徐瑰瑰 王利波
摘 要:利用Fadeo-Galerkin方法和經(jīng)典的不動(dòng)點(diǎn)理論證明了帶時(shí)滯項(xiàng)的四階波方程的解的存在性、對(duì)初始值的連續(xù)依賴(lài)性和解的唯一性.
關(guān)鍵詞:時(shí)滯;Fadeo-Galerkin方法;存在性;唯一性
中圖分類(lèi)號(hào):O175.29? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1673-260X(2019)11-0008-02
參考文獻(xiàn):
〔1〕Yang Z J,? Xia W. Blow up of solutions for improved Boussinesq type equation[J]. J Math Anal Appl. 2003 ,278(2) 335–353.
〔2〕Yang Z J. Long time dynamics of the damped Boussinesq equation[J], J Math Anal Appl, 2013, 399(1):180-190.
〔3〕林國(guó)廣.非線(xiàn)性演化方程[M].云大出版社,2011.
〔4〕徐瑰瑰,王利波,林國(guó)廣,一類(lèi)非線(xiàn)性時(shí)滯波方程的慣性流形[J].應(yīng)用數(shù)學(xué),2014,27(4):887-891.
〔5〕徐瑰瑰,王利波,林國(guó)廣.帶時(shí)滯項(xiàng)的高階Kirchhoff方程的拉回吸引子[J].西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018, 54(6):17-24.
〔6〕徐瑰瑰,王利波,林國(guó)廣,帶時(shí)滯項(xiàng)的高階Kirchhoff方程的拉回吸引子[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2019, 47(3):21-27.
〔7〕Lu Zhao, Meihua Yang and Chengjian Zhang, Dynamics Dynamics for the damped Boussinesq equation with delayfor the damped Boussinesq equation with delay[J].Stochastics and Dynamics,2016,16(6):1-11.
〔8〕D.N.Cheban, P. E. Kloeden, B.Schmalfu?. The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2002,2(2): 271-297.
〔9〕J L Lion著,郭伯靈,汪禮礽譯.非線(xiàn)性邊值問(wèn)題的一些解法[M].廣州:中山大學(xué)出版社,1992.