国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

制藥廢水廠微生物群落和多種抗性基因相關(guān)性分析

2019-06-11 08:27袁立霞羅曉張文麗蔣永豐
河北科技大學(xué)學(xué)報 2019年2期

袁立霞 羅曉 張文麗 蔣永豐

摘要:為了研究多種生物處理工藝制藥廢水中微生物群落結(jié)構(gòu)和抗性基因的分布特征、擴(kuò)增情況及其相關(guān)性,采用Miseq高通量測序分析技術(shù)和熒光定量PCR技術(shù)對制藥廢水廠中活性污泥進(jìn)行檢測。熒光定量結(jié)果表明:sul1,sul2,tetO,tetQ,tetW,OXA-1和可移動遺傳元件int1在制藥廢水廠中各個階段均能被廣泛地檢測到,總抗性基因濃度范圍為3.09×108~2.26×109 copies/g(干重),基因總濃度上升了7.3倍。Miseq測序結(jié)果表明:制藥廢水中主要優(yōu)勢菌門為Proteobacteria,Bacteroidetes,F(xiàn)irmicutes,Thermus和Gemmatimonadetes等門,其平均總相對豐度比例占到81.05%;冗余分析顯示,Aeromicrobium與sul2呈較高程度的正相關(guān)性,可能是sul2在微生物群落中存在的可能的主要菌群;Rhodovulum和Rhodospirillaceae菌屬與OXA-1和tetQ呈較高程度的正相關(guān)性,這些菌屬是這些ARGs分布的主要菌屬;Acinetobacter與tetO和tetW呈現(xiàn)較高程度的正相關(guān)性,可能是tetO和tetW在微生物群落中存在的可能的主要菌屬。因此,相關(guān)抗性基因的增值和分布與相關(guān)特定菌屬有關(guān),可以通過控制相關(guān)菌屬的豐度來消減工業(yè)廢水廠中的抗性基因。

關(guān)鍵詞:微生物生態(tài)學(xué);抗性基因;熒光定量PCR;Miseq;微生物群落結(jié)構(gòu)

中圖分類號:X703文獻(xiàn)標(biāo)志碼:A

Abstract: In order to study the distribution, amplification and correlation of microbial community structure and resistance genes in pharmaceutical wastewater, a variety of biological treatment processes are used to treat pharmaceutical wastewater. Combining Miseq high throughput sequencing analysis technology and fluorescence quantitative PCR technology, activated sludge in pharmaceutical wastewater plants is detected. The results show that sul1, sul2, tetO, tetQ, tetW, OXA-1 and INT1 are widely detected at all stages of pharmaceutical wastewater treatment plant. The total resistance gene concentration ranges from 3.09×108 to 2.26×109 copies/g (dry weight), and the total gene concentration increases by 7.3 times. Miseq sequencing results show that the dominant bacteria in pharmaceutical wastewater are Proteobacteria, Bacteroidetes, Firmicutes, Thermus and Gemmatimonadetes, with an average relative abundance ratio of 81.05%. Redundancy analysis shows that Aeromicrobium is positively correlated with sul2 to a high degree, which might be sul2 existing in microbial communities. Among the possible major microflora, Rhodovulum and Rhodospirillaceae are highly positively correlated with OXA-1 and tetQ, which are the main microflora of ARGs distribution. Acinetobacter has a high degree of positive correlation with tetO and tetW, which may be the main possible microflora of tetO and tetW in microbial community. The results show that appreciation and distribution of antibiotic resistance gens are connected with concerned specific bacterial genus. The controlled abundance of concerned bacterial genus could subduce resistance gene in industrial wastewater factory.

Keywords:microbial ecology; antibiotic resistance genes;fuorescence quantitative PCR;Miseq;microbial community structure

由于抗生素廣泛應(yīng)用于人類和動物(畜禽/魚)的疾病防治或動物的促進(jìn)生長,大量殘留抗生素進(jìn)入環(huán)境,致使微生物在持續(xù)抗生素選擇下產(chǎn)生了耐藥性,形成了耐藥菌[1-2],其風(fēng)險比抗生素藥物本身的污染風(fēng)險更高[3],關(guān)于其行為特點(diǎn)和傳播途徑的研究日益增加。抗生素抗性細(xì)菌對抗生素的耐藥性機(jī)理包括:細(xì)菌外膜不滲透性障礙、細(xì)菌外排泵系統(tǒng)、抗生素作用的靶位變化和抗生素的鈍化失活等[4]。抗性基因是抗性菌具有抗性的主要原因之一,它可以通過多種形式的可移動遺傳元件如質(zhì)粒、整合子、轉(zhuǎn)座子、插入序列等,突破細(xì)菌的種屬關(guān)系廣泛傳播,加重抗性污染。FORSBERG等[5]證明人類病源菌能傳播抗性到土著細(xì)菌中,并且由土著細(xì)菌攜帶的抗性基因能轉(zhuǎn)導(dǎo)到病原菌的宿主細(xì)胞??剐阅軡撛诘赜绊懎h(huán)境中的微生物群落結(jié)構(gòu)并對公共健康產(chǎn)生威脅[6],且碳青霉烯類抗生素耐藥腸桿菌科細(xì)菌患病率上升迅速[7],這將對環(huán)境和人類健康構(gòu)成嚴(yán)重的威脅[6,8]。

分析熒光定量PCR技術(shù)為研究環(huán)境中抗性基因和抗性微生物分布特征提供了有力的手段[8]。已有研究表明制藥廢水處理系統(tǒng)的進(jìn)水中往往含有高濃度的抗生素及生產(chǎn)原料和中間體[9],對生物處理單元的微生物群落形成高強(qiáng)度選擇性壓力,為ARGs在污水中的持久存在和傳播擴(kuò)散提供了有利條件,并且制藥廢水處理系統(tǒng)出水中ARGs的濃度高于市政污水處理系統(tǒng)出水[10-11]。22種類型的ARGs能對5種類型的抗生素產(chǎn)生抗性,包括sul 1,sul 2和sul 3能對磺胺類抗生素產(chǎn)生抗性;tetO,tetQ,tetW,tetM和tetT對四環(huán)素類抗生素產(chǎn)生抗性;OXA-1和OXA-2能對β-內(nèi)酰胺類抗生素產(chǎn)生抗性??梢苿舆z傳元件(例如1類整合子)有利于形成多重耐藥性并且加速地表水、土壤[12-13]和污水處理廠[14]中抗性基因的傳播,并且可移動遺傳元件(1類整合子)是細(xì)胞間轉(zhuǎn)移抗性的指標(biāo)[15]。本文主要研究多種抗性基因在制藥廢水系統(tǒng)生物處理單元中增值和傳播以及微生物群落的動態(tài)變化及兩者的相關(guān)性。

選取河北省某抗生素生產(chǎn)廢水為研究對象,通過現(xiàn)場采樣分析,重點(diǎn)考察污泥中β-內(nèi)酰胺類、四環(huán)素類和磺胺類抗性基因及微生物群落結(jié)構(gòu)在廢水處理過程中的分布和相關(guān)性特征,揭示廢水廠活性污泥中土著抗性基因的分布規(guī)律以及與微生物群落結(jié)構(gòu)之間的互相作用,以期為評估廢水處理廠中抗性基因環(huán)境風(fēng)險提供依據(jù),并為制定有效的ARGs(antibiotic resistance genes)環(huán)境污染控制方法提供理論基礎(chǔ)。

1材料與方法

1.1樣品采集

河北省某制藥廢水處理廠,該廠設(shè)計(jì)處理水量300 m3/d,主要采用生物處理法處理生產(chǎn)廢水,采樣點(diǎn)和廢水處理廠工藝流程如圖1所示。樣品采用500 mL聚乙烯瓶,于2018年1月,采集不同污水處理單元活性污泥樣品,分別標(biāo)記為J(綜合調(diào)節(jié)池)、IC(厭氧塔)、SBR(間歇式曝氣池)、A(A池)、O(O池)、C(污泥池)、CH(出水)取樣結(jié)束后,于冰盒中運(yùn)送回實(shí)驗(yàn)室,離心圖1采樣點(diǎn)和廢水處理廠工藝流程

Fig.1Sampling point and process flow of wastewater treatment plant(5 min,11 000 r/min)后稱取5 g冷凍于-80 ℃冰箱中,以備DNA提取。

1.2水樣分析

按照《水和廢水監(jiān)測分析方法》[16]國家標(biāo)準(zhǔn)方法分析常規(guī)化學(xué)指標(biāo),測定水中CODCr和氨氮,測定結(jié)果見表1。

1.5抗性基因的定量檢測

采用SYBR-Green 實(shí)時定量PCR方法對各基因進(jìn)行定量分析,檢測儀器為StepOne型熒光定量PCR儀(ABI,美國)。PCR產(chǎn)物經(jīng)過克隆測序確認(rèn)后,使用生工質(zhì)粒提取試劑盒SK1131從陽性克隆子中提取質(zhì)粒,用作標(biāo)準(zhǔn)曲線。使用NanoDrop微量分光光度計(jì)(Thermo Scientific,美國)測定質(zhì)粒濃度。制作標(biāo)準(zhǔn)曲線時按照10倍梯度濃度稀釋構(gòu)建好的各質(zhì)粒,于90 μL稀釋液中加入10 μL質(zhì)粒,做4~6個點(diǎn),通過預(yù)實(shí)驗(yàn)選取合適標(biāo)準(zhǔn)品用于制備標(biāo)準(zhǔn)曲線。標(biāo)準(zhǔn)質(zhì)粒、環(huán)境樣品、陰性對照均做3個平行,取平均值進(jìn)行計(jì)算。

質(zhì)粒拷貝數(shù)換算公式為Q=[C×10-9×6.02×1023]/[N×660],式中:Q為質(zhì)粒拷貝數(shù),copies/μL;C為質(zhì)粒濃度,ng/μL;N為克隆產(chǎn)物堿基數(shù),(g/mol);M1為載體堿基數(shù),2 692 bp(pMD 18-T);M2為載體堿基數(shù),3 023 bp(pGEMX-T Easy)。

熒光定量PCR反應(yīng)體系為12.5 μL 2×SYBR,1.0 μL DNA(10 ng/μL),0.5 μL引物F(10 mol/L),0.5 μL引物R(10 mol/L),10.5 μL水,總體積25.0 μL。熒光定量PCR反應(yīng)程序?yàn)?)50 ℃,2 min;2)95 ℃,5 min;3)95 ℃,20 s;4)退火,30 s;5)72 ℃,31 s;6)Plate read,重復(fù)1)~5),39次重復(fù);7)Melt-curve分析60 ℃ to 95 ℃。每隔0.2℃采集一次熒光以生成溶解曲線,根據(jù)溶解曲線的變化檢測擴(kuò)增結(jié)果的特異性。退火溫度和反應(yīng)時間根據(jù)引物不同進(jìn)行調(diào)整。

1.6統(tǒng)計(jì)分析

抗性基因濃度結(jié)果和群落結(jié)構(gòu)使用OriginPro 8.6軟件(Origin Lab Corporation,USA)進(jìn)行分析;使用MOTHUR軟件計(jì)算各個樣本Alpha多樣性指標(biāo),以反映本次測序深度、物種均勻性等;使用R軟件對樣本繪制熱圖并分析;ARGs與群落結(jié)構(gòu)相關(guān)性使用CANOCO 5.0(Microcomputer Power ,Ithaca,NY)軟件分析,基因相關(guān)性使用SPSS 19.0軟件進(jìn)行相關(guān)性分析。

2結(jié)果討論與分析

2.1微生物菌群耐藥基因定量檢測

利用熒光定量PCR的方法檢測抗性基因的分布特征、變化情況和相對表達(dá)量,水處理階段ARGs分布結(jié)果如圖2所示。

2.2微生物群落多樣性分析

2.3微生物群落和抗性基因相關(guān)性分析

微生物群落結(jié)構(gòu)會影響ARGs的產(chǎn)生和豐度[32],但是微生物群落結(jié)構(gòu)在環(huán)境樣本中對ARGs擴(kuò)增影響的研究還是有限的。通過高通量測序和熒光定量方法來分析污水處理系統(tǒng)中微生物群落和抗性基因分布及其相關(guān)性。

首先對制藥廢水廠的5個樣本進(jìn)行主成分分析,如圖4 a)所示,然后選取抗性基因int1,OXA-1,sul1,sul2,tetO,tetQ和tetW作為環(huán)境因子,結(jié)合各樣本微生物群落結(jié)構(gòu),選取制藥廢水廠中15種相對豐度較高的菌屬作為樣本,利用冗余分析(RDA)方法研究微生物與環(huán)境因子的相關(guān)性,結(jié)果見圖4 b)。

對7個樣本進(jìn)行主成分分析,結(jié)果(見圖4 a))表明,PC1(主成分1)表示兩組間差異中可以解釋全面分析結(jié)果的56.67%,PC2(主成分2)表示兩組間差異中可以解釋全面分析結(jié)果的31.61%,兩點(diǎn)之間的距離越近,表明2個樣本之間的微生物群落結(jié)構(gòu)相似度越高,差異越小。從圖4 a)中可以看出,A,O和C這3個樣本分布較近,菌群相似度較高;J與CH樣本與其他樣本單元分布較遠(yuǎn),微生物群落結(jié)構(gòu)相似度較低,有明顯的差異性,說明制藥廢水廠中進(jìn)水、出水和廢水處理單元的微生物群落菌群有較大的不同。A,O和C這3個樣本與IC和SBR樣本分布相對較遠(yuǎn),說明IC,SBR和A,O和C這3個樣本菌群有較大的不同。且每組樣本與樣本之間的距離呈現(xiàn)一定的變化規(guī)律。

對A,O,C,IC和SBR單元中前15種相對豐度較高的菌屬進(jìn)行冗余分析,結(jié)果表明(見圖4 b)),主軸1和主軸2共解釋了微生物群落結(jié)構(gòu)和水質(zhì)、抗性基因參數(shù)的96.86%。從圖4 b)來看,Aeromicrobium與sul2呈較高程度的正相關(guān)性,可能是sul2在微生物群落中存在的可能的主要菌群;Rhodovulum和Rhodospirillaceae菌屬與OXA-1和tetQ呈較高程度的正相關(guān)性,這些菌屬是這些ARGs分布的主要菌屬;Acinetobacter與tetO和tetW呈現(xiàn)較高程度的正相關(guān)性,可能是tetO和tetW在微生物群落中存在的可能的主要菌屬。

3結(jié)語

采用高通量測序技術(shù)和熒光定量PCR技術(shù),通過檢測廢水廠活性污泥中抗生素抗性基因的絕對豐度和微生物菌群的相對豐度,進(jìn)而綜合分析制藥廢水處理廠中某些抗生素抗性基因和微生物群落結(jié)構(gòu)的特征,結(jié)果顯示:sul1,sul2,tetO,tetQ,tetW,OXA-1和可移動遺傳元件int1在制藥廢水廠中各個階段的檢出頻率均為100%,從IC池到C池,總抗性基因濃度范圍為3.09×108~2.26×109 copies/g(干重),基因總濃度上升了7.3倍;在污泥樣品中,變形菌門(Proteobacteria),擬桿菌門(Bacteroidetes),厚壁菌門(Firmicutes),棲熱菌門菌門(Thermus),芽單胞菌門(Gemmatimonadetes)等為優(yōu)勢菌門,平均總相對豐度比例占到81.05%;Aeromicrobium與sul2呈較高程度的正相關(guān)性,可能是sul2在微生物群落中存在的可能的主要菌群;Rhodovulum和Rhodospirillaceae菌屬與OXA-1和tetQ呈較高程度的正相關(guān)性,這些菌屬是這些ARGs分布的主要菌屬;Acinetobacter與tetO和tetW呈現(xiàn)較高程度的正相關(guān)性,可能是tetO和tetW在微生物群落中存在的可能的主要菌屬。因此,相關(guān)抗性基因的增值和分布與相關(guān)特定菌屬有關(guān),可以通過控制相關(guān)菌屬的豐度來消減工業(yè)廢水廠中的抗性基因,研究結(jié)果為以后控制制藥廢水廠中抗生素抗性基因的傳播提供了理論基礎(chǔ)。

參考文獻(xiàn)/References:

[1]HE L Y, YING G G, LIU Y S, et al. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments [J]. Environment International, 2016, 92/93: 210.

[2]RODRIGUEZ-MOZAZ S, CHAMORRO S, MARTI E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river [J]. Water Research, 2015, 69: 234-242.

[3]NAQUIN A, SHRESTHA A, SHERPA M, et al. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA [J]. Bioresource Technology, 2015, 188(11): 79-83.

[4]TONG Z, ZHANG X X, LIN Y. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge [J]. Plos One, 2011, 6(10): e26041.

[5]FORSBERG K J, REYES A, WANG B, et al. The shared antibiotic resistome of soil bacteria and human pathogens [J]. Science, 2012, 337(6098): 1107-1111.

[6]PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445.

[7]PEHRSSON E C, TSUKAYAMA P, PATEL S, et al. Interconnected microbiomes and resistomes in low-income human habitats [J]. Nature, 2016, 533(7602): 212-216.

[8]王玉倩, 薛秀花. 實(shí)時熒光定量PCR技術(shù)研究進(jìn)展及其應(yīng)用 [J]. 生物學(xué)通報, 2016, 51(2): 1-6.

[9]AYDIN S, INCE B, INCE O. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater [J]. Water Research, 2015, 83(4): 337-344.

[10]LIU M, ZHANG Y, YANG M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system [J]. Environmental Science & Technology, 2012, 46(14): 7551.

[11]GUO X, YAN Z, ZHANG Y, et al. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants [J]. Science of the Total Environment, 2017, 612: 119-128.

[12]WANG F H, QIAO M, LYU Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China [J]. Environmental Pollution, 2014, 184(1): 247-253.

[13]XU Z, LI L, SHIRTLIFF M E, et al. Resistance class 1 integron in clinical methicillin‐resistant Staphylococcus aureus strains in southern China, 2001-2006 [J]. Clinical Microbiology & Infection, 2011, 17(5): 714-718.

[14]BEN-SHAHAR O, OBARA I, ARY A W, et al. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water [J]. Science of the Total Environment, 2012, 414(414): 680-685.

[15]LING A L, PACE N R, HERNANDEZ M T, et al. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols [J]. Environmental Science & Technology, 2013, 47(9): 4046-4052.

[16]國家環(huán)境保護(hù)總局. 水和廢水監(jiān)測分析方法[M].第4版. 北京:中國環(huán)境科學(xué)出版社, 2002.

[17]GAZE W H, ZHANG L, ABDOUSLAM N A, et al. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment [J]. Isme Journal, 2011, 5(8): 1253.

[18]CHEN H, ZHANG M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China [J]. Environment International, 2013, 55(4): 9.

[19]翟文超. 抗生素抗性基因在抗生素制藥廢水處理過程中的分布特征及控制原理研究 [D]. 天津: 南開大學(xué), 2014.

ZHAI Wenchao. The Fate and Control Principle of Antibiotic Resistance Genes in Pharmaceutical Wastewater Treatment Systems[D].Tianjin: Nankai University, 2014.

[20]LUO Y, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44(19): 7220.

[21]AMINOV R I, GARRIGUESJEANJEAN N, MACKIE R I. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins [J]. Applied & Environmental Microbiology, 2001, 67(1): 22.

[22]WANG J, MAO D, MU Q, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants [J]. Science of the Total Environment, 2015, 526(4): 366-373.

[23]PEAK N, KNAPP C W, YANG R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies [J]. Environmental Microbiology, 2007, 9(1): 143-151.

[24]GUO X, XIA R, HAN N, et al. Genetic diversity analyses of class 1 integrons and their associated antimicrobial resistance genes in Enterobacteriaceae strains recovered from aquatic habitats in China [J]. Letters in Applied Microbiology, 2011, 52(6): 667-675.

[25]LIU Y J, WANG X C, YUAN H L. Characterization of microbial communities in a fluidized-pellet-bed bioreactor for wastewater treatment [J]. Desalination, 2009, 249(1): 445-452.

[26]HOA P T P, NONAKA L, VIET P H, et al. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam [J]. Science of the Total Environment, 2008, 405(1/2/3): 377-384.

[27]MOURA A, PEREIRA C, HENRIQUES I, et al. Novel gene cassettes and integrons in antibiotic-resistant bacteria isolated from urban wastewaters [J]. Research in Microbiology, 2012, 163(2): 92-100.

[28]TENNSTEDT T, SZCZEPANOWSKI R, BRAUN S, et al. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant [J]. Fems Microbiology Ecology, 2010, 45(3): 239-252.

[29]DU J, REN H, GENG J, et al. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants [J]. Environmental Science & Pollution Research, 2014, 21(12): 7276-7284.

[30]王麗梅, 羅義, 毛大慶, 等. 抗生素抗性基因在環(huán)境中的傳播擴(kuò)散及抗性研究方法 [J]. 應(yīng)用生態(tài)學(xué)報, 2010, 21(4): 1063-1069.

WANG Limei, LUO Yi, MAO Daqing, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance, 2010, 21(4): 1063-1069.

[31]康曉榮. 超聲聯(lián)合堿促進(jìn)剩余污泥水解酸化及產(chǎn)物研究 [D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2013.

KANG Xiaorong. Study on Hydrolysis and Acidification of Activated Sludge Enhanced by Ultrasound Combined with Alkaline [D]. Harbin:Harbin Institute of Technology, 2013.

[32]YANG Y, LI B, ZOU S, et al. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach [J]. Water Research, 2014, 62(7): 97-106.第40卷第2期河北科技大學(xué)學(xué)報Vol.40,No.2

桂东县| 云林县| 上虞市| 临海市| 米泉市| 茌平县| 鸡西市| 晴隆县| 利辛县| 安塞县| 家居| 河间市| 富阳市| 鹿邑县| 龙门县| 若尔盖县| 商南县| 岐山县| 宜君县| 崇左市| 洛阳市| 抚州市| 孙吴县| 桓仁| 林芝县| 长丰县| 黄陵县| 湖口县| 芒康县| 徐闻县| 顺平县| 巫溪县| 怀安县| 徐汇区| 泸溪县| 嘉峪关市| 庆安县| 吕梁市| 绍兴县| 定襄县| 鄂温|