廣東省華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院(510631) 李湖南
1.The area of a pizza with radius 4 is N percent larger than the area of a pizza with radius 3 inches.What is the integer closest to N?
(A)25 (B)33 (C)44 (D)66 (E)78
譯文: 半徑4 英寸的披薩比半徑3 英寸的披薩面積大百分之N,則與N 最接近的整數(shù)是多少?
解故(E)正確.
2.Suppose a is 150%of b.What percent of a is 3b?
譯文: 設(shè)a 是b 的150%,則3b 是a 的百分之幾?
解依題意有a = 1.5b,則故(D)正確.
3.A box contains 28 red balls, 20 green balls, 19 yellow balls, 13 blue balls, 11 white balls, and 9 black balls.What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least 15 balls of a single color will be drawn?
(A)75 (B)76 (C)79 (D)84 (E)91
譯文: 一個盒子里有28 個紅球, 20 個綠球, 19 個黃球,13 個藍(lán)球,11 個白球和9 個黑球.在不放回的情況下,必須至少從盒子中取出多少個球才能確保會取出15 個同種顏色的球?
解依題意,紅球、綠球、黃球得取出14 個,藍(lán)球、白球、黑球全部取出,再加任意1 個就符合條件,即至少需要取出14×3+13+11+9+1=76 個球,故(B)正確.
4.What is the greatest number of consecutive integers whose sum is 45?
(A)9 (B)25 (C)45 (D)90 (E)120
譯文: 最多有多少個連續(xù)整數(shù)的和等于45?
解設(shè)有x 個連續(xù)整數(shù),從n 開始,即n+(n+1)+(n+2)+···+(n+x-1)=45,可得x(2n+x-1)=90,最大值解為x=90,此時n=-44,故(D)正確.
解先寫出這兩條直線方程:y-2=和y -2 = 2(x-2), 然后分別與方程x+y = 10 聯(lián)立,求得交點(diǎn)為B(6,4) 和C(4,6), 設(shè)點(diǎn)(2,2) 為A, 則同理可得如圖示,作AD⊥BC 于D,則D 為BC 中點(diǎn),從而于是AD =6,故(C)正確.
圖1
6.The figure below shows line l with a regular,infinite,recurring pattern of squares and line segments.How many of the following four kinds of rigid motion transformations of the plane in which this figure is drawn,other than the identity transformation,will transform this figure into itself?
-some rotation around a point of line l
-some translation in the direction parallel to line l
-the reflection across line l
-some reflection across a line perpendicular to line l
圖2
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4
譯文: 下圖表示一條有規(guī)則的、無限的、循環(huán)出現(xiàn)的正方形和線段圖案的直線l.下列四種平面上的剛體變換中,恒等變換除外,有多少種會將該圖形變換為自身?
①繞直線l 上的一個點(diǎn)的一些旋轉(zhuǎn); ②關(guān)于平行于直線l 的方向上的一些平移; ③關(guān)于直線l 的反射; ④關(guān)于一條垂直于l 的直線的反射.
解看圖可知, 繞直線l 上一點(diǎn)做180°旋轉(zhuǎn)可以變回自身; 關(guān)于平行于直線l 的方向上做若干個周期的平移也可以變回自身; 而關(guān)于直線l 的反射、或者垂直于l 的直線的反射則會將與正方形相連的線段方向變反.所以只有變換① ②符合要求,故(C)正確.
7.Melanie computes the mean μ, the median M, and the modes of the 365 values that are the dates in the months of 2019.Thus her data consist of 12 1s,12 2s,…,12 28s,11 29s,11 30s,and 7 31s.Let d be the median of the modes.Which of the following statements is true?
(A)μ <d <M (B)M <d <μ (C)d = M = μ (D)d <M <μ (E)d <μ<M
譯文: 米蘭妮在計(jì)算2019年12 個月中的所有365 個日期的平均數(shù)μ,中位數(shù)M,和眾數(shù).她的數(shù)據(jù)包含12 個1,12個2, …,12 個28,11 個29,11 個30 和7 個31.令d 為所有眾數(shù)的中位數(shù),則下列哪個說法是正確的?
解平均數(shù)為中位數(shù)為從小到大排在第183 的數(shù), 即M = 16, 眾數(shù)為1,2,··· ,28,則眾數(shù)的中位數(shù)為d=14.5,比較后可知,(E)正確.
8.For a set of four distinct lines in a plane,there are exactly N distinct points that lies on two or more of the lines.What is the sum of all possible values of N?
(A) 14 (B) 16 (C) 18 (D) 19 (E)21
譯文: 對于一個平面上的四條不同的直線,恰好有N 個不同的交點(diǎn).問所有可能的N 值之和是多少?
解分情況如下: (1)四條直線平行,則N = 0;(2)四條直線交于一點(diǎn),則N = 1;(3)三條直線平行,與第四條直線均相交,則N = 3;(4)兩條直線平行,另兩條直線也平行,但相互不平行,則N = 4;(5)兩條直線平行,另兩條直線相交,且與平行直線均相交于不同交點(diǎn),則N = 5;(6)四條直線均不平行,且交點(diǎn)互不相同,則N = 6.于是所有可能的N 值之和為19,故(D)正確.
9.A sequence of numbers is defined recursively by a1=1,andfor all n ≥3.Then a2019can be written aswhere p and q are relatively prime positive integers.What is p+q?
(A) 2020 (B) 4039 (C) 6057 (D) 6061 (E) 8078
解代入可得我們猜測可驗(yàn)證如下:于是, a2019=即有p = 3,q = 8075,p+q = 8078,故(E)正確.
10.The figure below shows 13 circles of radius 1 within a larger circle.All the intersections occur at points of tangency.What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius 1?
譯文: 下圖表示一個較大的圓內(nèi)有13 個半徑為1 的圓.所有的交點(diǎn)都發(fā)生在切點(diǎn)上.圖中陰影為大圓內(nèi)但在所有半徑為1 的圓外部分,則陰影部分的面積是多少?
圖3
解如圖示, 分別取大圓的圓心O, 和上方三個小圓的圓心A,B,C, 連結(jié)OA,OB,OC,AB,AC,BC, 可知△OAC,△ABC 均為邊長為2 的正三角形.于是即大圓半徑為故所求面積為(A)正確.
11.For some positive integer k,the repeating base-k representation of the(base-ten)fractionis 0.23k=0.232323···k.What is k?
(A) 13 (B) 14 (C) 15 (D) 16 (E)17
解由于兩邊同時乘以k2可得,整理可得7k2-102k-160 = 0,解得k = 16或(舍去),故(D)正確.
譯文: 不為1 的正實(shí)數(shù)x,y 滿足log2x = logy16 和xy =64,則是多少?
解log2x = logy16 =從而4 =·log2y =(log264-log2y)·log2y =解得log2y = 3±于是log2x =因此=(log2x-log2y)2=20,故(B)正確.
13.How many ways are there to paint each of the integers 2, 3, …, 9 either red, green, or blue so that each number has a different color from each of its proper divisors?
(A)144 (B)216 (C)256 (D)384 (E)432
譯文: 有多少種方法可以把整數(shù)2, 3, …, 9 涂成紅色、綠色或藍(lán)色,使得每個數(shù)的顏色都不同于它所有真因子的顏色?
解依題意有,4 的顏色不同于2,6 的顏色不同于2 和3, 8 的顏色不同于2 和4, 9 的顏色不同于3, 分兩種情況:(1) 2 和3 顏色相同, 則有3 種選擇, 此時4、6 和9 均有2種選擇, 8 只有1 種選擇, 5 和7 是素?cái)?shù), 均有3 種選擇, 共3×23×32=216 種;(2)2 和3 顏色不同,則有6 種選擇,此時4 和9 均有2 種選擇,6 和8 只有1 種選擇,5 和7 仍各有3 種選擇,共6×22×32=216 種.綜合可得432 種方法,故(E)正確.
14.For a certain complex number c,the polynomial P(x)=(x2-2x+2)(x2-cx+4)(x2-4x+8)has exactly 4 distinct roots.What is|c|?
譯文:設(shè)c是復(fù)數(shù),多項(xiàng)式 P(x)=(x2-2x+2)(x2-cx+4)(x2-4x+8)恰好有4 個不同的復(fù)根,則|c|是多少?
解x2-2x+2 的兩根為x1,2= 1±i, x2-4x+8的兩根為x3,4= 2 ± 2i, 依題意可得, x1,x2,x3,x4就是P(x) 的四個不同的根, 即x2-cx+4 的兩根只能為x1,2和x3,4中的各一個.若x2-cx+4 = (x-x1)(x-x4),則c=x1+x4=3-i;若x2-cx+4=(x-x2)(x-x3),則c=x2+x3=3+i.故都有(E)正確.
15.positive real numbers a and b have the property thatand all four terms on the left are positive integers, where log denotes the base 10 logarithm.What is ab?
(A)1052(B)10100(C)10144(D)10164(E)10200
解上式可化成100, 可知log a,log b 均為偶數(shù)的平方數(shù).不妨設(shè)a ≤b, 解得log a = 64, log b = 100, 即a = 1064, b = 10100, 于是ab=10164,故(D)正確.
16.The numbers 1,2,…,9 are randomly placed into the 9 squares of a 3×3 grid.Each square gets one number,and each of the numbers is used once.What is the probability that the sum of the numbers in each row and each column is odd?
譯文: 數(shù)字1 到9 被隨機(jī)地放入到3×3 的九宮格中,每個格子放一個數(shù),且每個數(shù)只使用一次.問每行每列的數(shù)字之和都是奇數(shù)的概率是多少?
解1 到9 共有5 個奇數(shù)4 個偶數(shù).要使得一行(或列)的數(shù)字和為奇數(shù),該行(或列)只能有1 個或3 個奇數(shù),從而三行(或列)的奇數(shù)個數(shù)分配只能是311,131,或113.而5 個奇數(shù)可以隨意排列,4 個偶數(shù)也隨意排列,因此符合條件的排列有3×3×5!×4!種.而9 個數(shù)的全排列是9!種,故所求概率為(B)正確.
17.Let Skdenote the sum of the kth powers of the roots of the polynomial x3-5x2+8x-13.In particular, S0= 3,S1= 5 and S2= 9.Let a,b and c be real numbers such that Sk+1= aSk+ bSk-1+ cSk-2for k = 2,3,....What is a+b+c?
(A)-6 (B)0 (C)6 (D)10 (E)26
譯文: 設(shè)Sk為多項(xiàng)式x3-5x2+8x-13 所有根的k 次方之和,特別地S0= 3,S1= 5,S2= 9.設(shè)有實(shí)數(shù)a,b,c 使得Sk+1= aSk+bSk-1+cSk-2對于k = 2,3,...均成立,則a+b+c 是多少?
解設(shè)x1,x2,x3是x3-5x2+8x-13 的三個根,根據(jù)根與系數(shù)的關(guān)系,有又
即得a=5,b=-8,c=13,故a+b+c=10,(D)正確.
18.A sphere with center O has radius 6.A triangle with sides of length 15,15,and 24 is situated in space so that each of its sides is tangent to the sphere.What is the distance between O and the plane determined by the triangle?
譯文: 設(shè)球O 的半徑為6,一個三邊長分別為15,15 和24 的空間三角形的每條邊都和球相切.則點(diǎn)O 到三角形所在平面的距離是多少?
圖4
解如圖4 示,這是三角形所在的平面圖形,AB =AC =15,BC =24,其內(nèi)切圓圓心為P, 三個切點(diǎn)分別為D,E,F,連結(jié)AD,PE,PF, 則AD⊥BC, 從而BD = DC = 12,于是BE = BD = 12, AE = AB - BE = 3, AD =設(shè)內(nèi)切圓半徑為r, 則在Rt△PEA 中,有AP2= AE2+EP2,即(9-r)2= 32+r2,解得r = 4.又在球內(nèi)△OPD 中,OP⊥PD,所以點(diǎn)O 到該平面的距離故(D)正確.
19.In △ABC with integer side lengths, cos A =cos B =and cos C =What is the least possible perimeter for △ABC?
(A)9 (B)12 (C)23 (D)27 (E)44
譯文: △ABC 中, 邊長均為整數(shù), 且cos A =則△ABC 的周長最小是多少?
解根據(jù)余弦定理,有代入化簡可得即=0,于是解得最小值為c = 4,b = 2,a = 3,周長為9,故(A)正確.
20.Real numbers between 0 and 1,inclusive,are chosen in the following manner.A fair coin is flipped.If it lands heads,then it is flipped again and the chosen number is 0 if the second flip is heads and 1 if the second flip is tails.On the other hand,if the first coin flip is tails,then the number is chosen uniformly at random from the closed interval[0,1].Two random numbers x and y are chosen independently in this manner.What is the probability that
譯文: 用下列方式選出區(qū)間[0, 1]上的實(shí)數(shù): 擲一枚均勻的硬幣,如果正面朝上,就再擲一次,若第二次正面朝上則選數(shù)字0,若第二次反面朝上則選數(shù)字1;如果第一次就反面朝上,則在區(qū)間[0,1]上隨機(jī)選擇一個數(shù)字.x 和y 均是用這種方式隨機(jī)獨(dú)立地選出來的.問的概率是多少?
解設(shè)甲、乙兩人擲硬幣分別得到數(shù)字x 和y, 要使得則分如下情況: (1)甲連續(xù)擲出正面、正面, 乙連續(xù)擲出正面、反面, 此時x = 0,y = 1, 概率為(2)甲連續(xù)擲出正面、反面,乙連續(xù)擲出正面、正面, 此時x = 1,y = 0, 概率為甲連續(xù)擲出正面、正面,乙擲出反面,此時x = 0,y ∈[0,1],但要才有效, 概率為甲連續(xù)擲出正面、反面, 乙擲出反面, 此時x = 1,y ∈[0,1],但要才有效, 概率為甲擲出反面, 乙連續(xù)擲出正面、正面, 此時x ∈[0,1],y = 0,但要才有效, 概率為(6) 甲擲出反面, 乙連續(xù)擲出正面、反面, 此時x ∈[0,1],y = 1,但要才有效, 概率為甲擲出反面, 乙也擲出反面, 此時x,y ∈ [0,1], 要符合條件, 則點(diǎn)(x,y) 必須落在陰影部分里, 如圖示, 概率為故(B)正確.
圖5
解由題意可得z2= i,z4= -1,z8= 1,從而z 的冪以8 為周期重復(fù)出現(xiàn),于是z12+z22+z32+···+z122=z+z4+z9+z16+z25+z36+z49+z64+z81+z100+z121+z144=z+z4+z+1+z+z4+z+1+z+z4+z+1=6z,同理有因此原式故(C)正確.
22.Circles ω and γ,both centered at O,have radii 20 and 17, respectively.Equilateral triangle ABC, whose interior lies in the interior of ω but in the exterior of γ,has vertex A on ω,and綜上可得, 所求概率為the line containing sideis tangent to γ.Segmentsandintersect at P,andThen AB can be written in the formfor positive integers m,n,p,q with gcd(m,n)=gcd(p,q)=1.What is m+n+p+q?
(A)42 (B)86 (C)92 (D)114 (E)130
譯文: 圓ω 和圓γ 均以點(diǎn)O 為圓心,半徑分別為20 和17.等邊三角形ABC 位于圓ω 的內(nèi)部但在圓γ 的外部,頂點(diǎn)A 在圓ω 上, 邊BC 所在的直線與圓γ 相切.線段AO與BC 交于點(diǎn)P, 且則AB 的長度可以表示為其中m,n,p,q 均為正整數(shù),且gcd(m,n)=gcd(p,q)=1.問m+n+p+q 是多少?
解如圖示, 設(shè)BC 所在的直線與圓γ 相切于點(diǎn)E,連結(jié)CE,OE,作AD⊥BC 于點(diǎn)D, 則D 為BC 的中點(diǎn), P 為DC 的中點(diǎn).令A(yù)B = 4a,則BD = DC = 2a, DP = PC =于是由于△APD ~△OPE,得即解得因此故m = 80, n = 13, p = 34, q = 3,有m+n+p+q =130,(E)正確.
23.Define binary operations ?and Δ by a ?b = alog7(b)and aΔb =for all real numbers a and b for which these expressions are defined.The sequence(an)is defined recursively by a3= 3Δ2 and an= (nΔ(n-1))?an-1for all integers n ≥4.To the nearest integer,what is log7(a2019)?
(A)8 (B)9 (C)10 (D)11 (E)12
譯文: 定義二元運(yùn)算?和Δ 如下: a ?b = alog7(b),aΔb =其中a,b 是滿足上式有意義的任何實(shí)數(shù).定義遞歸數(shù)列(an)為a3=3Δ2,且an=(nΔ(n-1))?an-1,?n ≥4.則與log7(a2019)最接近的整數(shù)是多少?
圖6
解a3= 3Δ2 =a4= (4Δ3) ?a3== (5Δ4) ?a4=……, 由此可得因此log7(a2019)=log7log72019=log22019 ≈11,故(D)正確.
24.For how many integers n between 1 and 50, inclusive,isan integer? (Recall that 0!=1.)
(A)31 (B)32 (C)33 (D)34 (E)35
解由于若n 為素?cái)?shù), 則分子含有-1 個因子n, 而分母含有n 個n, 從而不是整數(shù); 若n 為合數(shù), 先引用一個結(jié)論:一定是整數(shù).于是有當(dāng)n ≥6 時,也是整數(shù), 從而是整數(shù); 但當(dāng)n = 4 時,不是整數(shù).因此,不符合條件的n值為2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,共16個,即剩下的34 個均滿足條件,故(D)正確.
25.Let △A0B0C0be a triangle whose angle measures are exactly 59.999°,60°, and 60.001°.For each positive integer n define Anto be the foot of the altitude from An-1to line Bn-1Cn-1.Likewise, define Bnto be the foot of the altitude from Bn-1to line An-1Cn-1, and Cnto be the foot of the altitude from Cn-1to line An-1Bn-1.What is the least positive integer n for which △AnBnCnis obtuse?
(A)10 (B)11 (C)13 (D)14 (E)15
譯文: 設(shè)△A0B0C0是一個內(nèi)角恰好為59.999°,60°,60.001°的三角形.對于正整數(shù)n, 定義An為從An-1到直線Bn-1Cn-1上的高的垂足,類似的定義Bn為從Bn-1到直線An-1Cn-1上的高的垂足, Cn為從Cn-1到直線An-1Bn-1上的高的垂足.則使得△AnBnCn為鈍角三角形的正整數(shù)n 最小是多少?
圖7
解如圖示,不妨設(shè)∠A0B0C0=59.999°,∠B0A0C0=60°,∠A0C0B0=60.001°, 點(diǎn) O 為 △A0B0C0的垂心, 則 A0,B1,O,C1四點(diǎn)共圓,B0,A1,O,C1四點(diǎn)共圓,C0,B1,O,A1也四點(diǎn)共圓, 于是∠B1C1O = ∠B1A0O = 90°-60.001°= 29.999°, ∠A1C1O = ∠A1B0O = 29.999°, 從而∠A1C1B1= 59.998°; 同理∠C1A1O = ∠C1B0O =∠B1C0O = ∠B1A1O = 30°, ∠C1A1B1= 60°; 此時∠A1B1C1=180°-∠C1A1B1-∠A1C1B1=60.002°.
由此可見,有關(guān)系式
成立,于是可得下表:
n 1 2 3 4 5 6 7 8∠CnAnBn 60°60°60°60°60°60°60°60°∠AnBnCn 60.002°59.996°60.008°59.984°60.032°59.936°60.128°59.744°∠BnCnAn 59.998°60.004°59.992°60.016°59.968°60.064°59.872°60.256°
n 9 10 11 12 13 14 15∠CnAnBn 60°60°60°60°60°60°60°∠AnBnCn 60.512°58.976°62.048°55.904°68.192°43.616°92.768°∠BnCnAn 59.488°61.024°57.952°64.096°51.808°76.384°27.232°
當(dāng)n=15 時,△AnBnCn為鈍角三角形,故(E)正確.