呂慧芳 別之龍
摘? ? 要:為了探討間作小麥提高西瓜枯萎病抗性的生理機(jī)制,采用西瓜品種‘早佳(8424)和小麥品種‘鄂麥18為試驗材料,設(shè)置西瓜單作(M)、西瓜單作+FON(MF)、西瓜與小麥間作(I)、西瓜與小麥間作+FON(IF)共4個處理,研究間作小麥和接種西瓜?;图怄哏牭毒鷮ξ鞴仙砩笜?biāo)的影響。結(jié)果表明,接種FON 15 d時,間作小麥與單作相比,西瓜葉片凈光合速率、胞間CO2濃度和氣孔導(dǎo)度分別升高6.98%、15.52%和36.88%,西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性分別升高14.09%和11.85%,根系類黃酮和總酚含量分別增加13.03%和21.31%,根系MDA和H2O2含量分別降低5.49%和11.56%,均達(dá)到顯著差異水平;接種FON 25 d時,小麥間作與單作相比,西瓜葉片凈光合速率、胞間CO2濃度和氣孔導(dǎo)度分別升高5.40%、9.92%和30.23%,西瓜根系β-1,3-葡聚糖酶增加81.11%,根系類黃酮和總酚含量分別提高51.89%和15.03%,根系MDA和H2O2含量分別降低6.69%和12.43%,均差異顯著??傊?,接種FON后,與單作西瓜相比,小麥間作提高了西瓜葉片光合能力,增加根系次生代謝產(chǎn)物的積累,降低了膜脂過氧化程度的傷害,有助于增強(qiáng)西瓜植株的抗病性。
關(guān)鍵詞:西瓜; 小麥; 間作; 西瓜?;图怄哏牭毒? 生理指標(biāo)
Abstract:To explore the physiological mechanism of wheat intercropping improves the resistance of watermelon to Fusarium wilt,watermelon variety‘Zaojia(8424)and wheat variety‘Emai 18as test materials were conducted to investigate the effects of wheat intercropping and inoculation Fusarium oxysporum f. sp. niveum(FON)on physiological and biochemical parameters in watermelon in four different treatments (watermelon monocropping(M), watermelon monocropping with FON inoculation (MF),watermelon/wheat intercropping (I), and watermelon/wheat intercropping with FON inoculation(IF)).The results showed that photosynthetic rate,intercellular CO2 concentration and stomatal conductance of watermelon leaf in intercropping with wheat were significantly higher than those of monoculture watermelon on the 15th day after inoculation with FON by 6.98%,15.52% and 36.88%,respectively. The activities of β-1,3-glucanase and chitinase in watermelon roots in intercropping with wheat were significantly higher than those of monoculture watermelon on the 15th day after inoculation with FON by 14.09% and 11.85%,respectively. The flavonoid and total phenolic contents of watermelon root in intercropping with wheat were also significantly higher than those in monoculture watermelon on the 15th day after inoculation with FON by 13.03% and 21.31%,respectively. The MDA and H2O2 contents of watermelon root in intercropping with wheat were significantly lower than those in monoculture watermelon on the 15th day after inoculation with FON by 5.49% and 11.56%,respectively. Similar results were obtained on the 25th day after inoculation with FON for photosynthetic rate,intercellular CO2 concentration and stomatal conductance of watermelon leaf,β-1,3-glucanase activity and flavonoid and total phenolic contents of watermelon root in intercropping with wheat,all of which were significantly higher than those in monoculture watermelon by 5.40%,9.92%,30.23%,81.11%,51.89% and 15.03%,respectively. The MDA and H2O2 contents of watermelon root in intercropping with wheat were significantly lower than those in monoculture watermelon on the 25th day after inoculation with FON by 6.69% and 12.43%,respectively.In conclusion, compared with watermelon monoculture,the capacity of photosynthetic of watermelon leaf and secondary metabolites in watermelon root were increased,the damage of membrane lipid peroxidation was reduced in intercropping with wheat system after inoculation with FON. The wheat intercropped with watermelon was beneficial for increasing disease resistance of watermelon plant.
Key words: Watermelon;Wheat;Intercropping;Fusarium oxysporum f. sp. niveum; Physiological parameter
收稿日期:2019-04-16;修回日期:2019-05-06
作者簡介:呂慧芳,女,在讀博士研究生,研究方向為蔬菜生理生態(tài)。E-mail:lhfang502@sina.com
通信作者:別之龍,男,教授,研究方向為蔬菜逆境生理與分子生物學(xué)。E-mail:biezl@mail.hzau.edu.cn
西瓜枯萎病嚴(yán)重影響西瓜的產(chǎn)量和品質(zhì),給西瓜產(chǎn)業(yè)造成重大損失。采用與其他作物合理間作種植,是克服西瓜枯萎病最經(jīng)濟(jì)有效的途徑[1]。研究發(fā)現(xiàn),在小麥與西瓜間作體系中,小麥根系分泌物對西瓜專化型尖孢鐮刀菌的生長表現(xiàn)出抑制作用,同時,降低西瓜枯萎病的發(fā)病率[2]。小麥具有很強(qiáng)的化感作用,是良好的間作作物[3]。小麥伴生通過抑制西瓜專化型尖孢鐮刀菌的生長以及誘導(dǎo)西瓜植株的生理變化,從而保護(hù)西瓜植株免受傷害[4-5]。
間作提高植物抗病性,與植物體內(nèi)的多種生理生化變化過程有關(guān)。光合作用是植物重要的生命活動,對環(huán)境脅迫很敏感,如病原菌侵染植物后,光合作用被削弱,對枯萎病的抗性降低[6]。有研究表明,植物和病原菌之間的抗病和互作關(guān)系中,β-1,3-葡聚糖酶和幾丁質(zhì)酶、類黃酮和總酚等植物體內(nèi)較重要的病程相關(guān)蛋白和次生代謝物質(zhì)與植物抗病性密切相關(guān)[7-9]。作為膜脂過氧化的最終產(chǎn)物之一,丙二醛(MDA)含量的高低與膜脂過氧化程度密切相關(guān)[10]。目前,有關(guān)西瓜植株的生理生化變化與枯萎病抗性方面的研究相對較少。筆者通過盆栽基質(zhì)并人工接種西瓜?;图怄哏牭毒?,模擬西瓜連作土壤,分析比較接種和未接種枯萎病菌下小麥間作對西瓜植株生理特性的影響,明確西瓜提高抗枯萎病的原因,為進(jìn)一步揭示小麥間作提高西瓜枯萎病抗性的生理生化機(jī)制奠定基礎(chǔ)。
1 材料與方法
1.1 材料
試驗于2015年3—8月在華中農(nóng)業(yè)大學(xué)進(jìn)行。試驗選用新疆農(nóng)業(yè)科學(xué)院哈密瓜研究中心提供的西瓜品種‘早佳(8424)及湖北省農(nóng)業(yè)科學(xué)院糧食作物研究所提供的小麥品種‘鄂麥18。供試菌株:西瓜?;图怄哏牭毒‵usarium oxysporum f. sp. niveum)。取樣時間:西瓜植株在接種尖孢鐮刀菌后的15、25 d取樣。
1.2 試驗設(shè)計與方法
參照張寧等[11]的方法設(shè)置4個處理:(1)西瓜單作(每盆種植西瓜苗1株,簡稱M);(2)西瓜單作+FON (每盆種植西瓜苗1株,并接種FON,簡稱MF);(3)西瓜與小麥間作(每盆種植西瓜苗 1 株和 40 株小麥苗,2種作物的距離保持10 cm,簡稱I);(4)西瓜與小麥間作+FON(每盆種植西瓜苗1株和40株小麥苗,并接種 FON,簡稱IF)。每個處理共 90 盆,3次重復(fù)。2015年5月1日,西瓜幼苗4片真葉時,將西瓜苗移栽到塑料盆中(盆直徑34 cm,高24 cm),每盆裝8 L栽培基質(zhì)。同時,小麥催芽種子直接播種于盆缽中。西瓜苗移栽7 d后,在西瓜根基部用灌根法接種尖孢鐮刀菌孢子懸浮液(2.0 × 106 CFU·mL?1),每盆100 mL。每天用霍格蘭營養(yǎng)液澆灌1~2次西瓜植株。西瓜植株在接種尖孢鐮刀菌后15、25 d采集西瓜根系樣品,每個處理取5株,迅速冷凍在液氮中并-80 °C冰箱保存待用。
西瓜植株在接種尖孢鐮刀菌后15 d、25 d(晴天),上午9:00—11:30,采用型號為LI-6400便攜式植物光合作用測定儀(Li-Cor Inc., LINcoln, USA)測定第12、第16片功能葉的凈光合速率(Pn)、胞間CO2濃度(Ci)、氣孔導(dǎo)度(Gs)和蒸騰速率(Tr)。參照Schraudner等[12]和Fink等[13]方法進(jìn)行幾丁質(zhì)酶和β-1,3-葡聚糖酶活性測定(以FW計);類黃酮含量測定參考Tekelova等[14]方法并改進(jìn)(以DW計);總酚含量測定參考Arnaldos 等[15]和Ruiz等[16]方法(以DW計)。H2O2含量測定按照牛夢亮[17]方法進(jìn)行。MDA含量的測定采用硫代巴比妥酸法[18]。
1.3 數(shù)據(jù)分析
采用Microsoft Excel 2007軟件進(jìn)行原始數(shù)據(jù)處理,采用IBM SPSS 19軟件進(jìn)行差異顯著性水平分析。
2 結(jié)果與分析
2.1 間作小麥對西瓜葉片光合參數(shù)的影響
由表1可以看出,不同處理對西瓜葉片光合參數(shù)的影響存在明顯的差異。接種FON 15 d,小麥間作處理的西瓜葉片光合速率、胞間 CO2濃度和氣孔導(dǎo)度分別較西瓜單作增加6.98%、15.52%和36.88%,均達(dá)到顯著差異水平。接種FON 25 d,與西瓜單作相比,小麥間作栽培下西瓜葉片光合速率、胞間CO2濃度和氣孔導(dǎo)度分別提高5.40%、9.92%和30.23%,且差異顯著。未接種FON 15 d,小麥間作栽培下西瓜葉片光合速率和胞間CO2濃度顯著高于西瓜單作。未接種FON 25 d,小麥間作處理的西瓜葉片胞間CO2濃度和氣孔導(dǎo)度顯著高于西瓜單作。接種FON 15 d、25 d后,西瓜葉片蒸騰速率顯著降低;與西瓜單作相比,小麥間作對西瓜葉片蒸騰速率沒有顯著影響。這說明小麥—西瓜間作栽培模式,有利于改善西瓜葉片光和特性,延長其光合功能期。
2.2 間作小麥對西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性的影響
接種FON后,小麥間作處理的西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性均增加(圖1)。接種FON 15 d,小麥間作處理的西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性分別比西瓜單作增加14.09%和11.85%,均達(dá)到顯著差異水平。接種FON 25 d,小麥間作處理的西瓜根系β-1,3-葡聚糖酶比西瓜單作增加81.11%,且差異顯著;而小麥間作處理的西瓜根系幾丁質(zhì)酶活性與西瓜單作無顯著差異。未接種FON時,小麥間作處理的西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性均顯著高于西瓜單作。
2.3 間作小麥對西瓜根系類黃酮和總酚含量的影響
接種FON后,西瓜根系類黃酮和總酚含量(以干質(zhì)量計)的變化如圖2所示。接種FON 15 d,與西瓜單作相比,小麥間作處理的西瓜根系類黃酮和總酚含量分別提高13.03%和21.31%。接種FON 25 d,小麥間作處理的西瓜根系類黃酮和總酚含量分別比西瓜單作提高51.89%和15.03%。未接種FON時,小麥間作處理的西瓜根系類黃酮含量與西瓜單作無顯著差異,而總酚含量顯著高于西瓜單作。
2.4 間作小麥對西瓜根系丙二醛和過氧化氫含量的影響
圖3表明,西瓜無論單作還是間作,接種FON后,西瓜根系丙二醛和過氧化氫含量均顯著增加。接種FON 15 d,小麥間作處理的西瓜根系MDA和H2O2含量分別比西瓜單作降低5.49%和11.56%,差異均達(dá)到顯著水平。接種FON 25 d,與西瓜單作相比,小麥間作處理的西瓜根系MDA和H2O2含量分別降低6.69%和12.43%,且差異顯著。未接種FON 15 d,小麥間作處理的西瓜根系MDA和H2O2含量顯著低于西瓜單作。未接種FON 25 d,小麥間作處理的西瓜根系MDA含量與西瓜單作相比,差異不顯著,而H2O2含量顯著低于單作。
3 討論與結(jié)論
光合作用是植物生長發(fā)育和產(chǎn)量形成的基礎(chǔ)。合理的間作能高效利用光、熱、肥、水等自然資源,提高功能葉片的光合特性,提高作物產(chǎn)量[19]。研究發(fā)現(xiàn),在尖孢鐮刀菌孢子懸浮液灌根西瓜后,抗感品種的葉片光合速率、蒸騰速率和氣孔導(dǎo)度表現(xiàn)出不同程度的下降[6]。在本試驗中,未接種FON,小麥間作顯著提高了西瓜葉片胞間CO2濃度。接種FON后,小麥-西瓜間作體系中,西瓜葉片凈光合速率、氣孔導(dǎo)度和胞間CO2濃度顯著高于西瓜單作,說明小麥間作提高了植株的光合特性和抗逆性[3,6]。
植物受到生物脅迫后,體內(nèi)生理生化指標(biāo)會做適合的調(diào)節(jié)反應(yīng),包括酚類物質(zhì)、防御酶活性、PR-蛋白的產(chǎn)生等[20-22]。β-1,3-葡聚糖酶和幾丁質(zhì)酶等病程相關(guān)蛋白(PRs),在植物抗病防御反應(yīng)中起著重要的作用,這2種酶活性與植物對病原菌的抗性十分相關(guān)[23-24]。本研究結(jié)果表明,不論接種FON還是未接種FON,小麥間作體系中,西瓜根系β-1,3-葡聚糖酶和幾丁質(zhì)酶活性顯著高于西瓜單作,有利于西瓜抗枯萎病能力的提高[4]。
總酚和類黃酮是植物體內(nèi)重要的次生代謝物質(zhì),與植物的抗病性密切相關(guān)。類黃酮和酚類物質(zhì)可清除植物體內(nèi)活性氧等自由基[25],因此通常在發(fā)病的組織或植株中能發(fā)現(xiàn)類黃酮和總酚含量的增加[5,8]。本研究結(jié)果與以上結(jié)果一致,未接種FON時,小麥間作顯著提高了西瓜根系總酚含量,這說明正常生長條件下,小麥間作體系西瓜植株體內(nèi)次生代謝產(chǎn)物積累較多,具有一定的抗病物質(zhì)基礎(chǔ)。接種FON后,小麥間作顯著提高了西瓜根系類黃酮和總酚含量,說明小麥-西瓜間作通過次生代謝產(chǎn)物大量的積累提高了西瓜抵制病原菌侵染的能力,增強(qiáng)了西瓜的抗病力[24]。
MDA作為膜脂過氧化的最終產(chǎn)物之一,與植物的抗病性關(guān)系密切[4]。植物遭受脅迫后,產(chǎn)生并積累大量的H2O2,啟動膜脂過氧化,導(dǎo)致植物膜系統(tǒng)損傷[26]。黃瓜植株接種FON導(dǎo)致MDA和H2O2含量的上升[27]。本研究表明,接種FON后,西瓜根系內(nèi)MDA和H2O2的含量顯著增加,但是小麥間作顯著降低了西瓜根系MDA和H2O2含量。說明小麥間作緩解了西瓜根系MDA和H2O2含量升高,降低膜脂過氧化程度的發(fā)生。
接種FON后,小麥-西瓜間作提高了西瓜葉片光合能力,提高了西瓜根系幾丁質(zhì)酶、β-1,3-葡聚糖酶活性,提高了根系總酚和類黃酮含量,降低了根系MDA和H2O2含量,說明小麥間作通過提高西瓜植株的生理抗性,有利于增強(qiáng)西瓜抗枯萎病的能力。
參考文獻(xiàn)
[1] REN L X,SU S M,YANG X M,et al.Intercropping with aerobic rice suppressed Fusarium wilt in watermelon[J].Soil Biology and Biochemistry,2008,40(3): 834-844.
[2] LV H F,CAO H S,NAWAZ M A,et al.Wheat intercropping enhances the resistance of watermelon to Fusarium wilt[J].Frontiers in Plant Science,2018,25,9:696.
[3] 徐偉慧,吳鳳芝,王志剛,等.連作西瓜光合特性及抗病性對小麥伴生的響應(yīng)[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2014,22(6):655-660.
[4] XU W H,LIU D,WU F Z,LIU S W.Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping[J].European Journal of Plant Pathology,2015,141(1):209-216.
[5] XU W H,WANG Z G,WU F Z.Companion cropping with wheat increases resistance to Fusarium wilt in watermelon and the roles of root exudates in watermelon root growth[J].Physiological and Molecular Plant Pathology,2015,90:12-20.
[6] 潘存祥.西瓜抗枯萎病生理生化機(jī)理的研究[M].蘭州:甘肅農(nóng)業(yè)大學(xué),2014.
[7] PAREEK S S,RAVI I,SHARMA V.Induction of β-1,3-glucanase and chitinase in Vigna aconitifolia inoculated with Macrophomina phaseolina[J].Journal of Plant Interactions,2014,9(1):434-439.
[8] 盧國理,湯利,楚軼歐,等.單間作條件下氮肥水平對水稻總酚和類黃酮的影響[J].植物營養(yǎng)與肥料學(xué)報,2008,14(6):1064-1069.
[9] LATTANZIO V,LATTANZIO V M T,CARDINALI A.Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects[J].Phytochemistry Advances in Research,2006,37(4):23-27.
[10] 趙秀娟,唐鑫,程蛟文,等.酶活性,丙二醛含量變化與苦瓜抗枯萎病的關(guān)系[J].華南農(nóng)業(yè)大學(xué)學(xué)報,2013,34(3):372-377.
[11] 張寧,張如,吳萍,等.根系分泌物在西瓜/旱作水稻間作減輕西瓜枯萎病中的響應(yīng)[J].土壤學(xué)報,2014,51(3):585-593.
[12] SCHRAUDNER M,ERNST D,LANGEBARTELS C,et al.Biochemical plant responses to ozone:III.Activation of the defense-related proteins β-1,3-glucanase and chitinase in tobacco leaves[J].Plant Physiology,1992,99(4):1321-1328.
[13] FINK W,LIEFLAND M,MENDGEN K. Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves(Avena sativa L.)[J].Plant Physiology,1988,88(2):270-285.
[14] TEKELOV? D,REP??K M,ZEMKOV? E,et al.Quantitative changes of dianthrones,hyperforin and favonoids content in the flower ontogenesis of Hypericum perforatum[J].Planta Medica,2000,66(8):778-780.
[15] ARNALDOS T L,MU?OZ R,F(xiàn)ERRER M A,et al.Changes in phenol content during strawberry (Frabaria annassa cv.Chandler) callus culture[J].Plant Physiology,2001,113(3):315-322.
[16] RUIZ J M,GARCIA P C,RIVERO R M,et al.Response of phenolic metabolism to the application of carbendazim plus boron in tobacco[J].Physiologia Plantarum,1999,106(2):151-157.
[17] 牛夢亮.根源過氧化氫信號介導(dǎo)南瓜砧木嫁接提高黃瓜耐鹽性的機(jī)制研[D].武漢:華中農(nóng)業(yè)大學(xué),2018.
[18] 王學(xué)奎,黃見良.植物生理生化實驗原理和技術(shù)[M].第3版,北京:高等教育出版社,2015.
[19] 焦念元,寧堂原,楊萌珂,等.玉米花生間作對玉米光合特性及產(chǎn)量形成的影響[J].生態(tài)學(xué)報,2013,33(14):4324-4330.
[20] GOVINDAPPA M,LOKESH S,RAI V R,et al.Induction of systemic resistance and management of safflower Macrophomina phaseolina root rot disease by biocontrol agents[J].Archives of Phytopathology and Plant Protection,2010,43(1):26-40.
[21] ALI S,KHAN M A,SAHI S T,et al.Evaluation of plant extracts and salicylic acid against Bemisia tabaci and cotton leaf curl virus disease[J].Pakistan Journal Phytopathology,2010,22:98-100.
[22] ALKAHTANI M,OMER S A,EI-NAGGAR M A,et al.Pathogenesis-related protein and phytoalexin induction against cucumber powdery mildew by elicitors[J].International Journal Plant Pathology,2011,2(2):63-71.
[23] KLARZYNSKI O,PLESSE B,JOUBERT J M,et al.Linear β-1,3 glucans are elicitors of defense responses in tobacco[J].Plant Physiology,2000,124(3):1027-1038.
[24] SELITRENNIKOFF C P.Antifungal proteins[J].Applied and Environmental Microbiology,2001,67(7):2883-2894.
[25] HEIM K E,TAGLIAFERRO A R,BOBILYA D J.Flavonoid antioxidants: chemistry,metabolism and structure-activity relationships[J].The Journal of Nutritional Biochemistry,2003,13(10):572-584.
[26] MITTLER R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
[27] 丁桔.黃瓜自毒物質(zhì)和枯萎病的致害及其調(diào)控機(jī)制研究[D].杭州:浙江大學(xué),2008.