張睿思
關(guān)鍵詞: 大數(shù)據(jù); 教育智慧平臺; 自主學(xué)習(xí); 多特征融合; 關(guān)聯(lián)分析技術(shù); 學(xué)生成績預(yù)警
中圖分類號: TN919?34; TP393 ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)14?0091?04
Design and implementation of intelligent education platform based on big data
ZHANG Ruisi
(Hunan Institute of Technology, Hengyang 421002, China)
Abstract: The activities of teachers and students are constrained by teaching plans in traditional teaching methods, and the teaching methods are aging, and cannot expand students′ learning abilities by means of big data, resulting in students′ low self?learning ability after class and low extracurricular communication ability. Therefore, an intelligent education platform based on the big data is designed. The overall structure of the platform includes the physical layer, virtual resource layer, logic layer, display layer, application layer, network layer and user layer. The big data center module of the platform is used to collect all business data by means of network and equipments such as sensor, and store business data in the massive data storage device. For the software design part of the platform, the multi?feature fusion acquisition algorithm is used to collect student data, so as to complete the student achievement warning by using the achievement warning algorithm based on the correlation analysis technology. The experimental results show that only 5.15% and 4.49% of students cannot improve their self?learning abilities after class and extracurricular communication abilities respectively, and more than 95% students have good feedback after using the designed platform, which indicates that the designed platform can effectively improve students′ self?learning ability after class and extracurricular communication ability, and has a high application efficiency.
Keywords: big data; intelligent education platform; self?learning; multi?feature fusion; correlation analysis technology; student achievement warning
人們的學(xué)習(xí)途徑從課堂與課本進(jìn)入了多元化教育時(shí)代,使用網(wǎng)絡(luò)與移動(dòng)終端學(xué)習(xí)逐漸成為信息時(shí)代學(xué)習(xí)的重要方式;而傳統(tǒng)的教學(xué)模式多半是照本宣科,教師與學(xué)生的活動(dòng)受教案約束[1],統(tǒng)一的“程序化”教學(xué)方式導(dǎo)致教學(xué)方式老化,學(xué)生學(xué)習(xí)效率不高[2]。傳統(tǒng)的教育模式已經(jīng)不能滿足現(xiàn)在的學(xué)習(xí)需求[3],因此,本文設(shè)計(jì)基于大數(shù)據(jù)的教育智慧平臺,通過大數(shù)據(jù)技術(shù),把互聯(lián)網(wǎng)資源與學(xué)校平臺的數(shù)據(jù)連接,實(shí)現(xiàn)智慧教育。
1 ?基于大數(shù)據(jù)的教育智慧平臺的設(shè)計(jì)
1.1 ?平臺硬件設(shè)計(jì)
基于大數(shù)據(jù)的教育智慧平臺結(jié)構(gòu)分為7層,分別是物理層、虛擬資源層、邏輯層、展現(xiàn)層、應(yīng)用層、網(wǎng)絡(luò)層、用戶層[4]。其詳細(xì)結(jié)構(gòu)如圖1所示。
1.1.1 ?平臺硬件設(shè)備配置結(jié)構(gòu)設(shè)計(jì)
基于大數(shù)據(jù)的教育智慧平臺中的硬件設(shè)備配置結(jié)構(gòu)如圖2所示。其主要包括服務(wù)器、交換機(jī)、防火墻、網(wǎng)絡(luò)機(jī)柜、攝像機(jī)、音視頻分配器與手寫屏各一個(gè),2臺計(jì)算機(jī)[5]。其中,交換機(jī)按照學(xué)生在線并發(fā)數(shù)設(shè)置交換機(jī)設(shè)備的配置,考慮到冗余情況可多設(shè)置1臺留作備用;防火墻采用具有冗余接口的VPN防火墻,確??傮w教育智慧平臺在最大并發(fā)數(shù)下可靠運(yùn)行;攝像機(jī)、音視頻分配器主要用來錄制教師課程,把音頻、視頻錄制到控制端,教師使用手寫屏在屏幕上模擬黑板輸入[6]。
1.1.2 ?大數(shù)據(jù)中心模塊設(shè)計(jì)
大數(shù)據(jù)中心模塊是基于大數(shù)據(jù)的教育智慧平臺中業(yè)務(wù)模塊的數(shù)據(jù)集散地,主要通過網(wǎng)絡(luò)和傳感器等設(shè)備采集所有業(yè)務(wù)數(shù)據(jù),并保存在海量數(shù)據(jù)存儲設(shè)備中,使用數(shù)據(jù)篩選與清洗處理技術(shù)處理數(shù)據(jù)后,傳輸至相應(yīng)的應(yīng)用程序中進(jìn)行程序操作[7]。
1.2 ?平臺軟件設(shè)計(jì)
1.2.1 ?多特征融合采集算法
采用多特征融合采集算法對平臺中的學(xué)生特征數(shù)據(jù)進(jìn)行快速、準(zhǔn)確的特征采集[8]。
[Ta,a1=i=1nqi-s2qi-s-lqi-s2qi-s-li=1nqi-s2qi-s-l22+qi-s2qi-s-l22] ? ?(1)
式中:[Ta,a1]為學(xué)生數(shù)據(jù)特征屬性和學(xué)生特征表達(dá)集合;[qi]為學(xué)生數(shù)據(jù)分類后數(shù)據(jù)特征數(shù)目;[s]為學(xué)生特征含有量;[i]為數(shù)目;[n]為參數(shù);[l]為學(xué)生數(shù)據(jù)特有屬性。學(xué)生數(shù)據(jù)特征識別后必須去除不是特征性的屬性,有利于采集時(shí)減小誤差提升速度,冗余數(shù)據(jù)去除公式為:
[L=q+i=1nTa,a1iq-ei=1nTa,a12i] ?(2)
式中:[L]代表限定去除標(biāo)準(zhǔn),符合標(biāo)準(zhǔn)的將被去除;[q]代表去除時(shí)采用的過濾要求;[e]代表已有冗余數(shù)據(jù)去除要求。經(jīng)過過濾后能夠采集數(shù)據(jù)特征。
[C=βi=1nei+i=1nTa,a1·a,a1idiθi=1nTa,a12i+ ? ? ? 1-βqi+i=1nTa,a1i-X2Ta,a12ii=1nTa,a1-X2] (3)
式中:[diθ]代表數(shù)據(jù)特征的持有權(quán)值;[β]代表平衡因子關(guān)聯(lián)系數(shù);[X]代表數(shù)據(jù)特征采集因素[9]。
1.2.2 ?基于關(guān)聯(lián)分析技術(shù)的成績預(yù)警算法
基于第1.2.1節(jié)采集的學(xué)生數(shù)據(jù),采用基于關(guān)聯(lián)分析技術(shù)對學(xué)生成績進(jìn)行預(yù)警[10]。將事務(wù)集設(shè)為A1,預(yù)警項(xiàng)集設(shè)為A2,K為頻繁項(xiàng)集,Y為候選集,Rules為預(yù)警規(guī)則集,seq為預(yù)警項(xiàng)順序集,minsup表示最小支持度,minconf表示最小置信度,則算法描述為:
Input ?A1,minsup,minconf,A2,seq
Output ?成績預(yù)警規(guī)則Rules
1.初始化頻繁項(xiàng)集[K1]
2.while(all [LK-1≠?])
3.end
4.while(all [YK])
5.end
2 ?實(shí)驗(yàn)分析
2.1 ?本文平臺對學(xué)生課后自主學(xué)習(xí)的影響
實(shí)驗(yàn)統(tǒng)計(jì)本文平臺對學(xué)生課后自主學(xué)習(xí)的影響,結(jié)果如表1所示。
分析表1可知:使用基于大數(shù)據(jù)的教育智慧平臺后,有87.37%的學(xué)生課后總是可以回想起課堂上教學(xué)的相關(guān)知識來進(jìn)行自主解題;有86.92%的學(xué)生總是可以課后自主解題;有87.21%的學(xué)生總是可以在課后自主發(fā)現(xiàn)自己的解題錯(cuò)誤;有86.33%的學(xué)生總是可以在課后自主發(fā)現(xiàn)錯(cuò)誤后及時(shí)改正。僅有5.15%的學(xué)生使用本文平臺時(shí)不能提升學(xué)生課后自主學(xué)習(xí)的能力。由該數(shù)據(jù)可知,基于大數(shù)據(jù)的教育智慧平臺可有效提升學(xué)生課后自主學(xué)習(xí)的能力。
2.2 ?學(xué)生課外交流情況
實(shí)驗(yàn)統(tǒng)計(jì)本文平臺對學(xué)生課外交流的影響,結(jié)果如表2所示。
分析表2可知:學(xué)生課外使用基于大數(shù)據(jù)的教育智慧平臺時(shí),僅有1.35%的學(xué)生在平臺中不參與課后溝通;僅有0.34%的學(xué)生在平臺中不向老師提問;僅有1.5%的學(xué)生沒有增加對老師的了解;僅有0.21%的學(xué)生沒有增加對同學(xué)的了解;僅有1.09%的學(xué)生沒有增加對知識的理解。經(jīng)過統(tǒng)計(jì),僅有4.49%的學(xué)生使用本文平臺時(shí)不能提升自己的課外交流能力,由該數(shù)據(jù)可知,基于大數(shù)據(jù)的教育智慧平臺可有效提升學(xué)生課外交流的能力。
2.3 ?學(xué)生對本文平臺的反饋結(jié)果
學(xué)生對本文平臺的反饋結(jié)果如表3所示。
分析表3可知:使用本文平臺后,認(rèn)為同意使用本文平臺對學(xué)習(xí)幫助很大的學(xué)生占比92.59%(同意+基本同意);同意使用本文平臺對學(xué)習(xí)效率提升較高的學(xué)生占比97.52%(同意+基本同意);同意使用本文平臺有助于及時(shí)發(fā)現(xiàn)錯(cuò)誤并得到糾正的學(xué)生占比89.88%(同意+基本同意);同意使用本文平臺有助于加強(qiáng)師生交流的學(xué)生占比94.47%(同意+基本同意);同意本文平臺可在學(xué)校中普遍運(yùn)用的學(xué)生占比93.56%(同意+基本同意)。對本文平臺反饋結(jié)果果斷差評的學(xué)生僅占4.67%。由該數(shù)據(jù)可知,大約95%以上的學(xué)生使用本文平臺后反饋較好。
3 ?結(jié) ?論
本文設(shè)計(jì)基于大數(shù)據(jù)的教育智慧平臺,通過實(shí)驗(yàn)數(shù)據(jù)分析可知:學(xué)生使用本文平臺后,超過85%的學(xué)生總是可以在課后回憶課堂知識且發(fā)現(xiàn)自己的解題錯(cuò)誤、自主解題、及時(shí)改正;僅有4.49%的學(xué)生在平臺中不參與課后溝通、不向老師提問、未增加對老師和同學(xué)的了解以及對知識的理解;且約95%以上的學(xué)生對本文平臺的反饋結(jié)果良好。綜合分析實(shí)驗(yàn)數(shù)據(jù)得知,本文平臺是一種高質(zhì)量的教育平臺,可大大提高學(xué)生的學(xué)習(xí)質(zhì)量和教師的教學(xué)效果。
參考文獻(xiàn)
[1] 鹿星南,和學(xué)新.國外智慧學(xué)校建設(shè)的基本特點(diǎn)、實(shí)施條件與路徑[J].比較教育研究,2017,39(12):23?29.
LU Xingnan, HE Xuexin. On basic characteristics, implementing conditions, and approaches of foreign smart school construction [J]. International and comparative education, 2017, 39(12): 23?29.
[2] 鄧?yán)颦?,肖秋根,李中寧,?基于大數(shù)據(jù)分析的計(jì)算機(jī)網(wǎng)絡(luò)課程自適應(yīng)學(xué)習(xí)系統(tǒng)構(gòu)建[J].計(jì)算機(jī)工程與科學(xué),2016,38(z1):276?280.
DENG Liqiong, XIAO Qiugen, LI Zhongning, et al. Construction of an adaptive learning system of computer network course based on big data analysis [J]. Computer engineering and science, 2016, 38(S1): 276?280.
[3] LEE T, JEON S, KANG D, et al. Design and implementation of intelligent HVAC system based on IoT and big data platform [C]// Proceedings of IEEE International Conference on Consumer Electronics. Las Vegas: IEEE, 2017: 398?399.
[4] 孫傲冰,季統(tǒng)凱,伍小強(qiáng).面向智慧城市的大數(shù)據(jù)開放共享平臺的設(shè)計(jì)與實(shí)現(xiàn)[J].計(jì)算機(jī)應(yīng)用,2017,37(z1):340?343.
SUN Aobing, JI Tongkai, WU Xiaoqiang. Design and realization of big data open platform for smart city [J]. Journal of computer applications, 2017, 37(S1): 340?343.
[5] KRECHOWICZ A, DENIZIAK S. Business intelligence platform for big data based on scalable distributed two?layer data store [C]// Proceedings of 2017 Federated Conference on Computer Science and Information Systems. [S.l.]: IEEE, 2017: 177?182.
[6] ZHAO H, HAO X, WANG A, et al. Design and implementation of an intelligent cooking robot based on Internet of Things [C]// Proceedings of the 2015 Chinese Intelligent Automation Conference. Berlin: Springer, 2015: 423?430.
[7] 楊可晗,馬瓊.大數(shù)據(jù)下提高遠(yuǎn)程教育質(zhì)量提取有效資源仿真[J].計(jì)算機(jī)仿真,2017,34(4):212?215.
YANG Kehan, MA Qiong. To improve the quality of distance education and the simulation of effective resources under the big data [J]. Computer simulation, 2017, 34(4): 212?215.
[8] DONG X. The exploration about the construction of big data platform based on intelligent tourism [J]. Electronic test, 2017, 50(11): 53?60.
[9] HUANG L F, LIU J Y, HUANG Z C, et al. Design and implementation of information push service platform in mobile intelligent district based on JXTA [J]. Applied mechanics & materials, 2015, 713: 2229?2232.
[10] 祝智庭,彭紅超,雷云鶴.解讀教育數(shù)據(jù)智慧[J].開放教育研究,2017,23(5):21?29.
ZHU Zhiting, PENG Hongchao, LEI Yunhe. Interpreting educational data wisdom [J]. Open education research, 2017, 23(5): 21?29.