黃賢明
摘 ?要: 為了提高包裝產(chǎn)業(yè)大數(shù)據(jù)分析和信息化管理能力,提出一種基于知識圖譜的包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)設(shè)計(jì)方法,結(jié)合大數(shù)據(jù)挖掘技術(shù)和知識圖譜特征提取技術(shù),實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能融合和優(yōu)化問答檢索。構(gòu)建包裝產(chǎn)業(yè)大數(shù)據(jù)分布結(jié)構(gòu)模型,采用關(guān)聯(lián)規(guī)則調(diào)度方法進(jìn)行大數(shù)據(jù)自適應(yīng)融合調(diào)度,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的分塊區(qū)域匹配,提取包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜集,對提取的包裝產(chǎn)業(yè)大數(shù)據(jù)知識圖譜采用子空間融合技術(shù)進(jìn)行信息聚類處理,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答和檢索設(shè)計(jì)。采用程序加載控制方法,將算法加載到DSP集成信息處理器中,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)的集成開發(fā)。測試結(jié)果表明,該系統(tǒng)能有效實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答,大數(shù)據(jù)圖譜的特征表達(dá)能力較強(qiáng)。
關(guān)鍵詞: 知識圖譜; 包裝產(chǎn)業(yè); 大數(shù)據(jù); 智能問答系統(tǒng); 分塊區(qū)域匹配; 信息聚類處理; 集成開發(fā)
中圖分類號: TN919?34; TP399 ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)14?0148?04
Research on big data intelligent question answering system based on
knowledge map for packaging industry
HUANG Xianming
(College of Computer, Hunan University of Technology, Zhuzhou 412007, China)
Abstract: A design method of the big data intelligent question answering system based on the knowledge map for the packaging industry is proposed to improve the big data analysis and informatization management abilities of the packaging industry. The big data mining technology and knowledge map feature extraction technology are combined to realize big data intelligent integration and question answering retrieval optimization of the packaging industry. The big data distribution structure model of the packaging industry is constructed. The big data adaptive fusion scheduling is conducted by adopting the association rule scheduling method, so as to realize partition region matching of the packaging industry big data, and extract the knowledge map set of the packaging industry big data. The information clustering processing is conducted by using the subspace fusion technology for the extracted big data knowledge map of the packaging industry, so as to realize big data intelligent question answering and retrieval design of the packaging industry. The algorithm is loaded into the DSP integrated information processor by using the program loading control method, so as to realize the integrated development of the big data intelligent question answering system for the packaging industry. The test results show that the system can effectively realize big data intelligent question answering for the packaging industry, and has a strong feature expression ability of the big data map.
Keywords: knowledge map; packaging industry; big data; intelligent question answering system; blocking area matching; information clustering processing; integrated development
0 ?引 ?言
隨著包裝產(chǎn)業(yè)的快速發(fā)展,大量的包裝產(chǎn)業(yè)大數(shù)據(jù)通過知識圖譜的形式存儲于網(wǎng)絡(luò)空間中,為包裝的設(shè)計(jì)和信息資源調(diào)度提供參考。因此,需要對包裝產(chǎn)業(yè)大數(shù)據(jù)進(jìn)行智能問答和優(yōu)化調(diào)度,挖掘包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜特征;并結(jié)合云計(jì)算技術(shù)進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的自適應(yīng)調(diào)度和優(yōu)化挖掘,提取包裝產(chǎn)業(yè)大數(shù)據(jù)的關(guān)聯(lián)規(guī)則特征量,以提高包裝產(chǎn)業(yè)大數(shù)據(jù)的智能調(diào)度和問答檢索能力。對包裝產(chǎn)業(yè)大數(shù)據(jù)智能系統(tǒng)設(shè)計(jì)的關(guān)鍵是進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜挖掘和信息重構(gòu),提取包裝產(chǎn)業(yè)大數(shù)據(jù)的圖譜特征,采用大數(shù)據(jù)信息融合技術(shù)實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)圖譜挖掘,并對提取的包裝產(chǎn)業(yè)大數(shù)據(jù)知識圖譜采用子空間融合技術(shù)進(jìn)行信息聚類處理,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答和檢索設(shè)計(jì)[1]。根據(jù)上述分析,本文提出一種基于知識圖譜的包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)。最后通過仿真實(shí)驗(yàn)進(jìn)行性能測試。
1 ?包裝產(chǎn)業(yè)大數(shù)據(jù)結(jié)構(gòu)分析和特征重組
1.1 ?包裝產(chǎn)業(yè)大數(shù)據(jù)結(jié)構(gòu)分析
為了實(shí)現(xiàn)對包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答的優(yōu)化設(shè)計(jì)和知識圖譜提取,采用樣本均值檢驗(yàn)進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)深度挖掘和穩(wěn)定特征[2],構(gòu)建一個模糊約束狀態(tài)方程表達(dá)包裝產(chǎn)業(yè)大數(shù)據(jù)的信息流模型為:
[xn=x(t0+nΔt)=h[z(t0+nΔt)]+ωn] ? ? ? ?(1)
式中:[h(·)]為包裝產(chǎn)業(yè)大數(shù)據(jù)分布式知識圖譜特征序列;[ωn]為包裝產(chǎn)業(yè)大數(shù)據(jù)的量化融合誤差。
構(gòu)建包裝產(chǎn)業(yè)大數(shù)據(jù)的關(guān)聯(lián)規(guī)則知識庫[3],采用分組樣本檢測和回歸分析方法,進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的非線性序列重組,得到一個包裝產(chǎn)業(yè)大數(shù)據(jù)的統(tǒng)計(jì)分析線性組合模型為:
[xk=n=0N/2-12ancos2πknN-bnsin2πknN? ? ? ? k=0,1,2,…,N-1] ? ?(2)
式中,[an]表示包裝產(chǎn)業(yè)大數(shù)據(jù)線性規(guī)劃特征集。
1.2 ?數(shù)據(jù)特征提取
設(shè)有m個包裝產(chǎn)業(yè)大數(shù)據(jù)節(jié)點(diǎn)[A1],[A2],…,[An],結(jié)合線性規(guī)劃模型進(jìn)行大數(shù)據(jù)圖譜特征挖掘的全局尋優(yōu)[4],構(gòu)造包裝產(chǎn)業(yè)大數(shù)據(jù)知識圖譜提取的模糊學(xué)習(xí)數(shù)學(xué)表達(dá)如下:
[min f=i=1mj=1nCijXij] ? ? ? ? ?(3)
假定當(dāng)前包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜關(guān)聯(lián)規(guī)則項(xiàng)挖掘節(jié)點(diǎn)的數(shù)目為[n],[N1,…,Nn],采用多元線性回歸分析方法,結(jié)合匹配相關(guān)檢測方法進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的信息融合處理[5],輸出挖掘規(guī)則向量集表示為:
[ρIt=1NIs(i,t)V=NIV,ρRt=1NRs(i,t)V=NRV] (4)
式中,[NI],[NR]分別表示包裝產(chǎn)業(yè)大數(shù)據(jù)的平均互信息特征量和狀態(tài)分布集。
2 ?包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答優(yōu)化的知識圖譜提取
2.1 ?大數(shù)據(jù)的分塊區(qū)域匹配
采用樣本均值檢驗(yàn)進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜提取[6],輸出知識圖譜提取的雅可比矩陣[J(x)]:
[J(x)=?v1(x)?x1?v1(x)?x2…?v1(x)?xn?v2(x)?x1?v2(x)?x2…?v2(x)?xn?????vN(x)?x1?vN(x)?x2…?vN(x)?xn] ? ?(5)
在有限論域內(nèi)實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)挖掘,大數(shù)據(jù)的分塊區(qū)域匹配值為:
[wji(k+1)=wji(k)-α?F?wji] (6)
根據(jù)大數(shù)據(jù)的分塊區(qū)域匹配結(jié)果,進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的譜特征提取,提高包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答和檢索能力[7]。
2.2 ?包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答
包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答和均衡調(diào)度的邊界收斂條件為:
1) [limn→∞supfn(x)-fn(y)>0],[?x,y∈S,x≠y];
2) [limn→∞inffn(x)-fn(y)=0],[?x,y∈S];
3) [limn→∞supfn(x)-fn(y)<0],[?x∈S,][?y∈P(f)]。
當(dāng)[?ε>0,?N>0],得到知識圖譜的統(tǒng)計(jì)特征量解析的優(yōu)化解為:
[min0≤αi≤cW=12i,j=1lyiyjαiαjK(xi,xj)-i=1lαi+bi=1lyjα] ? ? ? ?(7)
式中,[(xi,xj)]表示多元線性回歸統(tǒng)計(jì)特征。通過線性凸函數(shù)控制,對提取的包裝產(chǎn)業(yè)大數(shù)據(jù)知識圖譜采用子空間融合技術(shù)進(jìn)行信息聚類處理,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答和檢索設(shè)計(jì)[8]。
3 ?系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
平臺采用LabWindows/CVI進(jìn)行代碼資源開發(fā),在嵌入式Linux環(huán)境中進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)開發(fā)[9]。采用ADSP?BF537設(shè)計(jì)內(nèi)部時鐘振蕩器,進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)的時鐘采樣,通過JTAG調(diào)試接口進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)的實(shí)時性程序讀寫和A/D轉(zhuǎn)換控制,得到系統(tǒng)的實(shí)現(xiàn)流程如圖1所示。采用ADSP?BF537BBC?5A實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)原始信息采集,選擇ADI公司的A/D和D/A實(shí)現(xiàn)上位機(jī)通信和總線控制,得到系統(tǒng)的硬件實(shí)現(xiàn)如圖2所示。
4 ?實(shí)驗(yàn)測試分析
對包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)的實(shí)驗(yàn)采用Web協(xié)議設(shè)計(jì)規(guī)范進(jìn)行,結(jié)合Matlab設(shè)計(jì)進(jìn)行算法處理,對包裝產(chǎn)業(yè)大數(shù)據(jù)采樣的數(shù)據(jù)樣本集為1 024,數(shù)據(jù)的長度為2 000,數(shù)據(jù)采樣的時間間隔為0.65 s,知識圖譜采樣的頻率為10 kHz。根據(jù)上述仿真環(huán)境和參數(shù)設(shè)定,進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜挖掘,得到原始數(shù)據(jù)如圖3所示。
分析4得知,采用本文方法進(jìn)行包裝產(chǎn)業(yè)大數(shù)據(jù)挖掘,能有效實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)知識圖譜提取。測試智能問答的準(zhǔn)確性,得到均方根誤差對比見表1。
5 ?結(jié) ?語
本文提出一種基于知識圖譜的包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答系統(tǒng)設(shè)計(jì)方法,結(jié)合大數(shù)據(jù)挖掘技術(shù)和知識圖譜特征提取技術(shù),實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能融合和優(yōu)化問答檢索。構(gòu)建包裝產(chǎn)業(yè)大數(shù)據(jù)分布結(jié)構(gòu)模型,采用關(guān)聯(lián)規(guī)則調(diào)度方法進(jìn)行大數(shù)據(jù)自適應(yīng)融合調(diào)度,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的分塊區(qū)域匹配,提取包裝產(chǎn)業(yè)大數(shù)據(jù)的知識圖譜集,實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)的智能問答和檢索設(shè)計(jì)。研究得知,本文設(shè)計(jì)系統(tǒng)能有效實(shí)現(xiàn)包裝產(chǎn)業(yè)大數(shù)據(jù)智能問答,大數(shù)據(jù)圖譜的特征表達(dá)能力較強(qiáng),挖掘效果較好。
參考文獻(xiàn)
[1] 李濤,王次臣,李華康.知識圖譜的發(fā)展與構(gòu)建[J].南京理工大學(xué)學(xué)報(自然科學(xué)版),2017,41(1):22?34.
LI Tao, WANG Cichen, LI Huakang. Development and construction of knowledge graph [J]. Journal of Nanjing University of Science and Technology, 2017, 41(1): 22?34.
[2] 劉嶠,李楊,段宏,等.知識圖譜構(gòu)建技術(shù)綜述[J].計(jì)算機(jī)研究與發(fā)展,2016,53(3):582?600.
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques [J]. Journal of computer research and development, 2016, 53(3): 582?600.
[3] 毛文濤,田楊陽,王金婉,等.面向貫序不均衡分類的粒度極限學(xué)習(xí)機(jī)[J].控制與決策,2016,31(12):2147?2154.
MAO Wentao, TIAN Yangyang, WANG Jinwan, et al. Granular extreme learning machine for sequential imbalanced data [J]. Control and decision, 2016, 31(12): 2147?2154.
[4] 李永剛,張治中,李龍江.一種WLAN與eHRPD系統(tǒng)間負(fù)載均衡算法[J].微電子學(xué)與計(jì)算機(jī),2017,34(1):44?47.
LI Yonggang, ZHANG Zhizhong, LI Longjiang. A load?balancing algorithm in the WLAN and eHRPD hybrid system [J]. Microelectronics & computer, 2017, 34(1): 44?47.
[5] 李建勛,佟瑞,張永進(jìn),等.基于趨勢面與SSIM的時空數(shù)據(jù)相似度算法[J].計(jì)算機(jī)工程,2018,44(9):52?58.
LI Jianxun, TONG Rui, ZHANG Yongjin, et al. Similarity algorithm of spatio?temporal data based on trend surface and SSIM [J]. Computer engineering, 2018, 44(9): 52?58.
[6] 盧鳳,李海榮,韓艷.基于時空相似度感知的Web服務(wù)QoS協(xié)同過濾推薦[J].計(jì)算機(jī)工程,2017,43(4):28?33.
LU Feng, LI Hairong, HAN Yan. QoS collaborative filtering recommendation of web service based on spatial and temporal similarity sensing [J]. Computer engineering, 2017, 43(4): 28?33.
[7] 張景祥,王士同,鄧趙紅,等.融合異構(gòu)特征的子空間遷移學(xué)習(xí)算法[J].自動化學(xué)報,2014,40(2):236?246.
ZHANG Jingxiang, WANG Shitong, DENG Zhaohong, et al. A subspace transfer learning algorithm integrating heterogeneous features [J]. Acta automatica sinica, 2014, 40(2): 236?246.
[8] 唐萬明,范朝元.基于Cadence的DDR源同步時序仿真研究[J].現(xiàn)代電子技術(shù),2014,37(8):75?78.
TANG Wanming, FAN Chaoyuan. Research of DDR source synchronization time?sequence simulation based on Cadence [J]. Modern electronics technique, 2014, 37(8): 75?78.
[9] 劉嶠,李楊,段宏,等.知識圖譜構(gòu)建技術(shù)綜述[J].計(jì)算機(jī)研究與發(fā)展,2016,53(3):582?600.
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques [J]. Journal of computer research and development, 2016, 53(3): 582?600.
[10] 高妮,賀毅岳,高嶺.海量數(shù)據(jù)環(huán)境下用于入侵檢測的深度學(xué)習(xí)方法[J].計(jì)算機(jī)應(yīng)用研究,2018,35(4):1197?1200.
GAO Ni, HE Yiyue, GAO Ling. Deep learning method for intrusion detection in massive data [J]. Application research of computers, 2018, 35(4): 1197?1200.