pipeline of two-lines figure
2.1.2 結(jié)構(gòu)對(duì)比分析
以壁厚10 mm,過(guò)渡段長(zhǎng)度L=2DN為基準(zhǔn)參數(shù),對(duì)DN800的管道進(jìn)行建模,得出折角角度從1°~10°時(shí)焊縫內(nèi)側(cè)中心線處的最大Mises應(yīng)力值進(jìn)行分析比較,測(cè)點(diǎn)位置如圖 5 所示,得出結(jié)論.
圖 5結(jié)構(gòu)一測(cè)點(diǎn)位置圖Fig.5 Structure one of a measuring point locations
圖 6結(jié)構(gòu)二測(cè)點(diǎn)位置圖Fig.6 Structure two of a measuring point locations
圖 7結(jié)構(gòu)一與結(jié)構(gòu)二基于角度對(duì)比Fig.7 Structure one and structure two are based on angle contrast
通過(guò)圖 7 的比較可以看出,結(jié)構(gòu)一在管徑DN800下,折角應(yīng)力值在折角角度大于4°時(shí)有較大幅度的躍升,而結(jié)構(gòu)二的最大Mises應(yīng)力值變化幅度不大,只是隨折角角度的增大,最大Mises應(yīng)力值緩慢增加.說(shuō)明結(jié)構(gòu)二相比于結(jié)構(gòu)一能有效降低管道小折角處的最大Mises應(yīng)力值,即用小折角代替大折角的方法有效.
以管徑DN800,壁厚10 mm為基準(zhǔn)參數(shù),分析5°與10°時(shí)結(jié)構(gòu)一和結(jié)構(gòu)二的應(yīng)力分布圖,如圖 8,圖 9 所示.
圖 8結(jié)構(gòu)一10°折角時(shí)的應(yīng)力分布圖Fig.8 The stress distribution figure of structure one at 10 ° angle
圖 9結(jié)構(gòu)二10°折角時(shí)的應(yīng)力分布圖Fig.9 The stress distribution figure of structure two at 10 ° Angle
從圖8,圖9的應(yīng)力分布圖中可以看出,隨著角度的增加,最大Mises應(yīng)力值向有折角的焊縫處集中,焊縫處變形越來(lái)越明顯;同樣,結(jié)構(gòu)二中最大Mises應(yīng)力值隨著角度的增加也向有折角的焊縫處集中的趨勢(shì),但管道并未發(fā)生明顯變形,并且焊縫處的應(yīng)力集中程度也不如結(jié)構(gòu)一明顯.
從兩種結(jié)構(gòu)的應(yīng)力分布圖中可以看出,結(jié)構(gòu)二在降低管道焊縫處應(yīng)力集中程度,減小變形程度上均有明顯優(yōu)勢(shì).
2.2.1 結(jié)構(gòu)建立
結(jié)構(gòu)三:在結(jié)構(gòu)二的基礎(chǔ)上,在管段L加厚Δδmm,如圖 10~圖 12 所示.
圖 10結(jié)構(gòu)三ANSYS建模圖Fig.10 ANSYS modeling figure of structure three
圖 11結(jié)構(gòu)三剖面局部圖Fig.11 A partial profile figure of the structure three
圖 12結(jié)構(gòu)三平面雙線圖Fig.12 Structure three plane two-lines figure
圖 13結(jié)構(gòu)三測(cè)點(diǎn)位置圖Fig.13 Structure three of a measuring point locations
2.2.2 結(jié)構(gòu)對(duì)比分析
以壁厚10 mm,加厚段長(zhǎng)度L=2DN為基準(zhǔn)參數(shù),分別對(duì)DN800和DN1000的管道進(jìn)行建模,得出折角角度從1°~10°時(shí)焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值并進(jìn)行分析比較,得出結(jié)論.測(cè)點(diǎn)位置如圖 14 所示.
圖 14DN800 結(jié)構(gòu)二與結(jié)構(gòu)三基于角度對(duì)比Fig.14 DN800 Structure two and structure three are based on Angle contrast
從圖14中可以看出,在管徑DN800下,當(dāng)折角角度在1°~5°時(shí),結(jié)構(gòu)二與結(jié)構(gòu)三焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值均相差不大,且結(jié)構(gòu)二的應(yīng)力值相對(duì)更小,但折角角度大于5°之后,結(jié)構(gòu)三焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值明顯小于結(jié)構(gòu)二,且隨著角度的增大,焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值減小的程度越明顯.
以管徑DN800,壁厚10 mm,加厚段長(zhǎng)度L=1DN為基準(zhǔn)參數(shù),分析5°與10°時(shí)結(jié)構(gòu)二和結(jié)構(gòu)三的應(yīng)力分布圖,如圖 15,圖 16 所示.
圖 15結(jié)構(gòu)二5°折角時(shí)的應(yīng)力分布圖Fig.15 The stress distribution figure of structure two at 5 ° angle
圖 16結(jié)構(gòu)三10°折角時(shí)的應(yīng)力分布圖Fig.16 The stress distribution figure of structure three at 10 ° angle
通過(guò)對(duì)比結(jié)構(gòu)二與結(jié)構(gòu)三在管徑DN800下不同折角角度時(shí)最大Mises應(yīng)力值的變化及其應(yīng)力分布,可以發(fā)現(xiàn)加厚單側(cè)管段壁厚可以有效降低折角角度大于5°的折角管段焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值,且結(jié)構(gòu)三有效避免了改變角度的管段發(fā)生應(yīng)力集中的現(xiàn)象.這說(shuō)明加厚管段壁厚可以有效降低焊縫處的應(yīng)力值,保護(hù)折角管段,避免其因應(yīng)力集中而造成的局部破壞.
2.3.1 結(jié)構(gòu)建立
結(jié)構(gòu)四:在結(jié)構(gòu)三的基礎(chǔ)上,在折角兩端各加厚L/2長(zhǎng)度的直管段,如圖 17~圖 19 所示.
圖 17結(jié)構(gòu)四ANSYS建模圖Fig.17 ANSYS modeling figure of Structure four
圖 18結(jié)構(gòu)四剖面局部圖Fig.18 A partial profile figure of the structure four
圖 19結(jié)構(gòu)四平面雙線圖Fig.19 Structure four plane two-lines figure
2.3.2 結(jié)構(gòu)對(duì)比分析
分析結(jié)構(gòu)三與結(jié)構(gòu)四在管徑DN800下分別改變折角角度a、加厚管段厚度Δδ和加厚管段長(zhǎng)度L等不同條件下,得出分析結(jié)果.
1) 基于折角角度a的對(duì)比分析
以加厚段長(zhǎng)度L=2DN,加厚厚度Δδ=3 mm為基準(zhǔn)參數(shù),對(duì)DN800的管道進(jìn)行建模,得出折角角度從1°~10°時(shí)焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值并進(jìn)行分析比較,得出結(jié)論.測(cè)點(diǎn)位置如圖 20 所示.
圖 20 結(jié)構(gòu)四測(cè)點(diǎn)位置圖Fig.20 Structure four of a measuring point locations
圖 21DN800不同角度a下的應(yīng)力值Fig.21 A stress value of DN800 under different angles
從圖21中可以看出,隨著折角角度a的增加,兩種結(jié)構(gòu)下DN800管道焊縫內(nèi)側(cè)中心線點(diǎn)處的最大Mises應(yīng)力值會(huì)隨之相應(yīng)增長(zhǎng),但結(jié)構(gòu)四對(duì)應(yīng)角度處的應(yīng)力值小于結(jié)構(gòu)三,說(shuō)明對(duì)焊縫兩側(cè)管段增加壁厚的方法比單側(cè)加厚更能有效保護(hù)折角,避免焊縫處的局部破壞.
以管徑DN800,加厚段長(zhǎng)度L=2DN,加厚厚度Δδ=3 mm為基準(zhǔn)參數(shù),分析折角角度a為5°與10°時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布圖,如圖 22,圖 23 所示.
圖 22a=5°時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布Fig.22 The stress distribution figure of structure three and structure four when a=5°
圖 23a=10°時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布Fig.23 The stress distribution figure of structure three and structure four when a=10°
從圖 22,圖 23 的應(yīng)力分布圖中可以看出,結(jié)構(gòu)三①②段之間改變角度的最大Mises應(yīng)力值轉(zhuǎn)移到了結(jié)構(gòu)四①②段之間改變壁厚的薄壁一側(cè),且因?yàn)榧雍癖诤袷构芏我驕囟纫鸬臒崤蛎浟υ龃?,所以結(jié)構(gòu)四相對(duì)結(jié)構(gòu)三在某一角度下的最大Mises應(yīng)力值分布范圍更大.
2) 基于加厚段厚度Δδ的對(duì)比分析
以折角10°,加厚段長(zhǎng)度L=2DN為基準(zhǔn)參數(shù),對(duì)DN800的管道進(jìn)行建模,得出加厚厚度從2~7 mm時(shí)的最大Mises應(yīng)力值進(jìn)行分析比較,得出結(jié)論.
圖 24DN800不同加厚厚度Δδ下的應(yīng)力值Fig.24 A stress value of DN800 under different thickness degree Δδ
從模擬結(jié)果中可以看出,結(jié)構(gòu)三中DN800管道的最大Mises應(yīng)力值隨加厚厚度Δδ的增加變化較小,穩(wěn)定在275 MPa左右;結(jié)構(gòu)四中DN800管道的最大Mises應(yīng)力值隨加厚厚度Δδ的增加而增大,到加厚厚度Δδ=5 mm之后逐漸趨于穩(wěn)定.
以管徑DN800,折角10°,加厚段長(zhǎng)度L=2DN為基準(zhǔn)參數(shù),分析加厚厚度Δδ等于2 mm,7 mm時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布圖.
選取結(jié)構(gòu)三圖12中③號(hào)管段具體分析其應(yīng)力變化,如圖 25~圖 28 所示.
圖 25Δδ=2 mm時(shí)結(jié)構(gòu)三應(yīng)力分布Fig.25 The stress distribution figure of structure three when Δδ=2 mm
圖 26Δδ=7 mm時(shí)結(jié)構(gòu)三應(yīng)力分布Fig.26 The stress distribution figure of structure three when Δδ=7 mm
選取結(jié)構(gòu)四圖19中⑤號(hào)管段具體分析其應(yīng)力變化,如下圖所示.
圖 27Δδ=2 mm時(shí)結(jié)構(gòu)四應(yīng)力分布Fig.27 The stress distribution figure of structure four when Δδ=2 mm
圖 28 Δδ=7 mm時(shí)結(jié)構(gòu)四應(yīng)力分布Fig.28 The stress distribution figure of structure four when Δδ=7 mm
從圖 25~圖 28 結(jié)構(gòu)三與結(jié)構(gòu)四模擬結(jié)果中的應(yīng)力分布情況可以看出,當(dāng)增加壁厚時(shí),最大Mises應(yīng)力均出現(xiàn)在管道焊縫處薄壁的一側(cè),且由于焊縫處壁厚的變化程度增大而造成了管道最大Mises應(yīng)力值的增加.
從應(yīng)力分布圖中可以看出,結(jié)構(gòu)三最大Mises應(yīng)力集中分布的范圍隨壁厚的增加而明顯增大,結(jié)構(gòu)四最大Mises應(yīng)力集中分布的范圍隨壁厚的增加變化不大.
結(jié)構(gòu)三與結(jié)構(gòu)四的應(yīng)力集中的位置都會(huì)從管道的焊接處向管道兩側(cè)偏移,但結(jié)構(gòu)四應(yīng)力集中位置從焊縫處向兩側(cè)偏移的效果更為明顯,因而結(jié)構(gòu)四相對(duì)結(jié)構(gòu)三更能有效避免管道焊縫處因應(yīng)力集中而造成的變形與破壞.
3) 基于加厚段長(zhǎng)度L的對(duì)比分析
以10°折角,加厚厚度Δδ=3 mm為基準(zhǔn)參數(shù),對(duì)DN800管道進(jìn)行建模,得出加厚段長(zhǎng)度從1DN~3DN時(shí)的最大Mises應(yīng)力值并進(jìn)行分析比較,得出結(jié)論.
圖 29DN800不同長(zhǎng)度L下的應(yīng)力值Fig.29 A stress value of DN800 under different length L
從圖 29 中針對(duì)不同加厚段長(zhǎng)度L的比較中可以看出,結(jié)構(gòu)三最大Mises應(yīng)力值隨著加厚段長(zhǎng)度L的增加會(huì)有較小幅度的減小,但總的來(lái)說(shuō)變化幅度不大.結(jié)構(gòu)四最大Mises應(yīng)力值隨著加厚長(zhǎng)度L的增加明顯逐漸減小,這說(shuō)明增加加厚段長(zhǎng)度對(duì)保護(hù)單焊縫折角,避免因應(yīng)力集中而發(fā)生破壞是可以起到一定作用的.并且結(jié)構(gòu)四比結(jié)構(gòu)三降低最大Mises應(yīng)力值的效果更為顯著.
以管徑DN800,折角10°,加厚厚度Δδ=3 mm為基準(zhǔn)參數(shù),分析加厚段長(zhǎng)度L等于1DN,3DN時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布圖.
從圖 30,圖 31 可以看出,相比于結(jié)構(gòu)三,結(jié)構(gòu)四中折角管件應(yīng)力集中區(qū)域從改變角度處向改變厚度處轉(zhuǎn)移,從而保護(hù)了管道改變角度的焊縫處因應(yīng)力集中而造成的局部破壞.
圖 30L=1DN時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布Fig.30 The stress distribution figure of structure three and structure four when L=1DN
圖 31L=3DN時(shí)結(jié)構(gòu)三和結(jié)構(gòu)四的應(yīng)力分布Fig.31 The stress distribution figure of structure three and structure four when L=3DN
由上述分析可得出一些結(jié)論:
1) 隨著折角角度的增加,折角管段的最大Mises應(yīng)力值會(huì)隨之增長(zhǎng).但優(yōu)化后的三種結(jié)構(gòu)下最大Mises應(yīng)力值均沒有在某個(gè)角度處出現(xiàn)較大的躍升,直到10°其最大Mises應(yīng)力值依舊能夠滿足峰值應(yīng)力的驗(yàn)算條件,這為工程實(shí)踐上大于5°的直埋小角度折角管道找到了可能的安裝途徑.
2) 用兩個(gè)更小角度的小折角代替一小折角的方法在減小應(yīng)力值,避免小角度折角管道焊縫處發(fā)生變形等方面十分有效,二個(gè)小折角之間管段長(zhǎng)度不應(yīng)小于2DN.
3) 當(dāng)折角角度大于5°時(shí),加厚局部管段壁厚的方法相比于僅用兩個(gè)更小角度的小折角代替一個(gè)小折角的方法,更可以有效降低管段焊縫處的最大Mises應(yīng)力值.
4) 三段加厚比單段加厚的方法更為有效.最大Mises應(yīng)力值會(huì)隨著厚度的增加而增加,但到5 mm之后,變化幅度減小,最大Mises應(yīng)力值趨于穩(wěn)定.考慮到工程投資,因此在工程應(yīng)用中,將加厚厚度控制在5 mm之內(nèi)是最優(yōu)選擇.同時(shí),三段加厚長(zhǎng)度L不小于3DN,應(yīng)力最小.