楊驍 王天宇
摘要: 將梁中橫向開裂紋等效為內(nèi)部扭轉(zhuǎn)彈簧,利用廣義Delta函數(shù)和Heaviside函數(shù),給出了具有任意條裂紋Euler-Bernoulli梁振動(dòng)模態(tài)的統(tǒng)一顯式解析表達(dá)式。在此基礎(chǔ)上,引入裂紋附加模態(tài)的概念,并根據(jù)裂紋附加模態(tài)函數(shù)的構(gòu)造特征,利用最小二乘擬合,建立了一種新的裂紋損傷參數(shù)識(shí)別方法。該方法計(jì)算簡(jiǎn)單,且僅需較少的測(cè)量點(diǎn)及測(cè)量點(diǎn)處某一模態(tài)的測(cè)量數(shù)據(jù)即可實(shí)現(xiàn)裂紋位置及深度的識(shí)別。最后,通過兩個(gè)數(shù)值算例驗(yàn)證了裂紋損傷參數(shù)識(shí)別方法的適用性和可靠性,并考察了測(cè)量噪聲對(duì)損傷識(shí)別的影響,結(jié)果表明裂紋位置識(shí)別精度高于裂紋等效彈簧剛度識(shí)別精度;前面裂紋識(shí)別結(jié)果影響后續(xù)裂紋的識(shí)別結(jié)果;隨著測(cè)量噪聲的增加,裂紋位置及裂紋等效彈簧剛度的識(shí)別誤差增加,但仍在可接受的范圍內(nèi),故該裂紋損傷識(shí)別方法在工程實(shí)際中具有一定的適用性。
關(guān)鍵詞: 裂紋梁; 裂紋損傷識(shí)別; 等效扭轉(zhuǎn)彈簧模型; 裂紋附加模態(tài); 最小二乘擬合
中圖分類號(hào): TU311.3; O346.5 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2019)03-0480-10
DOI:10.16385/j.cnki.issn.1004-4523.2019.03.013
引 言
由于載荷的作用以及環(huán)境的影響,作為土木工程和機(jī)械工程等中的重要梁構(gòu)件在服役期間會(huì)經(jīng)常出現(xiàn)裂紋,裂紋的存在及其擴(kuò)展導(dǎo)致梁剛度和承載力降低以及使用壽命縮短,甚至導(dǎo)致結(jié)構(gòu)和機(jī)械的突然破壞,造成巨大的損失,因此裂紋梁的力學(xué)性能和損傷識(shí)別理論及方法研究對(duì)保證梁構(gòu)件的正常服役具有重要的理論意義和廣泛應(yīng)用背景[1-5]。
梁裂紋的宏觀模型一般包括開裂紋模型[2,6-8]、開閉裂紋模型[9-11]和呼吸裂紋模型[12-14]。當(dāng)梁的變形較小時(shí),可假定裂紋始終處于張開狀態(tài),從而可采用開裂紋模型分析裂紋梁的動(dòng)靜力性能。這里,除將裂紋效應(yīng)等效為剛度減小梁的早期等效降截面法外[1],將裂紋等效為無質(zhì)量扭轉(zhuǎn)彈簧[15-16],裂紋梁視為由若干扭轉(zhuǎn)彈簧連接梁段構(gòu)成的裂紋梁模型被廣泛應(yīng)用于裂紋梁的力學(xué)性能分析及裂紋損傷識(shí)別中,并取得了豐富的研究成果。
梁裂紋的損傷識(shí)別可分為基于振動(dòng)的動(dòng)力識(shí)別方法和基于靜態(tài)變形的靜力識(shí)別方法。目前,動(dòng)力識(shí)別方法主要包括:基于固有頻率、基于振型及振型曲率、基于殘余力向量、基于柔度矩陣、基于頻響函數(shù)以及基于模態(tài)應(yīng)變能等的損傷識(shí)別方法[5,8,17-22]。由于振型易于測(cè)量,且含有梁局部變形的信息,因此基于振型的裂紋識(shí)別方法及應(yīng)用得到了廣泛的研究。Rizos等[23]首先運(yùn)用了振型函數(shù)的導(dǎo)數(shù)在裂紋處發(fā)生突變這一特性對(duì)懸臂梁的裂紋識(shí)別進(jìn)行了研究。Pandey等[24]建立了裂紋梁的有限元模型,利用振型曲率作為識(shí)別指標(biāo),對(duì)簡(jiǎn)支梁的裂紋損傷參數(shù)進(jìn)行了識(shí)別。Douka等[25]利用小波變換識(shí)別振型曲線的突變點(diǎn)以確定裂紋位置,再根據(jù)頻率識(shí)別裂紋損傷的其他參數(shù);而Chasalevris等[26]將此方法推廣至多裂紋情形的裂紋損傷參數(shù)識(shí)別。由于梁結(jié)構(gòu)為無限自由度體系,測(cè)得的振型數(shù)據(jù)往往是不連續(xù)和非完整的[27],已有的損傷識(shí)別方法存在識(shí)別非唯一性問題,且往往需要布置較多的測(cè)量點(diǎn)才能得到較精確的損傷識(shí)別結(jié)果,因此這些方法的應(yīng)用推廣受到一定的限制。
本文基于Euler-Bernoulli裂紋梁振動(dòng)模態(tài)中裂紋引起附加模態(tài)的構(gòu)造特征,建立Euler-Bernoulli裂紋梁中橫向開裂紋的參數(shù)識(shí)別方法。為此,基于開裂紋梁的等效抗彎剛度,利用廣義Delta函數(shù)和Heaviside函數(shù),得到具有任意條裂紋Euler-Bernoulli梁振動(dòng)模態(tài)的統(tǒng)一顯示解析表達(dá)式。在此基礎(chǔ)上,將靜力識(shí)別方法中的裂紋附加撓度[28-29]推廣至動(dòng)力識(shí)別中,引入裂紋附加模態(tài)的概念。根據(jù)裂紋附加模態(tài)函數(shù)的構(gòu)造特征,建立裂紋損傷參數(shù)的識(shí)別方法,并通過簡(jiǎn)支單裂紋梁和懸臂雙裂紋梁的裂紋識(shí)別數(shù)值驗(yàn)證了該方法的適用性和可靠性,且采用文獻(xiàn)[28]中提供的裂紋梁自由振動(dòng)振型實(shí)測(cè)數(shù)據(jù)對(duì)識(shí)別方法進(jìn)行了進(jìn)一步的驗(yàn)證。需要指出的是本文得到的Euler-Bernoulli裂紋梁振動(dòng)模態(tài)的顯式解析表達(dá)式避免了裂紋梁經(jīng)典分析方法的復(fù)雜性,同時(shí),相較于傳統(tǒng)的基于有限元或多質(zhì)點(diǎn)振動(dòng)模型的梁裂紋損傷識(shí)別方法,本文所提出的梁裂紋識(shí)別方法可利用較少的振型模態(tài)測(cè)量數(shù)據(jù)實(shí)現(xiàn)裂紋位置及深度的唯一和較精確識(shí)別,避免了需要布置較多傳感器或移動(dòng)傳感器,為實(shí)現(xiàn)梁式結(jié)構(gòu)的長(zhǎng)期實(shí)時(shí)監(jiān)測(cè)提供了可行的思路。
基于區(qū)間[0.6,1.0]上的裂紋附加模態(tài)值,利用最小二乘法,可得到附加模態(tài)近似函數(shù)D(ξ),其結(jié)果如圖5所示。由D(ξ)=0,可得裂紋ξ1的近似位置ξ*1,并由式(27)得到裂紋的近似等效抗彎剛度k*1,其結(jié)果如表2所示。由表可見,對(duì)于單裂紋梁,隨著測(cè)量噪聲的增加,裂紋位置及裂紋等效彈簧剛度的識(shí)別誤差增加;當(dāng)測(cè)量噪聲較小時(shí),其識(shí)別結(jié)果具有較高的精度;當(dāng)測(cè)量噪聲較大時(shí),會(huì)產(chǎn)生一定誤差,裂紋位置的識(shí)別精度高于裂紋等效彈簧剛度的識(shí)別精度。由表2的結(jié)果可以得到,本文方法用于裂紋位置識(shí)別時(shí)的誤差是可以接受的,但當(dāng)信噪比較大時(shí),裂紋等效彈簧剛度的識(shí)別誤差較大,難以滿足要求,此時(shí),可通過增加測(cè)點(diǎn)數(shù)目、考慮高階振型數(shù)據(jù)或多次測(cè)量等手段提高識(shí)別結(jié)果的精度。
為了研究測(cè)點(diǎn)數(shù)對(duì)裂紋等效彈簧剛度識(shí)別精度的影響,將梁上測(cè)點(diǎn)數(shù)增加10個(gè),即梁上均勻分布21個(gè)測(cè)點(diǎn)。利用測(cè)量點(diǎn)ξ*i = 0.05i(i = 1,2,…,8)處的測(cè)量數(shù)據(jù)*1(ξ)可得到基礎(chǔ)模態(tài)近似函數(shù)0(ξ)。利用測(cè)點(diǎn)ξ*i = 0.05i + 0.6 (i = 1,2,…,7)處的測(cè)量數(shù)據(jù)得到裂紋附加模態(tài)值,擬合得到裂紋附加模態(tài)。其結(jié)果如圖6所示。并由式(27)得到裂紋的近似等效抗彎剛度k*1。比較表2與3可得,增加測(cè)點(diǎn)數(shù)目對(duì)于裂紋定位及裂紋等效彈簧剛度的識(shí)別精度都有顯著影響,特別地,對(duì)于裂紋等效彈簧剛度的識(shí)別精度提升更為顯著。
4.2 懸臂雙裂紋梁的裂紋參數(shù)識(shí)別
考慮長(zhǎng)細(xì)比Lh=20,在ξ1=0.38和ξ2=0.62處存在深度d=d1=d2=0.5h的懸臂雙裂紋梁。假定初步判斷裂紋位于區(qū)間[0.3,0.4]和[0.6,0.7]。為此,在梁上均勻布置21個(gè)測(cè)點(diǎn),各測(cè)點(diǎn)間間距為0.05。圖7給出了不同信噪比σ下,對(duì)應(yīng)于基振頻率各測(cè)點(diǎn)的歸一化模態(tài)測(cè)量值。
利用測(cè)量點(diǎn)ξ*=0,0.05,0.1,0.15,0.2,0.25,0.3的基振模態(tài)測(cè)量數(shù)據(jù)*1(ξ)可得到基礎(chǔ)模態(tài)近似函數(shù)0(ξ)。在此基礎(chǔ)上,利用式(21)得到測(cè)量點(diǎn)ξ*=0.35,0.4,0.45,0.5,0.55,0.6處的裂紋附加模態(tài)測(cè)量值,其結(jié)果示于圖8中,可見,第一條裂紋位于區(qū)間[0.35,0.4]中?;趨^(qū)間[0.4,0.6]上的裂紋附加模態(tài)值,可得到附加模態(tài)近似函數(shù)D1(ξ),其結(jié)果示于圖9中。由D1(ξ)=0可求得裂紋ξ1的近似位置ξ*1,并由式(27)得到裂紋的近似等效抗彎剛度k*1,其結(jié)果示于表4中,可見,隨著測(cè)量噪聲的增加,裂紋位置及裂紋等效彈簧剛度的識(shí)別誤差增加。需要指出的是:由式(29)可知,對(duì)于多裂紋梁,第一條裂紋的參數(shù)識(shí)別結(jié)果精度會(huì)影響后續(xù)裂紋的參數(shù)識(shí)別精度,因此,應(yīng)注意測(cè)量和計(jì)算誤差引起識(shí)別結(jié)果精度降低的問題。
在得到第一條裂紋相關(guān)參數(shù)的基礎(chǔ)上,進(jìn)行懸臂梁第二條裂紋的位置及等效彈簧剛度識(shí)別。圖10給出了第二條裂紋在測(cè)量點(diǎn)ξ*=0.65,0.7,0.75,0.8,0.85, 0.9,0.95,1.0處的裂紋附加模態(tài)測(cè)量值,可見第二條裂紋因存在于區(qū)間[0.6,0.65]內(nèi),由此得到圖11所示的第二條裂紋的附加模態(tài)近似函數(shù)2D(ξ)。由2D(ξ)=0確定的第二條裂紋的近似位置ξ=ξ*2及其近似等效抗彎剛度k*2,如表5所示。比較表4和5可見,第二條裂紋的損傷識(shí)別精度較第一條裂紋差,其原因是第一條裂紋的識(shí)別誤差會(huì)逐漸積累,因此對(duì)于多裂紋梁的損傷識(shí)別必須控制好模態(tài)數(shù)據(jù)的測(cè)量精度。
5 裂紋識(shí)別方法的試驗(yàn)驗(yàn)證
文獻(xiàn)[28]利用加速度傳感器對(duì)單裂紋懸臂梁的振型進(jìn)行了測(cè)定。試驗(yàn)梁的幾何和材料為:梁長(zhǎng)L=300 mm,橫截面尺寸b×h為20×20 mm2,彈性模量為E=206 GPa,材料密度為7800 kg/m3。裂紋位于距固支端140 mm處,裂紋深度為10 mm。圖12給出了裂紋梁第1階的歸一化模態(tài)測(cè)量值。
取測(cè)點(diǎn)數(shù)目為11,均勻分布在梁上,利用測(cè)量點(diǎn)處的基振模態(tài)測(cè)量數(shù)據(jù)可得到基礎(chǔ)模態(tài)近似函數(shù)。在此基礎(chǔ)上,利用式(21)得到測(cè)點(diǎn)ξ*=0.6,0.7,0.8, 0.9,1.0處的裂紋附加模態(tài)值,其結(jié)果如圖13所示。由圖可見,裂紋存在于區(qū)間[0.4,0.5]中?;趨^(qū)間[0.6,1.0]上的裂紋附加模態(tài)值,利用最小二乘法,可得到附加模態(tài)近似函數(shù)D(ξ),其結(jié)果如圖14所示。表6給出了裂紋位置和深度的識(shí)別結(jié)果,可見在實(shí)際檢測(cè)中,本文所提的方法仍然可以獲得較精確的識(shí)別結(jié)果,具有一定的實(shí)用性。
6 結(jié) 論
本文利用廣義函數(shù)研究了Euler-Bernoulli裂紋梁的自由振動(dòng),給出了裂紋梁自由振動(dòng)模態(tài)的統(tǒng)一顯式解,避免了裂紋梁經(jīng)典分析方法的復(fù)雜性。在此基礎(chǔ)上,將振動(dòng)模態(tài)分解為基礎(chǔ)模態(tài)和裂紋附加模態(tài),提出了基于裂紋梁附加模態(tài)的梁裂紋損傷識(shí)別方法,并利用簡(jiǎn)支單裂紋梁和懸臂雙裂紋梁數(shù)值模擬以及懸臂單裂紋梁的試驗(yàn)結(jié)果驗(yàn)證了此裂紋識(shí)別方法的適用性和可靠性,得到以下結(jié)論:
1.本文利用Heaviside函數(shù),給出的Euler-Bernoulli裂紋梁自由振動(dòng)模態(tài)顯式閉合通解形式緊湊,待定常數(shù)少,且可由邊界條件完全確定,避免了裂紋處的連續(xù)性條件;
2.基于裂紋梁自由振動(dòng)裂紋附加模態(tài)的概念,建立了裂紋損傷參數(shù)識(shí)別方法,在初步確定裂紋大致位置的情況下,相較于傳統(tǒng)的基于多質(zhì)點(diǎn)模型或有限元模型的方法來說,該方法所需測(cè)點(diǎn)數(shù)目較少,且避免了已有裂紋識(shí)別方法中算法復(fù)雜和解的非唯一性的不足;
3.隨著測(cè)量噪聲的增加,裂紋位置及裂紋等效彈簧剛度的識(shí)別誤差增加,且裂紋位置的識(shí)別精度高于裂紋等效彈簧剛度的識(shí)別精度;
4.當(dāng)測(cè)量噪聲較小時(shí),裂紋位置及裂紋等效彈簧剛度的識(shí)別結(jié)果具有較高的精度,但當(dāng)測(cè)量噪聲較大時(shí),裂紋等效彈簧剛度的識(shí)別則產(chǎn)生較大誤差,此時(shí)可以通過增加測(cè)點(diǎn)數(shù)等方法提升等效彈簧剛度識(shí)別精度;
5.對(duì)于多裂紋梁的識(shí)別,前面裂紋損傷參數(shù)識(shí)別的誤差會(huì)導(dǎo)致后續(xù)裂紋參數(shù)識(shí)別精度的下降,此時(shí),可通過增加測(cè)點(diǎn)數(shù)目,或多次測(cè)量來提高識(shí)別結(jié)果的精度。
6.由于模態(tài)信息對(duì)微小裂紋不敏感,本文的方法對(duì)于微小損傷情況適用性較差,對(duì)于微小損傷,可嘗試?yán)昧鸭y應(yīng)變附加模態(tài)或附加模態(tài)應(yīng)變能作為識(shí)別指標(biāo)。
參考文獻(xiàn):
[1] Palmeri A, Cicirello A. Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler-Bernoulli and Timoshenko beams[J]. International Journal of Solids and Structures, 2011,48(14-15):2184-2195.
[2] Caddemis S, Calió I. The influence of the axial force on the vibration of the Euler-Bernoulli beam with an arbitrary number of cracks[J]. Archive of Applied Mechanics, 2012,82(6):1-13.
[3] Yan Y, Ren Q W, Xia N, et al. A close-form solution applied to the free vibration of the Euler-Bernoulli beam with edge cracks[J]. Archive of Applied Mechanics, 2016,86(9):1633-1646.
[4] Dimarogonas A D. Vibration of cracked structures: A state of the art review[J]. Engineering Fracture Mechanics, 1996,55(5):831-857.
[5] Jassim Z A, Ali N N, Mustapha F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis, 2013,31(7):442-461.
[6] Gentile A, Messina A. On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams[J]. International Journal of Solids and Structures, 2003,40(2):295-315.
[7] Kisa M. Vibration and stability of multi-cracked beams under compressive axial loading[J]. International Journal of the Physical Sciences, 2011,6(11):2681-2696.
[8] Fekrazadeh S, Khaji N. An analytical method for crack detection of Timoshenko beams with multiple open cracks using a test mass[J]. European Journal of Environmental and Civil Engineering, 2017,21(1):24-41.
[9] Challamel N, Xiang Y. On the influence of the unilateral damage behaviour in the stability of cracked beam columns[J]. Engineering Fracture Mechanics, 2010,77(9):1467-1478.
[10] Cicirello A, Palmeri A. Static analysis of Euler-Bernoulli beams with multiple unilateral cracks under combined axial and transverse loads[J]. International Journal of Solids and Structures, 2014,51(5):1020-1029.
[11] FU C Y. The effect of switching cracks on the vibration of a continuous beam bridge subjected to moving vehicles[J]. Journal of Sound and Vibration, 2015,339(3):157-175.
[12] Rezaee M, Hassannejad R. Free vibration analysis of simply supported beam with breathing crack using perturbation method[J]. Acta Mechanica Solida Sinica, 2010,23(5):459-470.
[13] Jun O S, Eun H J, Earmme Y Y, et al. Modelling and vibration analysis of a simple rotor with breathing crack[J], Journal of Sound and Vibration, 1992,155(2):273-290.
[14] 胡家順,馮 新,周 晶.呼吸裂紋梁非線性動(dòng)力特性研究[J]. 振動(dòng)與沖擊, 2009,28(1):76-80.
Hu Jiashun, Feng Xin, Zhou Jing. Study on nonlinear dynamic response of a beam with a breathing crack[J]. Journal of Vibration and Shock, 2009,28(1):76-80.
[15] Bilello C. Theoretical and experimental investigation on damaged beams under moving systems[D]. Italy: Università degli Studi di Palermo, 2001.
[16] Atluri S N. Computational Methods in the Mechanics of Fracture[M]. New York: North-Holland, 1986.
[17] Salawu O S. Detection of structural damage through changes in frequency: A review[J]. Engineering Structures, 1997,19(9):718-723.
[18] Yang X F, Swamidas A S J, Seshadri R. Crack identification in vibrating beams using the energy method[J]. Journal of Sound and Vibration, 2001,244(2):339-357.
[19] Kim J T, Ryu Y S, Cho H M, et al. Damage identification in beam-type structures: Frequency-based method vs.mode-shape-based method[J]. Engineering Structures, 2003,25(1):57-67.
[20] Law S S, Lu Z R. Crack identification in beam from dynamic responses[J]. Journal of Sound and Vibration, 2005,285(4):967-987.
[21] 王丹生, 高 智, 楊海萍, 等. 基于特征正交分解的梁結(jié)構(gòu)損傷識(shí)別[J]. 振動(dòng)與沖擊, 2009,28(1):122-125.
Wang Dansheng, Gao Zhi, Yang Haiping, et al. Damage identification for beam structures based on proper orthogonal decompostion[J]. Journal of Vibration and Shock, 2009,28(1):122-125.
[22] Labib A, Kennedy D, Featherston C. Free vibration analysis of beams and frames with multiple cracks for damage detection[J]. Journal of Sound and Vibration, 2014,333(20):4991-5003.
[23] Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes[J]. Journal of Sound and Vibration, 1990,138(3):381-388.
[24] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration, 1991,145(2):321-332.
[25] Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis[J]. International Journal of Solids and Structures, 2003,40(13):3557-3569.
[26] Chasalevris A C, Papadopoulos C A. Identification of multiple cracks in beams under bending[J]. Mechanical Systems and Signal Processing, 2006,20(7):1631-1673.
[27] 胡家順, 馮 新, 李 昕,等. 裂紋梁振動(dòng)分析和裂紋識(shí)別方法研究進(jìn)展[J]. 振動(dòng)與沖擊, 2007,26(11):146-152+189.
Hu Jiashun, Feng Xin, Li Xin, et al. State-of-art of vibration analysis and crack indentification of cracked beams[J]. Journal of Vibration and Shock, 2007,26(11):146-152+189.
[28] Koo K Y, Lee J J, Yun C B, et al. Damage detection in beam-like structures using deflections obtained by modal flexibility matrices[J]. Journal of Smart Structures and System, 2008,4(5):605-628.
[29] 汪德江, 楊 驍. 基于裂紋誘導(dǎo)弦撓度的Timoshenko梁裂紋無損檢測(cè)[J]. 工程力學(xué), 2016, 33(12):186-195.
Wang De-jiang, Yang Xiao. Crack non-destructive test in Timoshenko beams based on crack-indwced chord-wise deflection[J]. Engineering Mechanics, 2016,33(12):186-195.
[30] Caddemi S, Caliò I. Exact closed-form solution for the vibration modes of the Euler-Bernoulli beam with multiple open cracks[J]. Journal of Sound and Vibration, 2009,327(3-5):473-489.
[31] Yang X, Huang J, Ouyang Y. Bending of Timoshenko beam with effect of crack gap based on equivalent spring model[J]. Applied Mathematics and Mechanics, 2016,37(4):513-528.
Abstract: Regarding the transverse open crack in a beam as an equivalent internal rotational spring, a unified explicit expression of the vibration mode of an Euler-Bernoulli beam with arbitrary number of cracks is obtained with the generalized Delta and Heaviside functions. On this basis, the concept of crack-induced additional vibration mode is proposed, and a novel method to identify the crack damage parameters is established with the constructive feature of the crack-induced additional vibration mode by using the least square fitting. The proposed method has the advantage of simple calculation and can identify the locations and equivalent rotational spring rigidities of the cracks using less mode measurement data. Finally, the validity and reliability of the proposed method for crack-damage identification are validated by two numerical examples, and the influence of the measurement noise on the identification results is examined. It is revealed that the identification precisions of the crack locations are higher than those of equivalent rotational spring rigidities of the cracks, and the identification result of present cracks has influence on the identification result of later ones. The identification errors of the crack location and the rigidity of the crack equivalent rotational spring increase with the increase of the measurement errors, but these errors are acceptable. Therefore, the proposed crack damage identification method can be applied in practical engineering.
Key words: cracked beam; crack damage identification; equivalent rotational spring model; crack-induced additional mode; least square fitting
作者簡(jiǎn)介: 楊 驍(1965-),男,博士,教授,博士生導(dǎo)師。電話: (021)66133698; E-mail: xyang@shu.edu.cn