梁日英?符暢?梁華?徐芬?王美君?蔡夢(mèng)茵
【摘要】目的 探討內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)機(jī)制是否參與調(diào)節(jié)利拉魯肽改善高脂飲食誘導(dǎo)的糖尿病腎病(DN)。方法 采用高脂飲食喂養(yǎng)7 ~8周齡C56BL/6小鼠共12周以誘導(dǎo)早期DN,正常飲食喂養(yǎng)小鼠作為對(duì)照組。將高脂飲食小鼠分為高脂飲食(HFD)組及高脂飲食+利拉魯肽干預(yù)(HFD+Lira)組,HFD+Lira組予腹腔注射利拉魯肽400 μg/(kg·d)8周。HFD組與對(duì)照組均予相對(duì)應(yīng)體積的生理鹽水。每2周監(jiān)測(cè)小鼠體質(zhì)量及血糖情況,干預(yù)8周后評(píng)估/觀察小鼠胰島功能、胰島素抵抗、尿蛋白、腎臟組織形態(tài)結(jié)構(gòu)以及腎臟組織ERS通路蛋白葡萄糖調(diào)節(jié)蛋白78(GRP78)與剪接型X-盒結(jié)合蛋白1(XBP1s)的表達(dá)水平。結(jié)果 HFD組體質(zhì)量、空腹血糖和體脂含量均高于對(duì)照組;利拉魯肽干預(yù)8周后,與HFD組比較,HFD+Lira組體質(zhì)量、空腹血糖和體脂含量均改善(P均< 0.01)。HFD組血糖、尿蛋白高于對(duì)照組、胰島素抵抗較對(duì)照組明顯,HFD+Lira組血糖及尿蛋白均低于HFD組、胰島素抵抗較HFD組改善(P均< 0.017)。對(duì)照組腎小球、腎小管結(jié)構(gòu)正常,HFD組可見腎小管區(qū)域大量空泡形成、腎小球囊腔擴(kuò)大、大量脂質(zhì)沉積,與HFD組相比,HFD+Lira組腎小管區(qū)域空泡減少、擴(kuò)大的腎小球囊腔及脂質(zhì)沉積腔改善。HFD組GRP78與XBP1s蛋白表達(dá)水平均較對(duì)照組高,HFD+Lira組XBP1s蛋白的表達(dá)水平低于HFD組(P均< 0.017)。結(jié)論 利拉魯肽可能通過抑制ERS通路而改善高脂飲食喂養(yǎng)誘導(dǎo)的DN腎損害。
【關(guān)鍵詞】糖尿病腎病;胰高血糖素樣肽1;內(nèi)質(zhì)網(wǎng)應(yīng)激;葡萄糖調(diào)節(jié)蛋白78;
剪接型X-盒結(jié)合蛋白1;利拉魯肽
Liraglutide alleviates high-fat diet-induced diabetic nephropathy by inhibiting endoplasmic reticulum stress Liang Riying, Fu Chang, Liang Hua, Xu Fen, Wang Meijun, Cai Mengyin. Department of Endocrin-ology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Corresponding author, Cai Mengyin, E-mail: my. sabrina. c@ 163. com
【Abstract】Objective To investigate whether the mechanism of endoplasmic reticulum stress (ERS) is involved in the protective effect of liraglutide on diabetic nephropathy (DN) induced by high-fat diet.? Methods The 7-8-week old C56BL/6 mice were subjected to a high fat diet (HFD) for 12 weeks to establish mouse models with early DN, and those mice given with normal diet were allocated into the control group. Then, mice in the HFD group were further divided into the HFD and HFD+Liraglutide (HFD+Lira) groups. Mice in the HFD+Lira group were given with liraglutide at a dose of 400 μg/(kg·d) by intraperitoneal injection for 8 weeks. An equivalent amount of normal saline was administered in the HFD and control groups. During the period of animal experiment, body weight and fasting blood glucose were monitored every two weeks. At 8 weeks after intervention, the islet function, insulin resistance, urinary albumin, renal morphology and the expression levels of glucose regulatory protein 78 (GRP78) and X-box binding protein 1 splicing (XBP1s)? on the ERS signaling pathway in the renal tissues were evaluated or observed.? Results The body weight, fasting blood glucose and body fat content in the HFD group were significantly higher compared with those in the control group. At 8 weeks after liraglutide intervention, body weight, fasting blood glucose and body fat content in the HFD+Lira group were significantly alleviated than those in the HFD group (all P < 0.01). In the HFD group, the fasting blood glucose and urinary albumin were higher, whereas the insulin resistance was more evident compared with those in the control group. In the HFD+Lira group, the fasting blood glucose and urinary albumin were significantly lower, whereas the insulin resistance was ameliorated compared with those in the HFD group (all P < 0.017). The structures of glomerulus and renal tubules were normal in the control group. A large quantity of vacuoles in the renal tubule, Bowmans capsule space and a large amount of lipid deposition were observed in the HFD group. Compared with the HFD group, the amount of vacuoles in the renal tubule was reduced, and Bowmans capsule space and lipid deposition were alleviated. In the HFD group, the expression levels of GRP78 and XBP1s were significantly up-regulated compared with those in the control group (both P < 0.017). The expression level of XBP1s in the HFD+Lira group was remarkably down-regulated than that in the HFD group (P < 0.017).? Conclusion Liraglutide can mitigate DN injury induced by high-fat diet probably by suppressing the ERS signaling pathway.
【Key words】Diabetic nephropathy;Glucagon-like peptide 1;Endoplasmic reticulum stress;
Glucose regulatory protein 78;X-box binding protein 1 splicing;Liraglutide
約30% ~ 40%的1型糖尿病和2型糖尿病(T2DM)最終會(huì)發(fā)展為糖尿病腎?。―N)[1]。DN的發(fā)病機(jī)制主要涉及糖脂代謝紊亂、血流動(dòng)力學(xué)的不穩(wěn)定和炎癥通路等[2]。利拉魯肽屬于胰高血糖素樣肽1(GLP-1)受體激動(dòng)劑,是治療T2DM的藥物之一。利拉魯肽的心血管結(jié)局(LEADER)研究顯示標(biāo)準(zhǔn)治療方案聯(lián)合利拉魯肽治療組患者相較標(biāo)準(zhǔn)治療方案組患者腎臟獲益效應(yīng)更明顯,表現(xiàn)在腎臟不良事件包括新發(fā)大量蛋白尿、血清肌酐倍增、終末期腎病導(dǎo)致的死亡風(fēng)險(xiǎn)降低22%[3]。臨床常用的治療措施對(duì)防治DN仍遠(yuǎn)遠(yuǎn)不夠。LEADER研究結(jié)果為DN的治療帶來了新希望。研究表明,利拉魯肽有助于改善肥胖T2DM患者代謝指標(biāo),進(jìn)一步探討GLP-1腎臟保護(hù)作用的分子機(jī)制有重要的臨床意義[4]。
內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)是指細(xì)胞受到內(nèi)外因素的刺激時(shí),大量未折疊蛋白或錯(cuò)誤折疊蛋白在內(nèi)質(zhì)網(wǎng)聚積,若ERS持續(xù)不緩解將導(dǎo)致內(nèi)質(zhì)網(wǎng)功能受損,進(jìn)而發(fā)生細(xì)胞凋亡;肌醇蛋白1(IRE1)、內(nèi)質(zhì)網(wǎng)激酶(PERK)和活化轉(zhuǎn)錄因子6(ATF6)是內(nèi)質(zhì)網(wǎng)膜上的應(yīng)激信號(hào)感受蛋白[5]。高糖及高脂毒性可引發(fā)過度的ERS,促進(jìn)糖尿病及其并發(fā)癥的發(fā)生與發(fā)展[6-7]。在患DN的人類及小鼠的腎臟組織標(biāo)本中均可見過度的ERS[8-9]。X-盒結(jié)合蛋白1(XBP1) 是IRE1下游關(guān)鍵的轉(zhuǎn)錄調(diào)節(jié)因子,剪接型XBP1(XBP1s)是XBP1的活化形式。研究表明,XBP1s在調(diào)節(jié)糖脂代謝穩(wěn)態(tài)中有重要的調(diào)控作用[10-11]。當(dāng)內(nèi)質(zhì)網(wǎng)中未折疊蛋白含量增加且超過正常范圍時(shí),葡萄糖調(diào)節(jié)蛋白78 (GRP78)與內(nèi)質(zhì)網(wǎng)膜上的IRE1、PERK和ATF6感受蛋白結(jié)合,使GRP78 表達(dá)上調(diào),此外,GRP78 作為ERS標(biāo)志蛋白,可與ERS激活的促凋亡受體結(jié)合,抑制其信號(hào)表達(dá),從而維持機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)[12-13]。因此,GRP78與XBP1s常被視為ERS的標(biāo)志性蛋白。本課題組初步探討了ERS在利拉魯肽改善高脂飲食誘導(dǎo)DN腎損害中的作用。
材料與方法
一、材 料
7 ~ 8周齡的C56BL/6小鼠18只,購自南京大學(xué)模式動(dòng)物研究所,無特定病原體(SPF)級(jí),體質(zhì)量為19 ~ 22 g。小鼠飼養(yǎng)于中山大學(xué)附屬第三醫(yī)院實(shí)驗(yàn)動(dòng)物中心屏障系統(tǒng)中。飼養(yǎng)環(huán)境為12 h人工日光燈照射、12 h黑夜,環(huán)境溫度(21±2)℃,小鼠自由進(jìn)食和飲水。對(duì)照飼料購自廣東省實(shí)驗(yàn)動(dòng)物中心,高脂飼料購自美國Research Diets公司。胰島素注射液和利拉魯肽注射液均購自丹麥諾和諾德制藥有限公司。鼠尿蛋白ALBUWELL檢測(cè)試劑盒購自美國EXOCLL公司。蛋白酶抑制劑、RIPA蛋白裂解液、二喹啉甲酸(BCA)蛋白濃度測(cè)定試劑盒購自美國Thermo Scientific公司。GRP78和XBP1s抗體購自美國CST公司;紅外熒光染料標(biāo)記兔二抗購自美國LI-COR公司。本實(shí)驗(yàn)經(jīng)中山大學(xué)附屬第三醫(yī)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)(批準(zhǔn)號(hào)IACUC-F3-17-0801)。
二、方 法
1. 模型制備及標(biāo)本采集
小鼠適應(yīng)性喂養(yǎng)1周后,根據(jù)體質(zhì)量分為正常飲食組(對(duì)照組,n = 5)及高脂飲食組(n = 13),分別給予正常對(duì)照飼料(脂肪供能占熱卡百分比為11%)及高脂飼料(脂肪供能占熱卡百分比為60%)飲食喂養(yǎng)誘導(dǎo)。喂養(yǎng)12周后再次根據(jù)體質(zhì)量將高脂飲食組小鼠分為單純高脂飲食組(HFD組,n = 7),高脂飲食+利拉魯肽干預(yù)組(HFD+Lira組,n = 6)。HFD+Lira組小鼠給予利拉魯肽注射液400 μg/(kg·d)腹腔注射,對(duì)照組與HFD組小鼠按照體質(zhì)量給予相對(duì)應(yīng)體積的生理鹽水作為對(duì)照,3組均連續(xù)腹腔注射給藥或生理鹽水8周。
2. 指標(biāo)檢測(cè)及標(biāo)本采集
利拉魯肽腹腔注射8周后,收集小鼠24 h尿液;行腹腔內(nèi)注射葡萄糖耐量試驗(yàn)(IPGTT)和腹腔內(nèi)注射胰島素耐量試驗(yàn)(IPITT);使用動(dòng)物體脂定量分析儀測(cè)量每只小鼠體內(nèi)總脂肪重量和總肌肉重量以計(jì)算體脂含量;每2周檢測(cè)小鼠體質(zhì)量及血糖。小鼠禁食8 h后麻醉處死,留取小鼠腎臟標(biāo)本,固定于4%的多聚甲醛后進(jìn)行蘇木素-伊紅(HE)染色,在光學(xué)顯微鏡下進(jìn)行觀察和拍照;制成冰凍切片后進(jìn)行油紅O染色、75%乙醇分化、蘇木素復(fù)染后,用甘油明膠封片,在光學(xué)顯微鏡下進(jìn)行觀察和拍照。
3. 酶聯(lián)免疫吸附法測(cè)定鼠尿蛋白
設(shè)置標(biāo)準(zhǔn)曲線和陰性、陽性對(duì)照孔,歷經(jīng)孵育抗體、洗滌、顯色等實(shí)驗(yàn)步驟后,設(shè)置酶標(biāo)儀的測(cè)量波長(zhǎng)為450 nm,測(cè)量出每個(gè)樣本的光密度(OD值)。將蛋白標(biāo)準(zhǔn)品的光OD值輸入ELISA Calc軟件,做出鼠尿蛋白標(biāo)準(zhǔn)曲線。根據(jù)軟件得出的標(biāo)準(zhǔn)曲線,計(jì)算每個(gè)尿樣品稀釋之后的蛋白濃度。
4. 用蛋白免疫印跡法檢測(cè)小鼠腎組織ERS通路相關(guān)蛋白GRP78及XBP1s的表達(dá)
剪取腎臟組織15 mg于100 μl預(yù)冷的含有蛋白酶抑制劑的RIPA蛋白裂解液提取腎臟總蛋白,用BCA法測(cè)定蛋白濃度。蛋白樣品經(jīng)過電泳、轉(zhuǎn)膜、脫脂奶粉封閉、孵育一抗、外熒光染料標(biāo)記二抗、Odyssey雙色紅外激光成像系統(tǒng)曝光蛋白條帶后,使用Image-Pro Plus 軟件進(jìn)行灰度分析,用目的蛋白灰度值/內(nèi)參灰度值表示目的蛋白相對(duì)表達(dá)水平。
三、統(tǒng)計(jì)學(xué)處理
采用SPSS 22.0處理數(shù)據(jù),正態(tài)分布的計(jì)量資料以表示,多組定量資料比較用單因素方差分析。α= 0.05,兩兩比較采用Bonferroni法校正檢驗(yàn)水準(zhǔn),即P < 0.017為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、利拉魯肽改善高脂飲食誘導(dǎo)所致C57BL/6小鼠體質(zhì)量增加和空腹血糖受損情況
高脂誘導(dǎo)20周后,與對(duì)照組相比,HFD組小鼠體質(zhì)量、空腹血糖和體脂含量升高(P均< 0.017);給予干預(yù)8周后,HFD+Lira組小鼠體質(zhì)量、空腹血糖和體脂含量較HFD組改善(P均< 0.01),見表1。
二、利拉魯肽改善高脂飲食誘導(dǎo)所致C57BL/6小鼠糖耐量受損和胰島素抵抗
IPGTT結(jié)果表明,腹腔注射葡萄糖后,3組小鼠的IPGTT結(jié)果曲線下面積比較差異有統(tǒng)計(jì)學(xué)意義(F = 25.523,P < 0.001)。與對(duì)照組相比,HFD組小鼠0、30、60、90、120 min時(shí)的血糖明顯升高,曲線下面積增加[(2491.93±130.46)mm2 vs. (1290.30±94.10)mm2,P < 0.001)],提示HFD組小鼠葡萄糖耐量受損。給予干預(yù)8周后,與HFD組相比,HFD+Lira組30、60、90、120 min時(shí)的血糖下降,曲線下面積減少[(1332.00±43.95)mm2 vs.(2491.93±130.46)mm2,P < 0.001)],提示給予利拉魯肽干預(yù)后高脂飲食誘導(dǎo)所致的葡萄糖耐量受損明顯改善,見圖1A。
IPITT結(jié)果表明,腹腔注射胰島素后,3組小鼠的IPITT結(jié)果曲線下面積比較差異有統(tǒng)計(jì)學(xué)意義(F = 8.186,P = 0.004)。與對(duì)照組相比,HFD組小鼠60、90、120 min時(shí)的血糖相對(duì)0 min時(shí)的血糖下降的幅度更大,曲線下面積增加[(86.80±3.22)mm2 vs.(67.62±4.85)mm2,P = 0.009)],提示HFD組小鼠胰島素抵抗明顯;給予干預(yù)8周后,與HFD組相比,HFD+Lira組90、120 min時(shí)的血糖相對(duì)0 min時(shí)的血糖下降幅度小,曲線下面積減少[(71.79±3.55)mm2 vs.(86.80±3.22)mm2,P = 0.013)],提示給予利拉魯肽干預(yù)后由高脂飲食誘導(dǎo)的胰島素抵抗明顯改善,見圖1B。
三、利拉魯肽改善高脂飲食喂養(yǎng)的C57BL/6小鼠尿蛋白
高脂飲食誘導(dǎo)20周后,HFD組小鼠尿蛋白水平較對(duì)照組高[(5.13±0.65)μg/ml vs. (2.47±0.35)μg/ml,P = 0.010];給予干預(yù)8周后,3組小鼠的尿蛋白比較差異有統(tǒng)計(jì)學(xué)意義(F = 9.579,P = 0.003),HFD+Lira組小鼠尿蛋白水平較HFD組低[(2.29±0.22)μg/m vs. (5.13±0.65)μg/ml,P = 0.006],見圖2。
四、利拉魯肽改善高脂飲食喂養(yǎng)的C57BL/6小鼠腎損害
腎臟組織HE染色結(jié)果顯示,對(duì)照組小鼠腎小球、腎小管結(jié)構(gòu)正常;HFD組腎小管區(qū)域大量空泡形成,腎小球囊腔擴(kuò)大;與HFD組相比,HFD+Lira組腎小管區(qū)域空泡減少,擴(kuò)大的腎小球囊腔得以改善。腎臟組織油紅O染色結(jié)果顯示,與對(duì)照組相比,HFD組小鼠腎小管、腎小球區(qū)域大量脂質(zhì)沉積;HFD+Lira組小鼠腎小管、腎小球區(qū)域的脂質(zhì)沉積較HFD組改善,見圖3。
五、利拉魯肽對(duì)高脂喂養(yǎng)的C57BL/6小鼠腎臟組織ERS通路的影響
蛋白免疫印跡結(jié)果顯示,給予干預(yù)8周后,3組小鼠腎臟組織的GRP78蛋白表達(dá)水平比較差異有統(tǒng)計(jì)學(xué)意義(F = 9.297,P = 0.008),HFD組GRP78蛋白表達(dá)水平較對(duì)照組高(2.14±0.24 vs. 1.00±0.099,P = 0.011),見圖4A。給予干預(yù)8周后,3組小鼠腎臟組織的XBP1s蛋白表達(dá)水平比較差異有統(tǒng)計(jì)學(xué)意義(F = 10.452,P = 0.002),HFD組XBP1s蛋白表達(dá)水平較對(duì)照組高(2.173±0.252 vs. 1.000±0.254,P = 0.009),HFD+Lira組XBP1s表達(dá)水平較HFD組低(1.176 ±0.092 vs. 2.173±0.252,P = 0.003),見圖4B。
討論
DN是糖尿病常見的并發(fā)癥,其病理過程主要包括由足細(xì)胞損傷等引起的微量蛋白尿,腎小球系膜擴(kuò)張及腎小球和腎小管肥大增生,進(jìn)一步進(jìn)展為腎小球硬化和腎臟組織纖維化[1]。目前的降糖、降壓、ACEI/ARB等DN治療方案雖能降低尿蛋白與尿肌酐比值,但仍遠(yuǎn)遠(yuǎn)不夠。LEADER研究顯示利拉魯肽除了降低體質(zhì)量、改善糖脂代謝外,還有獨(dú)立于降血糖效應(yīng)的顯著腎臟保護(hù)作用,但利拉魯肽改善DN的具體分子機(jī)制仍未清楚。研究表明,DN動(dòng)物模型表現(xiàn)出尿蛋白升高和腎臟組織病理結(jié)構(gòu)改變,比如系膜擴(kuò)張、K-W結(jié)節(jié)等,高脂喂養(yǎng)的C56BL/6小鼠表現(xiàn)出DN的早期表現(xiàn),即尿蛋白升高[14]。本課題組通過高脂飲食喂養(yǎng)C57BL/6小鼠模擬T2DM早期DN模型,再給予利拉魯肽腹腔注射治療,進(jìn)而探討利拉魯肽改善DN的分子機(jī)制。本研究結(jié)果表明,高脂飲食喂養(yǎng)后,C56BL/6小鼠體質(zhì)量增加、空腹血糖升高、腹腔內(nèi)注射葡萄糖耐量受損和腹腔內(nèi)注射胰島素抵抗明顯;尿蛋白明顯升高、腎小管區(qū)域大量空泡形成,腎小球囊腔擴(kuò)大,腎臟組織脂質(zhì)沉積等,表明我們?cè)贑57BL/6小鼠上成功構(gòu)建了早期DN模型。我們發(fā)現(xiàn)利拉魯肽在調(diào)節(jié)血糖穩(wěn)態(tài)和保護(hù)腎臟方面有獨(dú)特作用,利拉魯肽降低了高脂喂養(yǎng)C56BL/6小鼠的體質(zhì)量、空腹血糖,改善了腹腔內(nèi)注射葡萄糖耐量和腹腔內(nèi)注射胰島素耐量,降低了尿蛋白,改善腎臟組織的脂質(zhì)沉積、減少腎小管區(qū)域的空泡和改善增大的腎小球囊腔。
既往研究顯示DN患者和小鼠腎組織中ERS標(biāo)志蛋白GRP78、XBP1s等的表達(dá)增加,DN中存在ERS,ERS參與了DN的發(fā)生發(fā)展,ERS相關(guān)的細(xì)胞凋亡和腎臟損傷是導(dǎo)致DN的原因之一[8]。ERS對(duì)于DN而言是雙刃劍,早期的高血糖和蛋白尿,ERS作為一種適應(yīng)性反應(yīng)對(duì)腎小管上皮細(xì)胞起保護(hù)作用,但持續(xù)的高血糖和蛋白尿最終會(huì)導(dǎo)致腎小管上皮細(xì)胞凋亡[8]。此外,ERS還介導(dǎo)了足細(xì)胞損傷,參與了腎小球系膜細(xì)胞損傷及細(xì)胞外基質(zhì)增生等。Hotamisligil等(2010年)的研究表明GLP-1可以通過抑制ERS在糖脂代謝疾病中發(fā)揮重要調(diào)節(jié)作用。Yusta等(2006年)提出GLP-1受體激動(dòng)劑Exendin-4通過抑制胰島β細(xì)胞的ERS通路進(jìn)而改善糖尿病小鼠胰島β細(xì)胞的功能和抑制胰島β細(xì)胞的凋亡。Zheng等(2017年)的研究表明Exenatide干預(yù)能逆轉(zhuǎn)高脂毒性所致的C57BL/6小鼠和改善棕櫚酸誘導(dǎo)的肝臟HepG2細(xì)胞的ERS,進(jìn)而發(fā)揮保護(hù)肝臟功能的作用。利拉魯肽能保護(hù)肥胖和胰島素抵抗小鼠模型的脂肪細(xì)胞免受ERS的損害。以上均提示,GLP-1受體激動(dòng)劑改善糖尿病患者腎功能可能與改善過度激活的ERS有關(guān)。本研究顯示,利拉魯肽能抑制高脂飲食喂養(yǎng)C57BL/6小鼠腎臟組織ERS通路的激活。因此,利拉魯肽可能通過抑制ERS通路進(jìn)而改善高脂飲食喂養(yǎng)所致的DN腎損害。但是,本研究尚未能闡述利拉魯肽是如何介導(dǎo)改善腎臟組織ERS進(jìn)而改善DN的結(jié)局,此疑問還有待進(jìn)一步開展轉(zhuǎn)基因小鼠實(shí)驗(yàn)、體外細(xì)胞實(shí)驗(yàn)等以進(jìn)一步探討相關(guān)的分子機(jī)制。
參 考 文 獻(xiàn)
[1] Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol, 2019, 15(6):327-345.
[2] Thomas MC, Brownlee M,Susztak K,Sharma K, Jan-deleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME. Diabetic kidney disease. Nat Rev Dis Primers, 2015,1:15018.
[3] Mann JFE, ?rsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Torn?e K, Zinman B, Buse JB; LEADER Steering Committee and Investigators. Committee,investigators, liraglutide and renal outcomes in type 2 diabetes. N Engl J Med, 2017, 377(9):839-848.
[4] 黃蓉, 黃建青,陳彤. 利拉魯肽簡(jiǎn)化肥胖2型糖尿病患者降糖治療方案的臨床觀察. 新醫(yī)學(xué), 2016, 47(6):388-392.
[5] Walter P, Ron D. The unfolded protein response: from stress pathway to homeostaticregulation. Science,2011,334(6059):1081-1086.
[6] Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; invo-lvement of autophagy, inflammation and oxidative stress. Life Sci, 2018, 193:20-33.
[7] Kim MJ, Kim MN, Min SH, Ham DS, Kim JW, Yoon KH, Park KS, Jung HS. Specific PERK inhibitors enhanced glucose-stimulated insulin secretion in a mouse model of type 2 diabetes. Metabolism,2019,97:87-91.
[8] Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, Schl?ndorff D. Proteinuria and hype-rglycemia induce endoplasmic reticulum stress. J Am Soc Nep-hrol, 2008, 19(11):2225-2236.
[9] Kato M, Wang M, Chen Z, Bhatt K, Oh HJ, Lanting L, Deshpande S, Jia Y, Lai JY, OConnor CL, Wu Y, Hodgin JB, Nelson RG, Bitzer M, Natarajan R. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA mega-cluster induces early features of diabetic nephropathy. Nat Commun, 2016, 7: 12864.
[10] Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, Park SW, Davis RJ, Ozcan U. p38 MAPK-mediated regulation of Xbp1s is crucial for glucosehomeostasis. Nat Med, 2011, 17(10):1251-1260.
[11] Williams KW, Liu T, Kong X, Fukuda M, Deng Y, Berglund ED, Deng Z, Gao Y, Liu T, Sohn JW, Jia L, Fujikawa T, Kohno D, Scott MM, Lee S, Lee CE, Sun K, Chang Y, Scherer PE, Elmquist JK. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab, 2014, 20(3):471-482.
[12] Amin-Wetzel N, Saunders RA, Kamphuis MJ, Rato C, Preissler S, Harding HP, Ron D. A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell, 2017, 171(7):1625-1637.
[13] Grkovic S, OReilly VC, Han S, Hong M, Baxter RC, Firth SM. IGFBP-3 binds GRP78, stimulates autophagy and pro-motes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene, 2013, 32(19): 2412-2420.
[14] Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol, 2018, 14(1): 48-56.
(收稿日期:2019-08-30)
(本文編輯:洪悅民)