張俊杰 柴勝豐 王滿蓮 等
摘?要:為測(cè)定不同脫水程度金絲李(Garcinia paucinervis)種子的萌發(fā)情況及其復(fù)水后的吸水率、脫水過(guò)程中抗性生理指標(biāo)的變化以及不同貯藏方式下種子的萌發(fā)情況,該文研究了金絲李種子的脫水敏感性和儲(chǔ)藏特性。結(jié)果表明:(1)金絲李種子初始含水量為45.29%,室內(nèi)通風(fēng)處放置35 d失水率即達(dá)45%。(2)種子失水率低于18%時(shí),萌發(fā)率和復(fù)水后的吸水率變化不顯著;失水率超過(guò)18%時(shí),萌發(fā)率和復(fù)水后吸水率均顯著下降,失水率為42%時(shí)萌發(fā)率為0。其種子的臨界含水量為27.29%,半致死含水量為12.72%。(3)隨著種子脫水程度的加深,相對(duì)電導(dǎo)率、可溶性糖及脯氨酸含量逐步上升;丙二醛含量在失水率低于24%時(shí)變化不大,高于24%時(shí)顯著提高;SOD和POD的活性均呈波動(dòng)性變化,失水率為18%時(shí)活性均最高。(4)室溫干藏1個(gè)月和-1、-20 ℃下濕藏1個(gè)月的種子均不能萌發(fā);水浸貯藏1個(gè)月的種子萌發(fā)率顯著降低;4 ℃濕藏1、3和6個(gè)月均顯著延緩種子萌發(fā),但對(duì)萌發(fā)率無(wú)顯著影響。表明金絲李種子在失水率低于18%時(shí),種子可通過(guò)抗性調(diào)節(jié)維持細(xì)胞的正常代謝,能忍受一定程度的脫水和低溫;當(dāng)失水率超過(guò)18%時(shí),種子代謝失衡發(fā)生劣變直至死亡,屬于低度的頑拗性種子。4 ℃濕沙藏(含水量7.5%)是短期貯藏其種子的較好方法。
關(guān)鍵詞:種子含水量,萌發(fā)率,脫水敏感性,頑拗性種子,種子貯藏
Abstract:We studied the dehydration sensitivity and storage characteristics of G. paucinervis seeds by measuring the germination of seeds with different dehydration extents and the water absorption after rehydration,the change of physiological indices of resistance in the process of dehydration as well as the seed germination under different storage methods. The results were as follows:(1) The initial moisture content of G. paucinervis seeds was 45.29%. The dehydration rate was up to 45% when placed after 35 d in the indoor ventilated place. (2) When the dehydration rate was less than 18%,germination percentage(GP) and the water absorption rate after rewatering were not significantly different from those of fresh seeds. However,when the dehydration rate exceeded 18%,GP and the water absorption rate after rewatering were significantly decreased,and GP was 0 at dehydration rate 42%. The critical moisture content of seeds was 27.29%,and the lethal moisture content of 50% was 12.72%. (3) The relative conductivity,the contents of soluble sugar and proline were increased gradually with the deepening of seed dehydration. The content of malondialdehyde (MDA) changed little when the dehydration rate was less than 24%,and increased significantly when exceeding 24%. Both activities of superoxide dismutase (SOD) and peroxidase (POD) showed a trend of fluctuation and peaked at dehydration rate 18%. (4) Seeds with desiccation storage for one month at room temperature,and all the seeds with storage in damp sand at -1 ℃ and -20 ℃ for one month could not germinate. GP of seeds with water immersion for one month dropped significantly. Germination processes of seeds with storage in damp sand for one month,three months or six months at 4 ℃ were delayed,but there was no significant effect on GP. It indicates that when the dehydration rate of G. paucinervis is less than 18%,seeds can regulate resistance to maintain normal metabolism of cells. The seeds can endure a certain degree of dehydration and low temperature. When the dehydration rate exceeds 18%,the metabolism of seeds is unba-lanced,and then deteriorated until death,which belong to minimally recalcitrant seeds. It also indicates that storage in damp sand at 4 ℃ (moisture content 7.5%) is a good method for short-term storage of G. paucinervis seeds.
Key words:moisture content of seeds,?germination percentage,?dehydration sensitivity,?recalcitrant seeds,seed storage
了解植物種子的貯藏特性對(duì)植物種質(zhì)資源保存、引種及遷地保護(hù)至關(guān)重要(Costa et al.,2018;Wyse et al.,2017)。Roberts(1973)根據(jù)種子的貯藏行為將種子分為頑拗性(recalcitrant)種子與正常性(orthodox)種子。頑拗性種子在脫離母株時(shí)沒(méi)經(jīng)歷成熟脫水,其含水量通常高達(dá)30%~60%,對(duì)脫水和低溫敏感,干燥至含水量為15%~20%時(shí)大多死亡,在室溫通風(fēng)條件下其貯藏壽命只有數(shù)天至數(shù)周,不能像正常性種子一樣進(jìn)行干燥或低溫貯藏(Berjak & Pammenter,2001)。因此,頑拗性種子的貯藏條件不易掌控,需保證其含水量高于臨界含水量(critical moisture content,CMC)。此外,Ellis et al.(1990)把介于正常性和頑拗性之間的種子定義為中間性(intermediate)種子,其在含水量降低至7%~12%時(shí)受到傷害。產(chǎn)中間性種子的植物若起源于熱帶,則該種子對(duì)低溫敏感(Hong & Eliis,1996)。
頑拗性種子脫水過(guò)程中活力下降的主要原因是膜脂過(guò)氧化作用導(dǎo)致膜結(jié)構(gòu)與功能被破壞,抗氧化保護(hù)系統(tǒng)活性下降和自由基的積累,致使細(xì)胞代謝紊亂(Greggains et al.,2001;Varghese et al.,2011)。全球氣候變化將對(duì)產(chǎn)頑拗性種子的植物生存造成一定威脅,因此頑拗性種子的脫水敏感性及儲(chǔ)藏一直是研究熱點(diǎn)。Pelissari et al.(2018)對(duì)巴西的66個(gè)樹(shù)種種子脫水耐性的研究表明頑拗性種子脫水耐性的評(píng)估可從胚和胚乳、種皮和果皮的含水量著手。藤黃屬的熱帶植物Garcinia gummi-gutta種子萌發(fā)緩慢,在含水量低于34%時(shí)萌發(fā)率大幅下降,于-10 ℃或5 ℃下貯藏2個(gè)月即完全失活,為熱帶休眠頑拗性種子,其在密閉的塑料箱中于15 ℃下貯藏18個(gè)月仍有90%的萌發(fā)率(Joshi et al.,2017)。此外,藤黃屬其他植物如G. indica、G. xanthochymus等的種子也具有脫水敏感性。貯藏頑拗性種子的原則是在種子所能承受的最低溫度下維持其含水量和活力,并防止微生物侵害(Berjak & Pammenter,2007)。布迪椰子(Butia capitata)種子在冷凍狀態(tài)下保存易失去活力,但其分離出的胚可保存于超低溫液氮中(Dias et al.,2015)。
金絲李(Garcinia paucinervis)系藤黃科(Guttiferae)藤黃屬(Garcinia)常綠喬木,屬國(guó)家二級(jí)重點(diǎn)保護(hù)植物和瀕危級(jí)植物(Farm et al.,2003),為喀斯特山體特有珍貴樹(shù)種,分布于廣西西部、西南部和云南東南部海拔194~830 m的巖溶山林中(張俊杰等,2017),是集觀賞價(jià)值、生態(tài)價(jià)值、藥用價(jià)值和經(jīng)濟(jì)價(jià)值為一體的優(yōu)良樹(shù)種(Zhang et al.,2015a)。日前,該物種野生種群分布點(diǎn)有限且分散,大樹(shù)及能結(jié)實(shí)的植株極少,天然更新困難(張俊杰等,2017)。近年來(lái),喀斯特地貌生境的惡化已制約著喀斯特地區(qū)社會(huì)經(jīng)濟(jì)的發(fā)展。金絲李作為該地區(qū)優(yōu)良生態(tài)修復(fù)樹(shù)種,日前人工栽培較少,且鮮有關(guān)于其人工繁殖的報(bào)道。據(jù)作者前期研究發(fā)現(xiàn),金絲李枝條扦插難以成活,其種子具休眠特性(張俊杰等,2018),在通風(fēng)處存放1個(gè)月后便干癟,生活力隨之喪失,種子貯藏問(wèn)題十分棘手,其苗木繁育極大受限。因此,該文通過(guò)開(kāi)展金絲李種子不同脫水程度的萌發(fā)情況及其復(fù)水后的吸水率、脫水過(guò)程中抗性生理指標(biāo)的變化、不同貯藏方式下種子的萌發(fā)情況等研究,探明其脫水敏感性程度并找出科學(xué)貯藏方法,為金絲李的保育和利用提供科學(xué)指導(dǎo)。
1?材料與方法
1.1 材料
金絲李種子于2016年6月采自弄崗國(guó)家級(jí)自然保護(hù)區(qū)(106°57′18″ E,22°27′58″ N)。果實(shí)采收后帶回實(shí)驗(yàn)室堆漚10 d左右,搓洗掉果皮果肉并洗凈種子,晾干表面水分以備用。
1.2 測(cè)定項(xiàng)目及方法
1.2.1 種子基本特征及含水量測(cè)定?采用百粒法測(cè)量種子千粒重,隨機(jī)抽取50粒飽滿種子,測(cè)量其二維尺度。以TTC法測(cè)定新鮮種子的生活力(宋松泉等,2005)。隨機(jī)取3粒新鮮種子,切成1 mm薄片,(105±2)℃烘17 h后,以鮮重為基礎(chǔ)計(jì)算種子含水量(ISTA,1999),5次重復(fù)。
1.2.2 材料的脫水處理?將種子于分析天平上稱量其原重量W1,隨即放在室內(nèi)通風(fēng)處(26~31 ℃,72%~82%RH)自然脫水,定期稱其重量W2,計(jì)算失水率:失水率=(W1-W2)/ W1×100%,控制種子的失水率在6%、12%、18%、24%、30%、36%和42%共7個(gè)含水量梯度(允許0.3%以內(nèi)的誤差)。將部分新鮮(即初始含水量)種子和不同失水率的種子用液氮冷凍保存于-80 ℃冰箱內(nèi),用于抗性生理指標(biāo)測(cè)定。
1.2.3 脫水種子復(fù)水后吸水率的測(cè)定?以新鮮種子為對(duì)照,將失水率為6%、12%、18%、24%、36%和42%的種子浸泡于蒸餾水中,置于25 ℃恒溫培養(yǎng)箱中自然復(fù)水吸脹,每1天稱重1次并換水,當(dāng)種子吸水達(dá)到飽和時(shí)記錄其重量W3,結(jié)合種子原重量W1計(jì)算脫水種子復(fù)水后的吸水率:吸水率=(W3-W1)/ W1×100%,各重復(fù)3次,并統(tǒng)計(jì)各脫水梯度種子吸水達(dá)到飽和所需的時(shí)間(以下簡(jiǎn)稱吸水飽和時(shí)間)。
1.2.4 脫水種子萌發(fā)試驗(yàn)與萌發(fā)參數(shù)的計(jì)算?將1.2.2中7個(gè)不同脫水程度的種子以新鮮種子為對(duì)照進(jìn)行萌發(fā)試驗(yàn)。播種前種子經(jīng)0.1%的K2MnO4溶液消毒30 min,清水洗凈。試驗(yàn)容器為容量為1 000 mL、172 mm × 117 mm × 70 mm的塑料盒,鋪以4 cm厚經(jīng)消毒的河沙為基質(zhì),播種深度為1 cm,每梯度2盒,每盒播10粒,3次重復(fù),放入設(shè)定為25 ℃、周期性光照(3 000 lx,12 h·d-1)的LRH-250-G光照培養(yǎng)箱,適時(shí)添加蒸餾水保持基質(zhì)濕潤(rùn)。萌發(fā)試驗(yàn)時(shí)長(zhǎng)為448 d,以芽頂出沙層為種子萌發(fā)標(biāo)準(zhǔn),觀察到第1粒萌發(fā)的種子后,每7天統(tǒng)計(jì)1次萌發(fā)的種子數(shù)。根據(jù)種子萌發(fā)情況計(jì)算以下指標(biāo):萌發(fā)時(shí)滯(germination time lag,GTL)、萌發(fā)率(germination percentage,GP)和平均萌發(fā)時(shí)間(mean germination time,MGT),計(jì)算方法如下:
GTL(d):即萌發(fā)啟動(dòng)時(shí)間,指從萌發(fā)試驗(yàn)開(kāi)始至第1粒種子開(kāi)始萌發(fā)所用時(shí)間;
GP=萌發(fā)種子數(shù)/播種種子數(shù)×100%;
MGT = ∑(ti×ni)/∑ni。
式中,ti為播種之日開(kāi)始的第i天,ni為播種后第i天萌發(fā)的種子數(shù)(Liu et al.,2005)。
1.2.5 脫水種子抗性生理指標(biāo)的測(cè)定?取失水率為6%、12%、18%、24%、36%和42%的種子,用解剖刀剝?nèi)シN皮。以新鮮種子為對(duì)照,用電導(dǎo)儀法測(cè)定脫水種子胚和胚乳的相對(duì)電導(dǎo)率(Chai et al.,2018);用氮藍(lán)四唑(NBT)法和愈創(chuàng)木酚法分別測(cè)定其超氧化物歧化酶(superoxide ismutase,SOD)和過(guò)氧化物酶(peroxidase,POD)活性;用硫代巴比妥酸(TBA)法、蒽酮比色法和磺基水楊酸法分別測(cè)定其丙二醛(malondialdehyde,MDA)、可溶性糖和脯氨酸含量(李合生等,2000),各重復(fù)3次。
1.2.6 種子貯藏試驗(yàn)?將新鮮種子按以下8種方法進(jìn)行貯藏:(1)室溫干藏1個(gè)月;(2)4 ℃干藏1個(gè)月,種子裝入牛皮紙袋保存于4 ℃冰箱;(3)水浸貯藏1個(gè)月,將種子置于燒杯中,加蒸餾水沒(méi)過(guò)種子,置于25 ℃培養(yǎng)箱內(nèi),每天換水1次;(4)-20 ℃濕藏(將種子與含水量約7.5%的河沙按體積比1∶3混勻,下同)1個(gè)月;(5)-1 ℃濕藏1個(gè)月;(6)4 ℃濕藏1個(gè)月;(7)4 ℃濕藏3個(gè)月;(8)4 ℃濕藏6個(gè)月。將種子貯藏后按照1.2.4進(jìn)行萌發(fā)試驗(yàn),試驗(yàn)時(shí)長(zhǎng)設(shè)定為350 d。
1.3 數(shù)據(jù)分析
用Microsoft Excel 2010軟件統(tǒng)計(jì)數(shù)據(jù)并作表,采用SPSS19.0軟件進(jìn)行單因素方差分析,Duncan法進(jìn)行數(shù)據(jù)差異比較(將萌發(fā)率擬進(jìn)行平方根反正弦轉(zhuǎn)換,使之方差齊性)。統(tǒng)計(jì)值以平均值±標(biāo)準(zhǔn)誤(x±sx)表示。以SigmaPlot 11.0軟件繪圖。
2?結(jié)果與分析
2.1 金絲李種子的大小及含水量
金絲李種子卵形至寬卵形,胚包裹于胚乳層中,不易與胚乳分離。種子長(zhǎng)(30.80±2.14)mm,直徑(15.39±0.96)mm,千粒重(438 1.75±77.53)g。成熟種子的初始含水量為(45.29±0.72)%,種子生活力達(dá)(95.56±1.92)%。
2.2 室溫儲(chǔ)藏對(duì)種子脫水的影響
種子脫水的持續(xù)時(shí)間與失水率關(guān)系見(jiàn)圖1,隨著自然風(fēng)干時(shí)間的增加種子均勻地脫水,當(dāng)種子失水35 d之后,失水率在45%左右趨于平穩(wěn)。
2.3 不同脫水程度種子復(fù)水后的吸水情況
金絲李種子的吸水過(guò)程十分緩慢,新鮮種子吸水飽和時(shí)間約為24 d,吸水率為14.55%。當(dāng)種子失水率低于18%時(shí),其飽和吸水率及吸水飽和時(shí)間與新鮮種子相比差異不顯著。隨著種子脫水程度的加深,其飽和吸水率與吸水飽和時(shí)間逐漸降低,失水率為42%的種子復(fù)水約12 d即達(dá)到飽和狀態(tài),此時(shí)的吸水率為-6.69%,表明失水率為42%的種子復(fù)水后已經(jīng)恢復(fù)不到原來(lái)新鮮種子的重量(圖2)。
2.4 脫水處理對(duì)種子萌發(fā)的影響
失水率為42%的金絲李種子萌發(fā)率為0。各脫水程度的種子萌發(fā)動(dòng)態(tài)與萌發(fā)參數(shù)見(jiàn)圖3和表1,未萌發(fā)的種子已完全腐爛。失水率36%的種子萌發(fā)率始終低于其他脫水程度的種子。如表1所示,脫水處理的種子GTL隨著種子脫水程度的增加而逐漸延長(zhǎng)。新鮮種子的GP為93.33%,當(dāng)種子失水率低于18%時(shí),GP沒(méi)有顯著變化;失水率超過(guò)18%時(shí),GP下降較快,與對(duì)照差異均達(dá)顯著水平。當(dāng)種子脫水超過(guò)臨界含水量(CMC)時(shí)種子活力大幅下降(Probert & Brierley,1989;Pammenter et al.,1998),以新鮮種子含水量為45.29%計(jì),可知
金絲李種子的CMC為27.29%。當(dāng)種子失水率為36%時(shí),其GP僅為21.67%。而平均萌發(fā)時(shí)間隨著脫水程度的加深呈波動(dòng)性變化,失水率為12%時(shí)MGT已顯著延長(zhǎng)至242.88 d,在失水率為18%~24%時(shí)與對(duì)照無(wú)顯著性差異,但失水率為36%時(shí)MGT又大幅延長(zhǎng)至337.33 d。
種子萌發(fā)率低至新鮮種子萌發(fā)率一半時(shí)的含水量稱為“半致死含水量(lethal moisture content of 50%,LMC50)”(何惠英和宋松泉,2003)。以新鮮種子萌發(fā)率和含水量分別為93.33%和45.29%計(jì)。由圖4可知,金絲李種子的LMC50為12.72%。由圖1可知,室內(nèi)自然干燥約19 d即達(dá)到種子的半致死含水量。
2.5 種子脫水過(guò)程中抗性生理指標(biāo)的變化
由新鮮金絲李種子脫水至失水率為42%時(shí),相對(duì)電導(dǎo)率由52.03%直線上升至98.24%。由新鮮種子脫水至失水率為18%時(shí),胚和胚乳的丙二醛含量上升了34.43%,差異不顯著;而種子由失水率18%上升至42%時(shí),MDA含量顯著提高了
187.92%(圖5:A)。
隨著種子脫水程度的增加,SOD和POD活性均呈波動(dòng)性變化趨勢(shì)(圖5:B)。失水率為18%時(shí)SOD與POD活性均達(dá)脫水過(guò)程的最高值;當(dāng)種子失水率超過(guò)24%時(shí),SOD與POD活性顯著下降;失水率達(dá)42%時(shí),活性均有所回升。
種子的可溶性糖含量在失水率低于6%時(shí)保持平穩(wěn),之后呈直線上升趨勢(shì),失水率為42%時(shí)可溶性糖含量是新鮮種子的3.03倍。隨著種子脫水程度的增加,脯氨酸含量呈逐步上升趨勢(shì),失水率為42%時(shí)脯氨酸含量比新鮮種子顯著增加了7.10倍(圖5:C)。
2.6 貯藏方法對(duì)金絲李種子萌發(fā)的影響
室溫干藏1個(gè)月的種子和-1、-20 ℃濕藏1個(gè)月的種子至試驗(yàn)結(jié)束后均完全腐爛。其余貯藏方法金絲李種子的萌發(fā)進(jìn)程和萌發(fā)參數(shù)如圖6和表2所示。最終GP顯示,除WI1的種子GP顯著低于對(duì)照外,其余4種貯藏方式與對(duì)照比均無(wú)顯著差異。除DS1的GTL顯著長(zhǎng)于對(duì)照外,其余貯藏方式的GTL與對(duì)照相比無(wú)顯著性差異。對(duì)于MGT、DS1和WI1與對(duì)照相比差異不顯著,而SH1、SH3和SH6處理均顯著延緩了種子萌發(fā),即4 ℃濕藏延緩了金絲李種子萌發(fā),但對(duì)GP影響不大。
3?討論與結(jié)論
金絲李種子大而重且含水量高,形態(tài)上表現(xiàn)出頑拗性種子的特征。在種子失水率低于18%時(shí),其飽和吸水率、吸水飽和時(shí)間與新鮮種子差異不顯著,當(dāng)失水率超過(guò)18%時(shí),兩個(gè)指標(biāo)均急劇下降,失水率為42%的種子復(fù)水后已恢復(fù)不到種子原重。可能是種子在脫水程度較低時(shí),可通過(guò)吸漲作用修復(fù)在脫水時(shí)膜結(jié)構(gòu)與酶的改變,但種子在高度脫水時(shí),結(jié)構(gòu)蛋白質(zhì)與酶發(fā)生了不可逆轉(zhuǎn)的改變,吸漲作用減弱導(dǎo)致吸水量降低,種子逐漸失活。
金絲李種子在失水率低于18%時(shí)GP趨于平穩(wěn),失水率超過(guò)18%后GP急劇下降,說(shuō)明輕度的脫水對(duì)種子萌發(fā)影響不大,但高度脫水則顯著降低其萌發(fā)率。相關(guān)性分析表明金絲李種子失水率與萌發(fā)率呈極顯著負(fù)相關(guān)(P<0.01),說(shuō)明其對(duì)脫水敏感。因此在播種時(shí),宜采用失水率低于18%,或夏季室溫通風(fēng)放置不超過(guò)8 d的種子。金絲李種子萌發(fā)過(guò)程漫長(zhǎng),其GTL隨著種子脫水程度的加深而延長(zhǎng),可能是由于脫水后的種子生理修復(fù)需要時(shí)間。金絲李種子的MGT隨著脫水程度的加深呈現(xiàn)波動(dòng)性變化的趨勢(shì),這種現(xiàn)象在頑拗性的山血丹(Ardisia punctata)種子上也有體現(xiàn)(楊期和等,2013)。失水率在18%~24%時(shí)MGT與新鮮種子差異不大,可能與該含水量范圍內(nèi)引起了種子內(nèi)源激素含量或某些酶的活性變化有關(guān)。
相對(duì)電導(dǎo)率和MDA含量常用來(lái)衡量種子劣變和受傷害程度(Chen et al.,2016)。MDA是膜脂過(guò)氧化的終產(chǎn)物,脂質(zhì)過(guò)氧化會(huì)損害細(xì)胞的膜系統(tǒng),增大膜透性,造成代謝紊亂,且MDA會(huì)毒害細(xì)胞,降低SOD、POD等抗氧化保護(hù)酶的活性,使蛋白質(zhì)的結(jié)構(gòu)和功能發(fā)生變化(Ma et al.,2015),這是種子劣變的主要原因?;钚匝酰╮eactive oxygen species,ROS)能加速膜脂過(guò)氧化,傷害蛋白質(zhì)和DNA(Farooq et al.,2009),種子在正常代謝受影響時(shí)會(huì)累積ROS,且種子的脫水耐性與其抗氧化防御系統(tǒng)有關(guān)。金絲李種子在脫水初期,種子水分逆境脅迫機(jī)制被激活,引發(fā)保護(hù)性反應(yīng),SOD、POD等酶的活性在種子脫水過(guò)程中逐漸增強(qiáng)以清除不斷產(chǎn)生的ROS,維持細(xì)胞膜的穩(wěn)定性和完整性(Zhang et al.,2015b),所以相對(duì)電導(dǎo)率和MDA的增加均較緩慢;當(dāng)種子失水率在18%~36%時(shí),MDA含量的迅速上升表明膜脂過(guò)氧化加劇,MDA和ROS等有害物質(zhì)的積累對(duì)細(xì)胞的毒害程度加深,超出了種子的耐受范圍,致使SOD和POD等酶的活性驟降,不能有效清除ROS(Tang,2012),伴隨著細(xì)胞膜透性增大、細(xì)胞內(nèi)含物外滲,表現(xiàn)為相對(duì)電導(dǎo)率的急劇增加,種子的劣變加劇而逐漸失活。金絲李種子在失水率低于36%時(shí),其相對(duì)電導(dǎo)率、MDA、SOD和POD 4個(gè)抗性生理指標(biāo)與頑拗性的三七(Panax notoginseng)和板栗(Castanea mollissima)種子的整體變化趨勢(shì)一致(段銀妹等,2014; 宗梅等,2006)。但當(dāng)種子失水率超過(guò)36%時(shí),POD酶則參與了ROS的產(chǎn)生,對(duì)細(xì)胞產(chǎn)生毒害,或是與引起褐變的酚類物質(zhì)和H2O2反應(yīng)(楊淑慎和高俊鳳,2001),加速已受傷種子的劣變,造成細(xì)胞解體而死亡,這種情況在七葉樹(shù)(Aesculus chinensis)種子的脫水后期也有體現(xiàn)(陳淑芬,2006)。而脫水后期SOD升高的原因尚需進(jìn)一步研究。可溶性糖能與LEA蛋白形成復(fù)合物協(xié)同控制脫水速度,脯氨酸則能穩(wěn)定組織內(nèi)的代謝及原生質(zhì)膠體(李合生等,2000)。這兩種滲透調(diào)節(jié)物質(zhì)可協(xié)助POD、SOD清除細(xì)胞體內(nèi)多余的自由基,保護(hù)細(xì)胞免受傷害。金絲李種子隨著脫水程度的增加,可溶性糖、脯氨酸含量直線上升,積累溶質(zhì)以降低滲透勢(shì),維持細(xì)胞滲透平衡,說(shuō)明其具有一定的滲透調(diào)節(jié)能力。結(jié)合上述分析可知,金絲李種子在失水率低于18%時(shí),其萌發(fā)率和復(fù)水后的吸水情況與新鮮種子差異不顯著,種子可通過(guò)抗性調(diào)節(jié)維持細(xì)胞的正常代謝;當(dāng)失水率超過(guò)18%時(shí),種子代謝失衡而發(fā)生劣變直至死亡。
室溫干藏1個(gè)月與-1、-20 ℃濕藏1個(gè)月的金絲李種子不能萌發(fā),4 ℃干藏下有少量種子干癟,說(shuō)明其不宜干藏,對(duì)0 ℃以下低溫敏感。因其種子含水量高,直接貯藏于低于0 ?℃環(huán)境會(huì)引起細(xì)胞內(nèi)結(jié)冰,凍融時(shí)破壞膜系統(tǒng)而誘發(fā)劣變。低于15 ℃的儲(chǔ)藏溫度對(duì)于大多數(shù)熱帶種子來(lái)說(shuō)是致命的(Bedi & Basra,1993),如Garcinia gummi-gutta種子(Joshi et al.,2017)。而金絲李種子可在4 ℃濕藏6個(gè)月,雖然其GTL和MGT有所延長(zhǎng),但最終GP變化不大,說(shuō)明4 ℃濕沙藏降低了種子貯藏過(guò)程中的新陳代謝,減緩水份散失,是短期貯藏金絲李種子的良好方法。水浸貯藏法可能由于部分種子缺氧或微生物感染壞死導(dǎo)致萌發(fā)率較低。
根據(jù)種子對(duì)脫水耐性和低溫敏感性的差異,將頑拗性種子分為高度、中度和低度頑拗性3種類型(Ntuli et al.,2015)。通常溫帶與熱帶地區(qū)的頑拗性種子相比,其耐脫水和低溫能力要強(qiáng)(Pammenter & Berjak,2000)。金絲李生于熱帶向亞熱帶的氣候過(guò)渡帶,其種子能忍受一定程度的干燥脫水和0 ℃以上的低溫,其CMC為27.29%,LMC50為12.72%,低于0 ℃則種子死亡,其頑拗性程度低于產(chǎn)于北熱帶的同屬植物云樹(shù)(G. cowa,種子初始含水量為50.1%,CMC為39%,4 ℃貯藏1個(gè)月均死亡)(Liu et al.,2005),與低度頑拗性的板栗(Castanea mollissima)種子接近(自然干燥9 d的種子萌發(fā)率100%,干燥15 d萌發(fā)率為53.5%,可于0~2 ℃甚至-4 ℃下濕藏)(陶月良和朱誠(chéng),2004; 王貴禧等,1999),高于中間性的凹葉木蘭(Magnolia sargentiana)種子(CMC和LMC50分別為15.3%、5.3~7.1%)(唐安軍,2014)。因此,金絲李種子屬于低度的頑拗性種子。根據(jù)Baskin & Baskin(2005)對(duì)休眠種子的定義,未經(jīng)處理的金絲李種子萌發(fā)啟動(dòng)時(shí)間超過(guò)4周,其種子存在休眠。由于高含水量,頑拗性種子大多萌發(fā)迅速,被認(rèn)為無(wú)休眠特性或胎生性(Tweddle et al.,2003)。但近年來(lái),陸續(xù)有文獻(xiàn)報(bào)道某些頑拗性種子具有休眠特性(Jayasuriya et al.,2012;Joshi et al.,2017),本研究支持后者的觀點(diǎn)。
金絲李分布于桂西和滇東南石灰?guī)r山林里,凋落物對(duì)種子的掩埋可保持種子的含水量,冬季的相對(duì)低溫為種子創(chuàng)造了天然的濕藏條件。石山上由于巖石裸露、土層薄而較干旱,其種子低度頑拗性的特點(diǎn)使之在短期輕度的干旱下保持較高的生活力。本研究結(jié)果可為金絲李這一珍貴資源的保育與利用奠定基礎(chǔ),而金絲李種質(zhì)的長(zhǎng)期保存可否用離體胚的超低溫保存法,需后續(xù)探討。
參考文獻(xiàn):
BASKIN CC,BASKIN JM,2005. Seed dormancy in trees of climax tropical vegetation types [J]. Trop Ecol,46(1):17-28.
BEDI S,BASRA AS,1993. Chilling injury in germinating seeds:Basic mechanisms and agricultural implications [J]. Seed Sci Res,3(4):219-229.
BERJAK P,PAMMENTER NW,2001. Seed recalcitrance-current perspectives [J]. S Afr J of Bot,67(2):79-89.
BERJAK P,PAMMENTER NW,2007. From Avicennia to Zizania:Seed recalcitrance in perspective [J]. Ann Bot,101(2): 213-228.
CHAI SF,TANG JM,MALLIK A,et al.,2018. Eco-physiolo-gical basis of shade adaptation of Camellia nitidissima,a rare and endangered forest understory plant of Southeast Asia [J]. BMC Ecol,18(1):5.
CHEN SF,2006. Studies on mechanisms of desiccation-sensitivity of Aesculus chinensis seeds [D]. Nanjing:Nanjing Forestry University: 49-50. ?[陳淑芬,2006. 七葉樹(shù)種子脫水敏感性機(jī)理研究 [D]. 南京:南京林業(yè)大學(xué):49-50.]
CHEN Y,HAN Y,ZHANG M,et al.,2016. Overexpression of the wheat expansion gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants [J]. PLoS ONE,11(4):e0153494.
COSTA CRX,PIVETTA KFL,DE SOUZA GRB,et al.,2018. Effects oftemperature,light and seed moisture content on germination of Euterpe precatoria palm [J]. Am J Plant Sci,9(1):98.
DIAS DS,LOPES PSN,RIBEIRO LM,et al.,2015. Tolerance of desiccation and cryopreservation of Butia capitata palm seeds [J]. Seed Sci Technol,43(1):90-100.
DUAN YS,YANG L,DUAN CL,2014. Desiccation sensitivity of Panax notoginseng seeds and membrane lipid peroxidation [J]. Seed,33(4):6-9. ?[段銀妹,楊莉,段承俐,2014. 三七種子的脫水敏感性與膜質(zhì)過(guò)氧化作用 [J]. 種子,33(4):6-9.]
ELLIS RH,HONG TD,ROBERTS EH,1990. An intermediate category of seed storage behaviour? I. Coffee [J]. J Exp Bot,41(9):1167-1174.
FARM K,GARDEN B,HAU BCH,et al.,2003. Summary of findings from some rapid biodiversity assessments in West Guangxi,China,July 1999 [J]. S Chin For Biodivers Surv Rep Ser (Online Simpl Vers),(36).
FAROOQ M,WAHID A,KOBAYASHI N,et al.,2009. Plant drought stress:Effects,mechanisms and management [J]. Agron Sustain Dev,29(1):185-212.
GREGGAINS V,F(xiàn)INCHSAVAGE WE,ATHERTON NM,et al.,2001. Viability loss and free radical processes during desiccation of recalcitrant Avicennia marina seeds [J]. Seed Sci Res,11(3):235-242.
HE HY,SONG SQ,2003. Desiccation sensitivity of Calophyllum polyanthum seeds and factors affecting their germination [J]. Acta Bot Yunnan,25(6):687-692. ?[何惠英,宋松泉,2003. 滇南紅厚殼種子的脫水敏感性及其影響萌發(fā)的因子 [J]. 云南植物研究,25(6):687-692.]
HONG TD,ELIIS RH,1996. A protocol to determine seed storage behavior [M]//ENGELS JM. Technical Bulletin No. 1. Rome:International Plant Genetic Resources Institute (IPGRI):1-51.
ISTA (International Seed Testing Association),1999. International rules for seed testing. Rules 1999 [J]. Seed Sci Technol,4(1):23-28.
JAYASURIYA KMGG,WIJETUNGA ASTB,BASKIN JM,et al.,2012. Physiological epicotyl dormancy and recalcitrant storage behaviour in seeds of two tropical Fabaceae (subfamily Caesalpinioideae) species [J]. AoB Plants,(1):pls044.
JOSHI G,PHARTYAL SS,ARUNKUMAR AN,2017. Non-deep physiological dormancy,desiccation and low-temperature sensitivity in seeds of Garcinia gummi-gutta (Clusiaceae):A tropical evergreen recalcitrant species [J]. Trop Ecol,58(2):241-250.
LI HS,SUN Q,ZHAO SJ,et al.,2000. Principles and techniques of plant physiology and biochemistry experiment [M]. Beijing:Higher Education Press:164-165,167-169,195-197,258-261. ?[李合生,孫群,趙世杰,等,2000. 植物生理生化試驗(yàn)原理和技術(shù) [M]. 北京:高等教育出版社:164-165,167-169,195-197,258-261.]
LIU Y,QIU YP,ZHANG L,et al.,2005. Dormancy breaking and storage behavior of Garcinia cowa Roxb.(Guttiferae) seeds:Implications for ecological function and germplasm conservation [J]. J Integr Plant Biol,47(1):38-49.
MA MZ,CHRISTENSEN MJ,NAN ZB,2015. Effects of the endophyte Epichloe festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth [J]. Eur J Plant Pathol,141(3):571-583.
MALIK SK,CHAUDHURY R,ABRAHAM Z,2005. Desiccation-freezing sensitivity and longevity in seeds of Garcinia indica,G. cambogia and G. xanthochymus [J]. Seed Sci Technol,33(3):723-732.
NTULI TM,BERJAK P,PAMMENTER N,2015. Different assessments of the effect of drying rates on recalcitrant seed material [J]. Am J Biol Life Sci,3(3):75-79.
PAMMENTER NW,GREGGAINS V,KIOKO JI,et al.,1998. Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis [J]. Seed Sci Res,8(4):463-471.
PAMMENTER NW,BERJAK P,2000. Some thoughts on the evolution and ecology of recalcitrant seeds [J]. Plant Spec Biol,15(2):153-156.
PELISSARI F,JOS AC,F(xiàn)ONTES MAL,et al.,2018. A probabilistic model for tropical tree seed desiccation tolerance and storage classification [J]. New For,49(9):143-158.
PROBERT RJ,BRIERLEY ER,1989. Desiccation intolerance in seeds of Zizania palustris is not related to developmental age or the duration of post-harvest storage [J]. Ann Bot,64(6): 669-674.
ROBERTS EH,1973. Predicting the storage life of seeds [J]. Seed Sci Technol,1:499-514.
SONG SQ,CHEN HY,LONG CL,et al.,2005. A guide to the research of seed biology [M]. Beijing:Science Press:57-60. ?[宋松泉,程紅焱,龍春林,等,2005. 種子生物學(xué)研究指南 [M]. 北京:科學(xué)出版社:57-60.]
TANG AJ,2014. Seed dormancy and storage behavior of Magnolia sargentiana endemic to China [J]. J Plant Physiol,50(1):105-110. ?[唐安軍,2014. 中國(guó)特有植物凹葉木蘭種子的休眠與貯藏行為 [J]. 植物生理學(xué)報(bào),50(1):105-110.]
TANG AJ,2012. Desiccation-induced changes in viability,lipid peroxidation and antioxidant enzyme activity in Mimusops elengi seeds [J]. Afr J Biotechnol,11(44):10255-10261.
TAO YL,ZHU C,2004. Relationship among desiccation-tolerance,proteins and soluble sugars before and after maturation of Castanea mollissima seeds [J]. Sci Silv Sin,40(2):45-50. ?[陶月良,朱誠(chéng),2004. 板栗種子成熟前后脫水敏感性與蛋白質(zhì)、可溶性糖的關(guān)系 [J]. 林業(yè)科學(xué),40(2):45-50.]
TWEDDLE JC,DICKIE JB,BASKIN CC,et al.,2003. Ecological aspects of seed desiccation sensitivity [J]. J Ecol,91(2): 294-304.
VARGHESE B,BERJAK P,VARGHESE D,et al.,2011. Differential drying rates of recalcitrant Trichilia dregeana embryonic axes:A study of survival and oxidative stress metabolism [J]. Physiol plant,142(4):326-338.
WANG GX,LIANG LS,ZONG YC,1999. Controlling of dormancy and sprouting of stored chestnut by means of temperature [J]. Sci Silv Sin,35(3):31-35. ?[王貴禧,梁麗松,宗亦臣,1999. 貯藏板栗休眠與萌芽的溫度調(diào)控 [J]. 林業(yè)科學(xué),35(3):31-35.]
WYSE SV,DICKIE JB,2017. Predicting the global incidence of seed desiccation sensitivity [J]. J Ecol,105(4):1082-1093.
YANG QH,LIN YC,LAI WN,et al.,2013. Investigation on germination characteristics of Ardisia punctata seeds [J]. Seed,32(9):41-44. ?[楊期和,林玉春,賴萬(wàn)年,等2013. 山血丹種子萌發(fā)特性的初步研究 [J]. 種子,32(9):41-44.]
YANG SS,GAO JF,2001. Influence of active oxygen and free radicals on plant senescence [J]. Acta Bot Boreal-Occident Sin,21(2):36-41. ?[楊淑慎,高俊鳳,2001. 活性氧、自由基與植物的衰老 [J]. 西北植物學(xué)報(bào),21(2):36-41.]
ZHANG JJ,CHAI SF,L SH,et al.,2017. The habitat characteristics and analysis on endangering factors of rare and endangered plant Garcinia paucinervis [J]. Ecol Environ,26(4):582-589. ?[張俊杰,柴勝豐,呂仕洪,等,2017. 珍稀瀕危植物金絲李的生境特征及致瀕原因分析 [J]. 生態(tài)環(huán)境學(xué)報(bào),26(4):582-589.]
ZHANG JY,DAI MH,WANG LC,et al.,2015a. The challenge and future of rocky desertification control in karst areas in Southwest China [J]. Solid Earth Discuss,7(4):3271-3292.
ZHANG Y,ZHANG M,YANG H,2015b. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage [J]. Food Chem,174:558-563.
ZHANG JJ,WEI X,CHAI SF,et al.,2018. Dormancy mechanism of the seeds of a rare and endangered plant,Garcinia paucinervis [J]. Chin J Ecol,37(5):1371-1381. ?[張俊杰,韋霄,柴勝豐,等,2018. 珍稀瀕危植物金絲李種子的休眠機(jī)理
[J]. 生態(tài)學(xué)雜志,37(5):1371-1381.]
ZONG M,CAI LQ,L SF,et al.,2006. Effect of different desiccation methods on Castanea mollissima embryo axis desiccation sensitivity and physiological metabolism [J]. Acta Hortic Sin,33(2):233-238. ?[宗梅,蔡麗瓊,呂素芳,等2006. 不同脫水方法對(duì)板栗胚軸脫水敏感性和生理生化的影響 [J]. 園藝學(xué)報(bào),33 (2):233-238.]