李典鵬,孫 濤,姚美思,劉隋赟昊,賈宏濤,2*
?
干旱區(qū)鹽湖沿岸不同植物群落土壤CO2排放特征
李典鵬1,孫 濤1,姚美思1,劉隋赟昊1,賈宏濤1,2*
(1.新疆農(nóng)業(yè)大學(xué)草業(yè)與環(huán)境科學(xué)學(xué)院,新疆 烏魯木齊 830052;2.新疆土壤與植物生態(tài)過(guò)程重點(diǎn)實(shí)驗(yàn)室,新疆 烏魯木齊 830052)
為探究鹽湖區(qū)不同植物群落土壤CO2排放速率及影響因素,以新疆達(dá)坂城鹽湖沿岸小獐毛、鳶尾、芨芨草、黑果枸杞群落和撂荒地土壤為研究對(duì)象,在2016年4~12月采用Li–8100A監(jiān)測(cè)了不同植物群落土壤CO2排放特征,分析了CO2排放與5(ST5),10(ST10),15cm(ST15)土壤溫度、含水量、電導(dǎo)率的關(guān)系.結(jié)果如下:4~12月小獐毛群落土壤CO2日排放呈單峰曲線,7月土壤CO2排放速率最高,峰值出現(xiàn)在14:00左右;7月鳶尾、芨芨草、黑果枸杞和撂荒地土壤CO2排放呈雙峰曲線,峰值出現(xiàn)在10:00和14:00~16:00左右,其余月份均呈單峰曲線,峰值出現(xiàn)在12:00~14:00;不同植物群落類型、同一植物類型不同月份土壤CO2排放存在顯著差異(<0.001).4~12月芨芨草群落土壤CO2累積排放量最高(2508.01g/m2),大于撂荒地(2235.01g/m2)、鳶尾(1903.03g/m2)、黑果枸杞(1690.27g/m2)和小獐毛(550.34g/m2)植物群落處理.小獐毛群落土壤CO2排放與ST15顯著相關(guān)(R=0.739,<0.05),且對(duì)ST15變化最敏感;鳶尾、芨芨草、黑果枸杞群落和撂荒地處理土壤CO2排放與ST5相關(guān)性較高(R=0.708~0.821),對(duì)ST10變化響應(yīng)敏感.小獐毛群落土壤溫度敏感系數(shù)(10)最大值出現(xiàn)在6月(7.97),鳶尾(21.74)、芨芨草(13.21)、黑果枸杞(18.23)和撂荒地(7.65)處理則出現(xiàn)在11,12月.不同植物群落土壤CO2排放與含水量相關(guān)性較低;一元線性方程(logeC=-0.149+0.943)能較好的模擬土壤電導(dǎo)率(EC)與CO2排放(C)的關(guān)系.除土壤溫度外,鹽分也是影響鹽湖沿岸土壤碳排放的重要因素.因此,在考慮陸地生態(tài)系統(tǒng)碳收支時(shí)不能忽略鹽湖生態(tài)系統(tǒng),以及鹽分對(duì)土壤碳過(guò)程的影響.
達(dá)坂城鹽湖;碳排放;土壤鹽分;溫度敏感系數(shù)
土壤作為陸地生態(tài)系統(tǒng)系最大的有機(jī)碳庫(kù),儲(chǔ)存了約1.5×1018g碳[1];同時(shí)土壤也是大氣CO2最主要的源,每年排放7.0×1016~8.1×1016g碳,超過(guò)生態(tài)系統(tǒng)凈初級(jí)生產(chǎn)力的總和[2].因此,土壤碳庫(kù)輕微的改變都會(huì)對(duì)大氣CO2濃度產(chǎn)生較大影響.不同生態(tài)系統(tǒng)溫室氣體排放水平的不確定性是造成未來(lái)氣候預(yù)測(cè)不確定性的重要原因,為準(zhǔn)確評(píng)估氣候變化中的不確定性,需對(duì)不同生態(tài)系統(tǒng)及特殊環(huán)境土壤碳排放特征及其影響因素進(jìn)行探究[3].
內(nèi)陸水體約占全球陸地表面積的2.3%,但其CO2年排放速率達(dá)(1.4~2.1)×1015g,是大氣CO2重要的源[4-6].作為陸地水生態(tài)系統(tǒng)重要組成部分,水體沿岸土壤碳排放仍存在較多未知,特別是環(huán)境性質(zhì)獨(dú)特的區(qū)域.鹽湖多位于干旱半干旱區(qū),是一種含鹽量高的特殊生態(tài)環(huán)境類型;全球面積大于10hm2的鹽湖占陸地水體面積的44%,且其水體CO2、CH4等氣體分壓通常處于過(guò)飽和狀態(tài),是重要的溫室氣體排放源[6-9].目前,關(guān)于湖泊空氣界面氣體交換的研究相對(duì)較多,而湖泊沿岸土壤碳通量易被忽略.研究表明,淡水湖沿岸土壤是重要的“碳源”[10-11],而鹽湖沿岸土壤的研究則相對(duì)較少,極少數(shù)研究表明鹽湖沿岸土壤為“碳匯”[12].
湖泊沿岸土壤碳排放受非生物和生物因子的共同影響,例如,青海湖高寒草甸草原土壤呼吸受5cm土壤溫度和水分的影響[10];洞庭湖沿岸楊樹(shù)林、蘆葦和農(nóng)田土壤碳排放速率受土壤微生物調(diào)控[9].而在干旱區(qū)博斯騰湖沿岸,除溫度和水分外,土壤pH值也是影響碳排放的重要因子[13];夏季艾比湖和達(dá)坂城鹽湖沿岸不同植物群落的土壤CO2排放受溫度和含水量共同調(diào)控,且均未出現(xiàn)“碳匯”[14].以往鹽湖沿岸土壤CO2排放的研究主要集中在夏季,且缺乏長(zhǎng)期動(dòng)態(tài)監(jiān)測(cè).干旱區(qū)鹽湖區(qū)具有降雨稀少、地表徑流補(bǔ)給不豐富、蒸發(fā)強(qiáng)度大的特點(diǎn),湖岸土壤鹽分含量高,多介于0.08%~2.6%之間,養(yǎng)分貧瘠.鹽湖區(qū)植物種類較貧乏且相對(duì)分布不均,郁閉度低,多以耐鹽草本、藜科或小灌木為主.前人對(duì)碳排放影響因子探究中,土壤溫度、含水量和生物量通常被優(yōu)先納入考慮和研究范圍,常忽略鹽分對(duì)土壤碳排放的影響.因此,在鹽湖沿岸開(kāi)展長(zhǎng)期CO2通量監(jiān)測(cè),并探究鹽分對(duì)CO2排放的影響,對(duì)衡量干旱區(qū)湖泊對(duì)氣候變化響應(yīng)具有一定意義.
在2015年7~9月的研究基礎(chǔ)上,以新疆達(dá)坂城鹽湖沿岸不同植物群落土壤為研究對(duì)象,于2016年4~12月對(duì)土壤CO2排放原位監(jiān)測(cè),同步測(cè)定了土壤溫度、含水量和鹽分等環(huán)境因子.試探明干旱區(qū)鹽湖沿岸不同植物群落土壤CO2排放規(guī)律及其影響因子;掌握鹽湖沿岸土壤CO2排放溫度敏感性(10)的動(dòng)態(tài)變化特征.以期為我國(guó)湖泊生態(tài)系統(tǒng)碳通量觀測(cè)數(shù)據(jù)進(jìn)行必要補(bǔ)充,同時(shí)有助于進(jìn)一步加深對(duì)全球氣候變暖背景下干旱半干旱區(qū)湖泊碳循環(huán)的認(rèn)識(shí)與理解;也可為該區(qū)域鹽湖生態(tài)系統(tǒng)應(yīng)對(duì)未來(lái)氣候變化適應(yīng)措施、生態(tài)環(huán)境保護(hù)制度的制定和完善提供基礎(chǔ)參考.
新疆達(dá)坂城鹽湖(88°04′E~88°12′E, 43°23′N~ 43°25′N)位于烏魯木齊達(dá)坂城區(qū),距烏魯木齊市約70km.達(dá)坂城鹽湖湖水主要依靠降水和地下水補(bǔ)給,補(bǔ)給系數(shù)28.3.鹵水密度1.07g/cm3,pH值為8.38,屬硫酸鈉亞型鹽湖.湖區(qū)年均氣溫5.1℃,1月平均氣溫-14.5℃,7月平均氣溫24.0℃,極端高溫43.4℃,年均降雨量261mm,年均蒸散發(fā)2074mm,屬中溫帶大陸性氣候.多年平均無(wú)霜期160d,年均日照2820h.鹽湖區(qū)植被主要由旱生和鹽生植物構(gòu)成,以鹽節(jié)木()、小獐毛()、鳶尾()、芨芨草 ()、黑果枸杞 ()等植物為主.
在達(dá)坂城鹽湖沿岸按照植物優(yōu)勢(shì)種(小獐毛、鳶尾、芨芨草、黑果枸杞群落和撂荒地)選擇監(jiān)測(cè)樣地.在每塊樣地內(nèi)隨機(jī)選取3塊10m×10m樣方,在每個(gè)樣方內(nèi)隨機(jī)設(shè)置2個(gè)內(nèi)徑為20cm,高10cm的PVC長(zhǎng)期固定底座.小獐毛群落和撂荒地處理底座隨機(jī)設(shè)置,安裝好底座后剪去地上生物量和去除凋落物;鳶尾、芨芨草和黑果枸杞群落底座置于叢間空地.于第1次試驗(yàn)(4月)開(kāi)始前,將底座嵌入土壤中,使上端高出地表約5cm.在每塊樣地底座附近設(shè)置3套地溫計(jì)用于5(ST5),10(ST10)和15cm(ST15)土壤溫度的測(cè)定.土壤CO2排放采用土壤碳通量測(cè)量系統(tǒng)LI–COR 8100A(Li–COR, Lincoln, NE, USA)監(jiān)測(cè).試驗(yàn)于2016年4~12月進(jìn)行,每月中下旬選擇2~3個(gè)相對(duì)晴朗的典型日進(jìn)行土壤CO2排放監(jiān)測(cè),測(cè)定時(shí)段為08:00~20:00,監(jiān)測(cè)頻率為每2h一次,數(shù)據(jù)采集頻率為1s記錄1個(gè)數(shù)據(jù),測(cè)定時(shí)長(zhǎng)為100s,監(jiān)測(cè)一輪累計(jì)用時(shí)約1h.
在監(jiān)測(cè)土壤CO2排放時(shí)記錄不同土層溫度;用鋁盒采取0~10cm土壤測(cè)定含水量,每塊樣地重復(fù)3次;同時(shí)采取底座周圍0~20cm土壤樣品,用于測(cè)定當(dāng)月土壤電導(dǎo)率.于2016年7月對(duì)植物群落特征進(jìn)行調(diào)查,小獐毛群落和撂荒地植被調(diào)查方法如下:在所選樣地附近,按一定方向設(shè)置50m樣線,每隔10m布設(shè)一個(gè)1m×1m的樣方.鳶尾、芨芨草、黑果枸杞群落則按一定方向設(shè)置50m樣線,每隔10m布設(shè)一個(gè)5m×5m的樣方,對(duì)樣方內(nèi)地表活體植物和凋落物進(jìn)行采集和分析,估計(jì)樣方內(nèi)植被蓋度,采集植物新鮮樣帶回實(shí)驗(yàn)室測(cè)定植物干重.
土壤含水量采用烘干法(105℃)測(cè)定;土壤pH值采用pH計(jì)(PHSJ–4F,上海儀電科學(xué)儀器股份有限公司)測(cè)定(1:5土水比);土壤電導(dǎo)率采用電導(dǎo)率儀(DDSJ-308F,上海儀電科學(xué)儀器股份有限公司)測(cè)定(1:5土水比);土壤有機(jī)質(zhì)采用重鉻酸鉀濃硫酸外加熱法測(cè)定,土壤粒徑采用吸管法測(cè)定[15],土壤基本性質(zhì)見(jiàn)表1.將采集的新鮮植物樣品在105℃下殺青30min,然后在70℃烘至恒重,最后用稱重法測(cè)定生物量;凋落物生物量測(cè)定方法與生物量測(cè)定方法一致,不同處理植被基本特征見(jiàn)表1.
表1 不同樣地土壤基本性質(zhì)和植物群落特征
注:表中數(shù)據(jù)為平均值,誤差為標(biāo)準(zhǔn)誤差,下同.
采用Van’t Hoff模型模擬土壤溫度與土壤CO2排放速率的關(guān)系,見(jiàn)公式(1):
C=×e(1)
式中:C表示土壤CO2排放速率,μmol/(m2·s),下同;表示土壤溫度,℃;、均為參數(shù).
采用Jian等[2]方法計(jì)算土壤CO2排放對(duì)不同土層溫度變化敏感程度(10-ST5,10-ST10,10-ST15),即對(duì)應(yīng)土壤溫度升高10℃時(shí)CO2排放速率變化的倍數(shù)(ST5,ST10,ST15分別表示5,10,15cm土壤溫度).采用線性回歸模型擬合ST5,ST10,ST15,含水量和鹽分與CO2排放速率的關(guān)系:
C=+×(2)
式中:為土壤環(huán)境因子;、均為回歸系數(shù).
采用Excel 2016對(duì)數(shù)據(jù)進(jìn)行處理.重復(fù)測(cè)量方差分析比較小獐毛、鳶尾、芨芨草、黑果枸杞和撂荒地之間土壤CO2排放的差異以及不同月份同一群落土壤CO2排放的差異;采用單因素方差分析4~12月土壤CO2累積排放量進(jìn)行差異性分析(=0.05);對(duì)土壤溫度、含水量、電導(dǎo)率與土壤CO2排放進(jìn)行回歸分析,得出各因子()與土壤CO2排放(C)之間的回歸方程;主成分分析用于研究ST5,ST10,ST15,含水量和電導(dǎo)率對(duì)土壤CO2排放的影響并計(jì)算各因子的影響權(quán)重.所有統(tǒng)計(jì)分析均使用SPSS 20.0完成,采用Origin Pro 2017繪圖.
4~12月小獐毛群落土壤CO2日排放呈單峰曲線,峰值出現(xiàn)在14:00~16:00,11~12月土壤碳排放無(wú)明顯日變化規(guī)律特征(圖1).鳶尾、芨芨草、黑果枸杞和撂荒地植物群落7月土壤CO2日排放呈雙峰曲線,峰值出現(xiàn)在10:00和14:00~16:00左右,谷值出現(xiàn)在12:00,11~12月土壤CO2排放速率無(wú)明顯日動(dòng)態(tài)變化規(guī)律;其他月份均為單峰曲線,峰值出現(xiàn)在12:00~14:00之間.不同植物群落處理間土壤CO2排放均存在顯著性差異(表2);同一群落不同月份土壤CO2排放也存在顯著差異;且群落類型與時(shí)間變化對(duì)土壤CO2排放的影響存在交互作用.
圖1 4~12月不同植物群落土壤CO2排放日動(dòng)態(tài)變化
表2 土壤CO2排放重復(fù)測(cè)量方差分析
注:表中SS為平方和,為自由度.*表示經(jīng)球稱性檢驗(yàn),<005,采用Greenhouse Geisser法校正自由度.
4~12月達(dá)坂城鹽湖沿岸土壤CO2日排放呈明顯單峰曲線,7月各處理土壤CO2日排放通量達(dá)峰值(圖2a).芨芨草群落土壤CO2排放速率為(8.74±0.73) μmol/(m2·s),顯著高于其他處理;小獐毛群落土壤CO2排放速率最低.在監(jiān)測(cè)時(shí)段內(nèi)(4~12月)土壤CO2累積排放量表現(xiàn)為芨芨草>撂荒地>鳶尾>黑果枸杞>小獐毛(圖2b),芨芨草群落累積排放量為2508.01g/ m2,顯著高于鳶尾(1903.03g/m2)、黑果枸杞(1690.27g/m2)和小獐毛(550.34g/m2)處理,但與撂荒地(2235.01g/m2)處理不存在顯著差異.
圖中數(shù)據(jù)均為平均值,誤差為標(biāo)準(zhǔn)誤值;不同字母表示在0.05水平上顯著相關(guān)
土壤CO2排放與不同深度土壤溫度存在顯著指數(shù)相關(guān)(圖3).小獐毛群落土壤CO2排放速率與溫度顯著相關(guān),且相關(guān)性隨土層深度增加而增加,與ST15相關(guān)性最高(2=0.739).鳶尾、芨芨草、黑果枸杞和撂荒地土壤CO2排放與溫度的相關(guān)性隨土層深度增加而降低,與ST5相關(guān)性較高(圖3).不同植物群落土壤CO2排放對(duì)不同土層溫度變化的響應(yīng)程度不同(圖4).總體上,小獐毛群落土壤10呈先增加后下降的趨勢(shì),最大值出現(xiàn)在6月(7.97);鳶尾、芨芨草、黑果枸杞和撂荒地則呈增加趨勢(shì),10最大值出現(xiàn)在11或12月.小獐毛群落處理4,5,11月10均低于1, 4月最低為0.61.鳶尾(21.74)、芨芨草(12.31)、黑果枸杞(18.23)和撂荒地(7.65)土壤10在11或12月出現(xiàn)最大值;撂荒地處理4,5月10-ST15均低于1.4~12月土壤CO2排放對(duì)不同土層溫度變化的響應(yīng)程度見(jiàn)圖5,小獐毛群落和撂荒地土壤CO2排放對(duì)溫度變化的敏感性隨土層深度增加而增加,10-ST15最高分別為1.91,2.34.鳶尾、芨芨草和黑果枸杞群落土壤CO2排放對(duì)溫度變化的敏感性隨土層深度先增加后降低趨勢(shì),10-ST10值分別為2.53,2.66,2.27.
**表示在0.01水平上顯著相關(guān);*表示在0.05水平上顯著相關(guān)(下同);為土壤溫度
圖5 土壤CO2排放對(duì)不同土層溫度變化的敏感性
達(dá)坂城鹽湖沿岸土壤CO2排放與土壤含水量相關(guān)性較低(圖6).小獐毛、鳶尾群落和撂荒地土壤CO2排放與土壤含水不存在顯著相關(guān)性;芨芨草和黑果枸杞群落土壤CO2排放與溫度存在顯著相關(guān)性(<0.05).單因子線性方程能較好模擬土壤CO2排放與含水量的關(guān)系;黑果枸杞群落土壤CO2排放與土壤含水量呈顯著二次函數(shù)相關(guān)(<0.05).
SM為土壤含水量;ns表示不存在顯著性差異
圖7 土壤電導(dǎo)率與土壤CO2排放的回歸分析
C為土壤CO2排放速率,EC為土壤電導(dǎo)率
鹽湖沿岸不同植物群落土壤電導(dǎo)率介于0.22~ 15.70mS/cm.土壤CO2排放速率經(jīng)對(duì)數(shù)轉(zhuǎn)換后,與土壤電導(dǎo)率顯著負(fù)相關(guān)(=-0.505,<0.05).回歸分析表明(圖7),一元線性方程能較好模擬土壤電導(dǎo)率對(duì)CO2排放影響.回歸方程表明電導(dǎo)率增加1mS/cm,土壤CO2排放速率降低0.86μmol/(m2·s).
表3 主成分載荷矩陣及權(quán)重系數(shù)
為研究ST5,ST10,ST15,含水量和電導(dǎo)率對(duì)土壤CO2排放影響的總效應(yīng),采用主成分分析對(duì)以上5個(gè)土壤指標(biāo)進(jìn)行主成分提取.由表3可知,提取的前2個(gè)主成分對(duì)CO2總變異的解釋率達(dá)86.0%,主成分1和2分別64.10%和21.90%.通過(guò)計(jì)算各土壤因子對(duì)CO2排放影響的權(quán)重可知,ST5,ST10所占權(quán)重較大,其次為ST15、EC和SM,其中EC對(duì)CO2排放的影響權(quán)重達(dá)0.176,僅次于土壤溫度.
干旱區(qū)鹽湖沿岸土壤CO2排放存在明顯的日變化規(guī)律.除7月外,不同植物群落土壤CO2排放呈單峰曲線.這與胡保安等[16]研究結(jié)果一致,土壤水分和溫度的變化會(huì)影響土壤微生物活性,近而導(dǎo)致土壤CO2排放通量的動(dòng)態(tài)變化[17-18].土壤排放的CO2源于土壤微生物、根系和動(dòng)物呼吸以及含碳礦物質(zhì)的化學(xué)氧化作用,溫度和水分幾乎影響呼吸作用的各個(gè)階段[19-20],在日時(shí)間尺度上,土壤溫度呈先增加后下降的趨勢(shì),故土壤CO2排放也存在類似趨勢(shì).7月鳶尾、芨芨草、黑果枸杞和撂荒地處理土壤CO2日排放呈雙峰曲線,峰值出現(xiàn)在10:00和14:00~16:00左右.目前對(duì)于土壤CO2排放日動(dòng)態(tài)呈雙峰的報(bào)道相對(duì)較少,這與在新疆阜康鹽生荒漠和呼圖壁鹽柴類荒漠的研究結(jié)果相似[21-22].土壤CO2排放隨溫度的升高而下降可能是因?yàn)檎鐪囟容^高抑制微生物酶活性[23].此外也有研究表明,植物每年將通過(guò)光合作用固定的20%~30%的有機(jī)物通過(guò)根系輸入到土壤中,而土壤排放的CO2很大部分源于微生物對(duì)植物根系分泌物的分解[24-25].馬彥軍等[26]對(duì)黑果枸杞光合速率日變化的研究表明,光合速率日變化呈明顯的雙峰曲線,這與本研究土壤CO2排放規(guī)律一致.故大氣溫度升高引起的光合同化速率降低也可能是導(dǎo)致土壤CO2排放速率下降的原因.而有關(guān)干旱區(qū)鹽湖沿岸土壤CO2排放呈雙峰曲線變化的機(jī)理還有待進(jìn)一步探究.
不同類型湖泊沿岸不同植物群落下土壤CO2排放速率見(jiàn)表4.淡水湖沿岸不同植物群落土壤CO2排放介于0.85~4.47μmol/(m2·s),鹽湖為-0.19~ 2.40μmol/ (m2·s).東臺(tái)吉乃爾鹽湖屬硫酸鹽型湖泊,在監(jiān)測(cè)期間土壤為“碳匯”,CO2吸收速率為-0.19μmol/ (m2·s)[29];而氯化物型鹽湖茶卡鹽湖和硫酸鈉型鹽湖艾比湖、達(dá)坂城鹽湖沿岸土壤CO2均為“碳源”[29],且淡水湖沿岸土壤CO2排放速率普遍高于鹽湖.年均溫度和年降水量是影響土壤碳排放的重要因子,淡水湖沿岸土壤CO2排放速率較高可能與該地區(qū)溫度和土壤含水量相對(duì)較適宜有關(guān)[28].東臺(tái)吉乃爾鹽湖沿岸土壤為“碳匯”,這與大部分湖泊沿岸的研究結(jié)果不一致;艾比湖、達(dá)坂城鹽湖和東臺(tái)吉乃爾鹽湖沿岸土壤均呈堿性,具有吸收CO2的條件,而“源匯”關(guān)系不一致,可能與土壤鹽分類型和監(jiān)測(cè)儀器不一致有關(guān).
表4 不同湖泊沿岸植物群落土壤CO2排放速率
續(xù)表4
土壤溫度是影響CO2排放的重要因子之一[30].達(dá)坂城鹽湖沿岸不同植物群落土壤CO2排放與ST5,ST10,ST15顯著相關(guān).Li等[31]在艾比湖沿岸蘆葦、檉柳和裸地的研究結(jié)果表明,土壤呼吸與大氣溫度、ST5呈顯著正相關(guān);楊建軍等[11]對(duì)艾比湖沿岸胡楊、梭梭、蘆葦和鹽節(jié)木等24種植物群落土壤呼吸的研究表明,土壤溫度、含水量和呼吸速率顯著負(fù)相關(guān);同樣對(duì)艾比湖沿岸測(cè)定農(nóng)田、撂荒地、蘆葦和胡楊土壤CO2排放特征的研究表明,CO2排放速率與ST5,ST10顯著正相關(guān)[32].在淡水湖博斯騰湖沿岸,蘆葦濕地土壤CO2排放通量與溫度顯著正相關(guān);青海湖北岸高寒草甸草原非生長(zhǎng)季土壤呼吸與溫度同樣呈正相關(guān)[10].綜上可知,干旱區(qū)湖泊沿岸不同植被類型和利用方式下土壤CO2排放與溫度存在正相關(guān)或負(fù)相關(guān),這可能是由于植被類型和利用方式不同導(dǎo)致的;而淡水湖沿岸土壤CO2排放與溫度正相關(guān),可能與該研究區(qū)溫度日變化幅度較小有關(guān).
土壤CO2排放溫度敏感系數(shù)(10)是預(yù)測(cè)土壤碳通量的重要指標(biāo)[33].達(dá)坂城鹽湖沿岸不同植物群落土壤10介于0.60~21.74之間,11或12月10最大,這與Chen等[34]研究結(jié)果基本一致.10與土壤溫度顯著負(fù)相關(guān)[35-36],故10在4~10月相對(duì)低,11、12月溫度低10相對(duì)較高.中國(guó)不同生態(tài)系統(tǒng)10-ST5,10-ST10,10-ST15和10-ST20分別為2.03,2.61, 3.19和3.02,10隨土層深度增加而增加[36],與鳶尾、芨芨草和黑果枸杞10隨不同土層溫度變化的規(guī)律不一致,這可能與鹽湖區(qū)不同季節(jié)溫度差異較大有關(guān).中國(guó)和全球陸地生態(tài)系統(tǒng)10算術(shù)平均值為2.40[36-37],達(dá)坂城鹽湖不同植物群落土壤10算術(shù)平均值為2.69,高于我國(guó)不同生態(tài)系統(tǒng),表明鹽湖生態(tài)系統(tǒng)土壤CO2排放對(duì)溫度的響應(yīng)程度高,對(duì)氣候變化的響應(yīng)程度也較為敏感.
土壤含水量是影響土壤CO2排放的重要因子[38].達(dá)坂城鹽湖沿岸不同植物群落土壤CO2排放與含水量相關(guān)性較低,這與趙明亮等[12]、王金龍等[13]在艾比湖和博斯騰湖沿岸研究結(jié)果相似.而青海湖北岸草甸土壤碳排放與含水量顯著正相關(guān)[10].土壤含水量與CO2排放速率相關(guān)性較低,是因?yàn)楦珊祬^(qū)年均降水量小于200mm,蒸發(fā)量大,土壤含水量低,日變化和年變化較小,因此,當(dāng)土壤含水量發(fā)生輕微改變時(shí),微生物活性和群落結(jié)構(gòu)不會(huì)立刻發(fā)生改變,故CO2排放與含水量存在相關(guān)性較小.此外,土壤含水量對(duì)CO2排放的影響也很有可能被其他因子所掩蓋[39].水分與鹽分對(duì)土壤CO2排放的影響存在交互作用,達(dá)坂城鹽湖沿岸土壤CO2排放與土壤電導(dǎo)率存在顯著負(fù)相關(guān),且電導(dǎo)率對(duì)CO2排放的影響較大,這與李旭等[22]研究結(jié)果一致.當(dāng)土壤鹽分含量較高時(shí),土壤微生物活性和生長(zhǎng)都會(huì)受到滲透脅迫,從而降低土壤CO2排放[40-42].鹽湖沿岸土壤鹽分含量普遍較高,這與淡水湖存在明顯差異,而鹽分類型與碳“源匯”的關(guān)系還有待深入研究.
4.1 干旱區(qū)鹽湖沿岸土壤CO2排放日變化特征明顯,除小獐毛群落外,7月各處理土壤CO2排放日變化呈雙峰曲線,其余月份均呈單峰曲線;同一月份不同處理以及不同月份同一植物群落處理土壤CO2排放存在顯著差異;芨芨草群落土壤CO2累積排放量(2508.01g/m2)顯著高于其他處理.
4.2 土壤CO2排放與土壤溫度呈指數(shù)顯著相關(guān), ST5和ST15能較好擬合土壤CO2排放的變化.4~12月干旱區(qū)鹽湖沿岸土壤Q10普遍呈增加趨勢(shì),Q10最大值出現(xiàn)在11或12月.土壤CO2排放對(duì)ST10和ST15的變化最敏感.
4.3 鹽湖沿岸土壤CO2排放與含水量的相關(guān)性較低;一元線性方程能較好模擬土壤CO2排放與電導(dǎo)率的關(guān)系.因此,除土壤溫度外鹽分也是影響干旱區(qū)鹽湖沿岸土壤CO2排放的重要因子.
[1] Batjes N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks [J]. Geoderma, 2016,269:61–68.
[2] Jian J, Steele M K, Thomas R Q, et al. Constraining estimates of global soil respiration by quantifying sources of variability [J]. Global Change Biology, 2018,24:4143–4159.
[3] 段青云,夏 軍,繆馳遠(yuǎn),等.全球氣候模式中氣候變化預(yù)測(cè)預(yù)估的不確定性 [J]. 自然雜志, 2016,38(3):182–188. Duan Q Y, Xia J, Miu C Y, et al. The uncertainty in climate change projections by global climate models [J]. Chinese Journal of Nature, 2016,38(3):182–188.
[4] Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate [J]. Limnology & Oceanography, 2009,54:2298–2314.
[5] Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters [J]. Nature, 2014,507(7492):355–359.
[6] 謝燕紅,張 彌,肖 薇,等.湖泊和水庫(kù)氧化亞氮通量分析 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(9):3481–3493. Xie Y H, Zhang M, Xiao W, et al. Analysis of nitrous oxide flux from lakes and reservoirs [J]. China Environmental Science, 2018,38(9): 3481–3493.
[7] 唐 潔,李志輝,湯玉喜,等.洞庭湖灘地土壤微生物與土壤呼吸特征分析 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2011,31(4):20–24. Tang J, Li Z H, Tang Y X, et al. Characteristics analyses of soil respiration and microorganisms in beach of Dongting Lake [J].Journal of Central South University of Forestry & Technology, 2011,31(4):20– 24.
[8] 鄭小蘭,劉 敏,文帥龍,等.冬季太湖草、藻型湖區(qū)N2O的生成與排放特征[J]. 中國(guó)環(huán)境科學(xué), 2018,38(2):683-693. Liu X L, Liu M, Wen S L, et al. Characteristics of N2O formation and emission in algae and grasstype zones in Lake Taihu in winter [J]. China Environmental Science, 2018,38(2):683-693.
[9] 蒲旖旎,賈 磊,楊詩(shī)俊,等.太湖藻型湖區(qū)CH4冒泡通量[J]. 中國(guó)環(huán)境科學(xué), 2018,38(10):3914-3924. Pu Y N, Jia L, Yang S J, et al. The methane ebullition flux over algae zone of Lake Taihu [J]. China Environmental Science, 2018,38(10): 3914-3924.
[10] 陳 驥,曹軍驥,魏永林,等.青海湖北岸高寒草甸草原非生長(zhǎng)季土壤呼吸對(duì)溫度和濕度的響應(yīng) [J]. 草業(yè)學(xué)報(bào), 2014,23(6):78–86. Chen J, Cao J J, Wei Y L, et al. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China [J]. Acta Prataculturae Sinica, 2014,23(6):78–86.
[11] 楊建軍,呂光輝,張 燕,等.艾比湖流域不同植物群落土壤呼吸研究 [J]. 環(huán)境科學(xué)研究, 2009,22(3):362–370. Yang J J, Lv G H, Zhang Y, et al. Soil respiration of different plant communities in Ebinur Lake watershed [J]. Research of Environmental Sciences, 2009,22(3):362–370.
[12] 趙明亮,李艷紅,李發(fā)東.艾比湖濕地典型植物群落入冬期土壤呼吸日變化特征 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015,34(12):2432–2438. Zhao M L, Li Y H, Li F D. Diurnal variation of soil respiration in a typical plant community in the Ebinur Lake wetland during beginning winter [J]. Journal of Agro-Environment Science, 2015,34(12):2432– 2438.
[13] 王金龍,李艷紅,李發(fā)東.博斯騰湖人工和天然蘆葦濕地土壤呼吸動(dòng)態(tài)變化規(guī)律及其影響因素 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2017,36(1): 167–175. Wang J L, Li Y J, Li F D. Dynamics of soil respiration and its influential factors on artificial and natural reed wetlands in Boston Lake [J]. Journal of Agro-Environment Science, 2017,36(1):167–175.
[14] 李典鵬,姚美思,韓東亮,等.新疆達(dá)坂城鹽湖不同植物群落土壤呼吸研究 [J]. 土壤, 2017,49(3):621–629. Li D P, Yao M S, Han D L, et al. Soil Respirations under different plant communities in Dabancheng Salt Lake of Xinjiang [J]. Soils, 2017,49(3):621–629.
[15] 鮑士旦.土壤農(nóng)化分析 [M]. 北京:中國(guó)農(nóng)業(yè)出版社, 2000,25-38. Bao S D. Soil agricultural chemistry analysis [M]. Beijing: China Agricultural Science Press, 2000:25-38.
[16] 胡保安,賈宏濤,朱新萍,等.巴音布魯克高寒濕地夏季CO2和CH4通量日變化研究 [J]. 干旱區(qū)資源與環(huán)境, 2016,30(6):167–172. Hu B A, Jia H T, Zhu X P, et al. Daily characteristics of summer CO2and CH4fluxes under different water conditions at Bayinbuluke alpine wetland [J]. Journal of Arid Land Resources and Environment, 2016, 30(6):167–172.
[17] Yang F, Ali M, Zheng X Q, et al. Diurnal dynamics of soil respiration and the influencing factors for three land–cover types in the hinterland of the Taklimakan Desert, China [J]. Journal of Arid Land, 2017,9(4): 568–579.
[18] Wang H, Liao G, D’Souza M, et al. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China [J]. Environment Science Pollution Research International, 2016,23(2):1873–1885.
[19] Rubio V E, Detto M. Spatiotemporal variability of soil respiration in a seasonal tropical forest [J]. Ecology & Evolution, 2017,7(17):7104- 7116.
[20] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010,464:579–582.
[21] 馬 杰,王忠媛,唐立松,等.非生物過(guò)程對(duì)鹽堿土土壤CO2通量的影響 [J]. 干旱區(qū)地理, 2014,37(3):555–560. Ma J, Wang Z Y, Tang L S, et al. Effect of soil abiotic processes on soil CO2flux in saline/alkaline soils [J]. Arid Land Geography, 2014,37(3): 555–560.
[22] 李 旭.鹽柴類荒漠生態(tài)系統(tǒng)碳交換特征及其對(duì)環(huán)境因子的響應(yīng)研究 [D]. 新疆農(nóng)業(yè)大學(xué), 2016. Li X. Characteristic of carbon exchange and its response to environmental factors of saline desert ecosystem [D]. Xinjiang Agricultural University, 2016.
[23] Ma J, Zheng X J, Li Y. The response of CO2flux to rain pulses at a saline desert [J]. Hydrological Processes, 2012,26(26):4029–4037.
[24] Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects [J]. Soil Biology & Biochemistry, 2000,32(11):1485–1498.
[25] Pausch J, Kuzyakov Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale [J]. Global Change Biology, 2017,24(1):1–12.
[26] 馬彥軍,王亞濤,楊萬(wàn)鵬,等.10個(gè)種源黑果枸杞光合作用特性研究[J]. 干旱區(qū)資源與環(huán)境, 2018,32(6):155–159. Ma Y J, Wang Y T, Yang W P, et al. Photosynthetic characteristics in 10provenances of[J]. Journal of Arid Land Resources and Environment, 2018,32(6):155–159.
[27] 王金龍,李艷紅,李發(fā)東.博斯騰湖人工和天然蘆葦濕地土壤CO2、CH4和N2O排放通量 [J]. 生態(tài)學(xué)報(bào), 2018,38(2):668–677. Wang J L, Li Y H, Li F D. Emission fluxes of CO2, CH4, and N2O from artificial and natural reed wetlands in Bosten Lake, China [J]. Acta Ecologica Sinica, 2018,38(2):668–677.
[28] 馮育青.太湖湖濱帶土壤呼吸與微生物生物量研究 [D]. 南京:南京林業(yè)大學(xué), 2010. Feng Y Q. Dynamics of Soil respiration and soil microbial biomass in a riparian zone in Taihu Lake [D]. Nanjing: Nanjing Forestry University, 2010.
[29] 林 麗,曹廣民,徐世曉,等.青海鹽湖碳源/匯功能初探 [J]. 干旱區(qū)資源與環(huán)境, 2010,24(8):22–26. Lin L, Cao G M, Xu S X, et al. Carbon sink or source to salt lakes in Qinghai [J]. Journal of Arid Land Resources and Environment, 2010,24(8):22–26.
[30] Liu X, Zhang W, Zhang B, et al. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China [J]. Atmospheric Environment, 2016,125:283–292.
[31] Li Y, Zhao M, Li F. Soil respiration in typical plant communities in the wetland surrounding the high—salinity Ebinur Lake [J]. Frontiers of Earth Science, 2018:1–14.
[32] 秦 璐,呂光輝,何學(xué)敏,等.艾比湖地區(qū)土壤呼吸對(duì)季節(jié)性凍土厚度變化的響應(yīng) [J]. 生態(tài)學(xué)報(bào), 2013,33(22):7259–7269. Qin L, Lv G H, He X M, et al. Responses of soil respiration to changes in depth of seasonal frozen soil in Ebinur Lake area, arid area of Northwest China [J]. Acta Ecologica Sinica, 2013,33(22):7259–7269.
[33] Curiel Y J, Janssens I A, Carrara A, et al. Annual Q10of soil respiration reflects plant phenological patterns as well as temperature sensitivity [J]. Global Change Biology, 2004,10(2):161–169.
[34] Chen B Y, Liu S R, Ge J P, et al. Annual and seasonal variations of Q10soil respiration in the sub–alpine forests of the Eastern Qinghai–Tibet Plateau, China [J]. Soil Biology & Biochemistry, 2010,42(10):1735– 1742.
[35] Power J M, Wettenhall R L. Does a general temperature–dependent Q10model of soil respiration exist at biome and global scale? [J]. Journal of Integrative Plant Biology, 2005,47(11):1288–1302.
[36] Peng S S, Shilong P, Tao W, et al. Temperature sensitivity of soil respiration in different ecosystems in China [J]. Soil Biology & Biochemistry, 2009,41(5):1008–1014.
[37] Zhou T, Shi P, Hui D, et al. Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon– climate feedback [J]. Journal of Geophysical Research Biogeosciences, 2015,114(G2):271–274.
[38] Ru J, Zhou Y, Hui D, et al. Shifts of growing–season precipitation peaks decrease soil respiration in a semiarid grassland [J]. Global Change Biology, 2018,24(3):1001–1011.
[39] 王新源,李玉霖,趙學(xué)勇,等.干旱半干旱區(qū)不同環(huán)境因素對(duì)土壤呼吸影響研究進(jìn)展[J]. 生態(tài)學(xué)報(bào), 2012,32(15):4890–4901. Wang X Y, Li Y L, Zhao X Y, et al.Responses of soil respiration to different environment factors in semi-arid and arid areas [J]. Acta Ecologica Sinica, 2012,32(15):4890–4901.
[40] Setia R, Marschner P, Baldock J, et al. Is CO2evolution in saline soils affected by an osmotic effect and calcium carbonate? [J]. Biology & Fertility of Soils, 2010,46(8):781–792.
[41] Setia R, Marschner P, Baldock J, et al. Relationships between carbon dioxide emission and soil properties in salt–affected landscapes [J]. Soil Biology & Biochemistry, 2011,43(3):667–674.
[42] Rietz D N, Haynes R J. Effects of irrigation–induced salinity and sodicity on soil microbial activity [J]. Soil Biology & Biochemistry, 2003,35(6):845–854.
致謝:本試驗(yàn)的野外監(jiān)測(cè)工作得到了研究生胡保安、王寧寧和李政以及王輝、蔣大勇、馬寧等同學(xué)大力幫助,在此表示感謝.
Characteristic of soil CO2emission under different plant communities in the shores of saline lake in arid region.
LI Dian-peng1, SUN Tao1, YAO Mei-si1, LIU Sui-yunhao1, JIA Hong-tao1,2*
(1.College of Grassland and Environmental Science, Xinjiang Agricultural University, Urumqi 830052,China;2.Xinjiang Key Laboratory ofSoil and Plant Ecological Processes, Urumqi 830052, China)., 2019,39(5):1879~1889
In order to investigate the emission rate of soil CO2and its influencing factors under different plant communities in arid saline lakes, four plant communities including,,,and abandoned land in Danbancheng Saline Lake were selected. The soil CO2emission rates, under the five plant communities were measured from April to December, 2016 using the LI-8100A. Meanwhile, the soil temperature in 5, 10 and 15cm depth, soil water content and electric conductivity were also measured. Results showed that the diurnal variation of soil CO2emission rate undershowed obvious single peak, the highest emission rate happened in July around 14:00. For other plant communities, the emission rates showed the sing peak in 12:00~14:00 in all months except July during which the emission rates had two peaks in 10:00 and 14:00 to 16:00. There were significant difference in the emission rate between different plant communities and among different months under the same plant community (<0.001). During the research period, the cumulative soil CO2emission was highest under(2508.01g/m2), followed by abandoned land (2235.01g/m2),(1903.03g/m2),(1690.27g/m2), and(550.34g/m2). The correlation between soil CO2emission rate and soil temperature in 15cm depth underwas significant (2=0.739,<0.05), and it was sensitive to the changes of soil temperature in 15cm depth. Under other plant communities, soil CO2emission rate have highest correlations with soil temperature in 5cm depth (2=0.708~0.821), indicating they are sensitive to the changes of soil temperature in 5cm depth. Plant communities had great effect on the temperature sensitive of soil CO2emission (10) with largely ranging from 0.60 to 21.74. Values of10was significantly different from April to December. The greatest10underwas found at June (7.97), while the highest values under other plant communities were found at November or December:(21.74),(13.21),(18.23)and abandoned land (7.65). Regression analysis results showed that the correlation between the CO2emission (C) and the soil moisture was low, the correlation with soil electric conductivity could be modeled (logeC=-0.149+0.943). Our result also indicated that salinity was an important factor affecting soil carbon emissions among the saline lake. To conclude, the soil carbon process of the saline lake ecosystem in the arid area and the influence of soil salt content on the carbon emissions of the saline lake ecosystem should not been ignored when considering the carbon budget and carbon cycle of the terrestrial ecosystem.
Dabancheng Saline Lake;carbon emission;soil salinity;temperature sensitive coefficient (10)
X171.1
A
1000-6923(2019)05-1879-11
李典鵬(1992–),男,湖南新邵人,新疆農(nóng)業(yè)大學(xué)碩士研究生,主要從事干旱區(qū)湖泊碳循環(huán)方面研究.發(fā)表論文10余篇.
2018-09-13
國(guó)家自然科學(xué)基金資助項(xiàng)目(31560171);國(guó)家大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(201510758004)
*責(zé)任作者, 教授, hongtaojia@126.com