国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

羅氏沼蝦性別相關(guān)基因研究進(jìn)展及其單性化養(yǎng)殖現(xiàn)狀

2019-09-10 07:22姜建萍袁翔邱慶慶黃光華蔣欽楊楊秀榮蔣和生

姜建萍 袁翔 邱慶慶 黃光華 蔣欽楊 楊秀榮 蔣和生

摘要:羅氏沼蝦(Macrobrachium rosenbergii)具有生長(zhǎng)快、養(yǎng)殖周期短、營(yíng)養(yǎng)價(jià)值高等優(yōu)點(diǎn),是我國(guó)主要的淡水蝦養(yǎng)殖品種,在生長(zhǎng)性能方面表現(xiàn)出性別兩態(tài)性:同齡雌、雄蝦個(gè)體的大小、生長(zhǎng)速度相差懸殊,導(dǎo)致大規(guī)模生產(chǎn)羅氏沼蝦受到限制,因此迫切需要采用性別控制技術(shù)開展羅氏沼蝦單性化育苗,培育全雌/全雄羅氏沼蝦以提高養(yǎng)殖產(chǎn)量,而實(shí)現(xiàn)羅氏沼蝦單性化養(yǎng)殖的前提必須明確性別分化和性別決定的分子機(jī)制及其關(guān)鍵基因。文章就羅氏沼蝦性別相關(guān)基因的研究進(jìn)展及其單性化養(yǎng)殖發(fā)展現(xiàn)狀進(jìn)行綜述,認(rèn)為全雄/全雌羅氏沼蝦育種的關(guān)鍵技術(shù)是偽雌或超雌蝦制備。鑒于羅非魚三系[原系(XX♀)、雄性純合系(YY♂)和雄性純合轉(zhuǎn)化系(YY♀)]配套方案的啟發(fā),今后可對(duì)羅氏沼蝦遺傳型WW超雌個(gè)體進(jìn)行性逆轉(zhuǎn),獲得偽雄個(gè)體(遺傳型WW,生理型ZZ),經(jīng)回交所得后代用于構(gòu)建超雌蝦種質(zhì)庫(kù),即通過(guò)性別分化和性別決定機(jī)制解析及超雌種質(zhì)庫(kù)構(gòu)建,研發(fā)自主的單性化羅氏沼蝦制種技術(shù),培育全雄/全雌羅氏沼蝦將成為可能。

關(guān)鍵詞: 羅氏沼蝦;性別控制;性別相關(guān)基因;單性化養(yǎng)殖

中圖分類號(hào): S966.12? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)09-2111-08

Abstract:Giant freshwater prawn(Macrobrachium rosenbergii) as an important freshwater prawn has become one of the leading varieties of freshwater aquaculture in China due to its quicker growth rate, shorter breeding cycle and higher nutrition. The male and female individuals exhibit sexual dimorphism in terms of growth performance:the size and growth rate of the same age was different, which limited the boost production of M. rosenbergii. Thus, it was urgent to adopt sex manipulation to carry out monosex culture, and to cultivate all-female and all-male prawns to increase the aquaculture yield. The prerequisite of the monosex culture was understanding the molecular mechanism and key genes of sex differentiation and sex determination. Hence, in this paper, the research progress of sex-related genes and research status of monosex culture at home and abroad were summarized, and it was considered that the essential for all-female and all-male breeding was the preparation of neo-female and super female. Inspired by the three-line matching scheme of tilapia[original(XX♀), male homozygous(YY♂) and male homozygous transformation(YY♀)], the genetic reversal WW super-female individuals in the future could be sex-reversed, and neo-male individuals(genotype WW, physiologic type ZZ) were obtained. After backcrossing, they were used to construct super female breeding germplasm bank. Notably, it is po-ssible to develop independent parthenogenesis techniques of M. rosenbergii, and to cultivate all-female and all-male prawns through the analysis of the molecular mechanism of sex differentiation and sex determination.

Key words: Macrobrachium rosenbergii; sex control; sex related gene; monosex culture

0 引言

羅氏沼蝦(Macrobrachium rosenbergii)屬大型淡水蝦類,具有生長(zhǎng)快、養(yǎng)殖周期短、營(yíng)養(yǎng)價(jià)值高等優(yōu)點(diǎn),是我國(guó)主要的淡水蝦養(yǎng)殖品種。我國(guó)于1976年引進(jìn)羅氏沼蝦,至1990年得到快速推廣。近年來(lái),隨著市場(chǎng)需求的日益增長(zhǎng)和人工繁育苗種技術(shù)的進(jìn)步,我國(guó)羅氏沼蝦養(yǎng)殖呈現(xiàn)方興未艾之勢(shì)。據(jù)統(tǒng)計(jì),2016年我國(guó)羅氏沼蝦養(yǎng)殖產(chǎn)量達(dá)13.2萬(wàn)t,較2015年增長(zhǎng)了2.49%(農(nóng)業(yè)部漁業(yè)漁政管理局,2017),其產(chǎn)量已超過(guò)全球羅氏沼蝦養(yǎng)殖產(chǎn)量(約23.0萬(wàn)t)的1/2。與其他甲殼類動(dòng)物一樣,羅氏沼蝦也表現(xiàn)出性別兩態(tài)性:同齡雌、雄蝦個(gè)體的大小、生長(zhǎng)速度相差懸殊,即在同等養(yǎng)殖條件下,雌蝦生長(zhǎng)速度較雄蝦慢50%~70%,性成熟后的雄蝦個(gè)體平均體重約是雌蝦的2倍(俞炎琴,2013)。這是由于我國(guó)傳統(tǒng)的羅氏沼蝦養(yǎng)殖模式均為雌雄混養(yǎng),在養(yǎng)殖過(guò)程中部分蝦性成熟早,并進(jìn)行交配繁殖而消耗大量能量,進(jìn)而影響其生長(zhǎng)速度和群體均勻度。為改善這一現(xiàn)狀,部分養(yǎng)殖戶通過(guò)人工挑選留大剔小、雌雄分開等方法以提高羅氏沼蝦產(chǎn)量,但此法勞動(dòng)強(qiáng)度大、成本高,且雌雄幼蝦區(qū)分不明顯,導(dǎo)致大規(guī)模生產(chǎn)羅氏沼蝦受到限制。因此,迫切需要采用性別控制技術(shù)開展羅氏沼蝦單性化育苗,培育全雌/全雄羅氏沼蝦以提高養(yǎng)殖產(chǎn)量,而實(shí)現(xiàn)羅氏沼蝦單性化養(yǎng)殖的前提必須明確性別分化和性別決定的分子機(jī)制及其關(guān)鍵基因。本文就羅氏沼蝦性別相關(guān)基因的研究進(jìn)展及其單性化養(yǎng)殖發(fā)展現(xiàn)狀進(jìn)行綜述,以期為研發(fā)羅氏沼蝦性別控制技術(shù)提供參考,進(jìn)而有效指導(dǎo)羅氏沼蝦單性化養(yǎng)殖。

1 羅氏沼蝦性別決定及性別分化

甲殼類動(dòng)物性別決定類型有遺傳決定型、環(huán)境決定型及遺傳與環(huán)境共同決定型(樓允東等,2004;周夢(mèng)穎,2014)。目前,雖然無(wú)直接證據(jù)證實(shí)羅氏沼蝦存在性染色體,但前人的相關(guān)研究結(jié)果顯示,通過(guò)移植促雄性腺(Androgenic gland,AG)獲得的偽雄羅氏沼蝦與正常雌性個(gè)體雜交F1代雌雄比例約3∶1,而F1代雌性個(gè)體與偽雄羅氏沼蝦回交的F2代中雌雄比例為6.63∶1(Malecha,2012);此外,通過(guò)摘除促雄性腺獲得的偽雌羅氏沼蝦與正常雄性個(gè)體雜交,獲得的F1代性別全為雄性(Aflalo et al.,2006;Rungsin et al.,2006)。因此,根據(jù)性逆轉(zhuǎn)及雜交試驗(yàn)的性別比可推測(cè)羅氏沼蝦屬于WZ/ZZ染色體性別決定類型,且表現(xiàn)為雌異(WZ)雄同(ZZ)(Lécher et al.,1995;Benzie et al.,2001;Aflalo et al.,2006;Staelens et al.,2008)。

值得注意的是,甲殼類動(dòng)物特有的內(nèi)分泌腺——促雄性腺在雄性甲殼類動(dòng)物的性別分化、精子發(fā)生及雄性第二性征維持中發(fā)揮重要作用。尤其對(duì)于性別已分化的羅氏沼蝦個(gè)體來(lái)說(shuō),通過(guò)人為摘除或植入促雄性腺可使其性別發(fā)生逆轉(zhuǎn),從而改變生理性別,因此其分泌的促雄性腺激素(Androgenic gland hormone,AGH)不僅是性別決定因素,還是雄性性別分化的調(diào)控因子(樓允東等,2004)。此外,甲殼類動(dòng)物特殊的進(jìn)化地位導(dǎo)致其性別分化過(guò)程極易受外界環(huán)境因素如溫度、鹽度、pH、食物豐度、光照和水質(zhì),以及環(huán)境內(nèi)分泌干擾物(壬基酚)等的影響(吳楠等,2007;朱春華等,2011;周夢(mèng)穎,2014;戴習(xí)林等,2016)。關(guān)于羅氏沼蝦性別分化的時(shí)間,朱春華等(2011)通過(guò)外部形態(tài)觀察結(jié)合性腺組織學(xué)切片的方法,確定了羅氏沼蝦性別分化和性成熟的時(shí)間,具體表現(xiàn)為外部形態(tài)特征的出現(xiàn)稍早于內(nèi)部性征分化時(shí)間,且早期分化和性成熟分別發(fā)生在幼蝦變態(tài)后21和45 d。

2 羅氏沼蝦性別相關(guān)候選基因及分子標(biāo)記

性別控制技術(shù)開發(fā)是實(shí)現(xiàn)羅氏沼蝦單性化養(yǎng)殖的基礎(chǔ),而性別控制技術(shù)的重點(diǎn)在于挖掘和鑒定性別分化與性別決定的關(guān)鍵基因。近年來(lái),隨著分子生物技術(shù)的快速發(fā)展,已有學(xué)者通過(guò)cDNA文庫(kù)構(gòu)建和轉(zhuǎn)錄組測(cè)序等方法篩選獲得羅氏沼蝦性別相關(guān)基因(Cao et al.,2006,2007;Jin et al.,2013;Ma et al.,2019);同時(shí),借助AFLP(Amplified fragment length polymorphism)技術(shù)鑒定出羅氏沼蝦性別特異性分子標(biāo)記(Ventura et al.,2011;Jiang and Qiu,2013),為實(shí)現(xiàn)單性化養(yǎng)殖提供了重要理論依據(jù)。

2. 1 性別相關(guān)基因

2. 1. 1 Mr-IAG基因 甲殼類雄性動(dòng)物特異的促雄性腺最先在軟甲亞綱雄蘭蟹中發(fā)現(xiàn),作為特有的內(nèi)分泌器官,其分泌的促雄性腺激素在促進(jìn)雄性性別分化過(guò)程中發(fā)揮重要作用(Sagi et al.,1997)。近年來(lái),促雄性腺特異性基因(Insulin-like androgenic gland,IAG)相繼被發(fā)現(xiàn)(Lugo et al.,2006;Manor et al.,2007;Shechter et al.,2008;Rosen et al.,2010)。Ventura等(2009)通過(guò)構(gòu)建羅氏沼蝦促雄性腺cDNA消減文庫(kù)鑒定出Mr-IAG基因,經(jīng)測(cè)序比對(duì)分析,發(fā)現(xiàn)成熟Mr-IAG肽段的半胱氨酸骨架結(jié)構(gòu)與其他甲殼類動(dòng)物IAG具有高度的同源性;此外,注射Mr-IAG雙鏈RNA會(huì)暫時(shí)抑制雄性第二性征的重塑和雄性附肢再生,并伴隨蛻皮延后和生長(zhǎng)參數(shù)下降現(xiàn)象;而沉默Mr-IAG基因表達(dá)會(huì)引起精子發(fā)生阻滯和促雄性腺的肥大增生。鑒于Mr-IAG基因能引起雄性性別分化的逆轉(zhuǎn),目前已在小龍蝦(Curtis and Jones,1995;Parnes and Sagi,2002)、青蟹(Trin?o et al.,1999)和斑節(jié)對(duì)蝦(Gopal et al.,2010)等甲殼類動(dòng)物中開展了一系列針對(duì)IAG基因的性別控制研究。

2. 1. 2 Mr-IR基因 胰島素受體(Insulin receptor,IR)屬于酪氨酸激酶受體超家族,作為胰島素家族信號(hào)通路中的重要蛋白,在調(diào)節(jié)胞內(nèi)和胞間環(huán)境的穩(wěn)態(tài)過(guò)程中發(fā)揮重要作用(Fafalios et al.,2011)。已有研究表明,胰島素信號(hào)通路在性別發(fā)育過(guò)程中起主導(dǎo)作用(Nef et al.,2003)。Sharabi等(2016)基于多資源信息構(gòu)建轉(zhuǎn)錄本文庫(kù)鑒定出與脊椎動(dòng)物IR基因具有較高同源性的Mr-IR基因,并成功克隆獲得該基因的cDNA序列,生物信息學(xué)分析結(jié)果顯示其編碼1508個(gè)氨基酸,包含2個(gè)保守跨膜結(jié)構(gòu)域(Transmembrane domain,TM)、2個(gè)配體結(jié)合結(jié)構(gòu)域、3個(gè)纖維蛋白連接素-3結(jié)構(gòu)域及1個(gè)酪氨酸激酶結(jié)構(gòu)域。Mr-IR基因在羅氏沼蝦成蝦的各組織中呈廣泛表達(dá)模式,但與IR基因在脊椎動(dòng)物中的表達(dá)模式存在差異,如在肌肉組織中不表達(dá)(Chen et al.,1996;Steele et al.,1996)。Sharabi等(2016)研究表明,Mr-IR基因沉默并不影響羅氏沼蝦的生長(zhǎng),但顯著影響促雄性腺的增生,促進(jìn)Mr-IAG基因表達(dá)上調(diào)和輸精管遠(yuǎn)端未成熟精細(xì)胞數(shù)量大幅增加;配體斑點(diǎn)試驗(yàn)結(jié)果進(jìn)一步證實(shí),Mr-IR基因與Mr-IAG基因確實(shí)存在配體—受體互作現(xiàn)象??梢姡琈r-IR基因主要通過(guò)作用于促雄性腺而調(diào)控甲殼類動(dòng)物性別分化。

2. 1. 3 Mar-Mrr和MRPINK基因 Cao等(2006,2007)以羅氏沼蝦性腺組織為材料,構(gòu)建雌性和雄性特異的抑制性消減雜交文庫(kù),再通過(guò)差異基因表達(dá)篩選與測(cè)序分析,首次鑒定出與羅氏沼蝦性別相關(guān)的基因Mar-Mrr(M. rosenbergii male reproduction-related gene)和MRPINK(Male reproduction-related peptidase inhibitor kazal-type gene);Northern blotting檢測(cè)和半定量RT-PCR結(jié)果顯示,Mar-Mrr和MRPNIK基因只在雄性生殖系統(tǒng)中特異表達(dá),且以輸精管中的表達(dá)量較高,提示Mar-Mrr和MRPNIK基因可能參與雄性生殖相關(guān)的生理過(guò)程。Phoungpetchara等(2012)通過(guò)RT-PCR和原位雜交技術(shù)檢測(cè)羅氏沼蝦Mar-Mrr基因的時(shí)空表達(dá)模式,結(jié)果也發(fā)現(xiàn)Mar-Mrr基因在雄性生殖系統(tǒng)中特異性高表達(dá),與Cao等(2006,2007)的研究結(jié)果一致。關(guān)于MRPINK基因,Li等(2008)研究發(fā)現(xiàn),MRPINK蛋白對(duì)羅氏沼蝦精子的水解明膠活性具有明顯抑制作用,免疫熒光檢測(cè)結(jié)果顯示,MRPINK基因特異性結(jié)合在精子的基體邊緣部位,通過(guò)抑制精子上的類明膠酶而影響精子活性,由此推測(cè)其對(duì)羅氏沼蝦的受精具有調(diào)節(jié)作用。

2. 1. 4 MroSxl和MroDmrt基因 Sxl基因是果蠅性別決定的關(guān)鍵因子(宋艷等,2009)。俞炎琴(2013)通過(guò)簡(jiǎn)并PCR和cDNA文庫(kù)構(gòu)建等方法獲得4個(gè)羅氏沼蝦Sxl異構(gòu)體(MroSxl1~MroSxl4)。其中,MroSxl1定位于精原細(xì)胞中,推測(cè)其參與精細(xì)胞生成;Mro-Sxl3和MroSxl4在卵巢中特異性高表達(dá),提示其可能參與卵巢發(fā)育。Dmrt(Doublesex and mab-3 related transcription factor)是目前發(fā)現(xiàn)對(duì)性別決定和性別分化起重要作用的基因家族,其家族成員編碼蛋蟲均包含一個(gè)具有DNA結(jié)合能力的保守序列——DM結(jié)構(gòu)域(Doublesex和Mab-3)(Zhu et al.,2000;Kopp,2012)。Dmrt基因編碼蛋白作為轉(zhuǎn)錄調(diào)控因子,已被證實(shí)與果蠅、水蚤及其他甲殼類動(dòng)物的性別兩態(tài)性和性腺發(fā)育密切相關(guān)(Burtis et al.,1991;Keyes et al.,1992;Salz and Erickson,2010)。俞炎琴(2013)采用簡(jiǎn)并PCR和RACE擴(kuò)增成功克隆獲得2個(gè)羅氏沼蝦Dmart基因(MroDmrt11E和MroDmrt99B),其中,MroDmrt11E基因在精巢中高表達(dá),在卵巢中表達(dá)量極低;而MroDmrt99B基因特異性低表達(dá)于精巢中;此外,隨著羅氏沼蝦胚胎的發(fā)育,MroDmrt11E和MroDmrt99B基因的表達(dá)量逐漸增加。

2. 1. 5 其他基因 雌激素相關(guān)受體(Estrogen related receptor,ERR)被視為核受體超家族的第三類亞族,參與雌激素受體信號(hào)通路。ERR作為真核轉(zhuǎn)錄因子,在卵巢發(fā)育和精子生產(chǎn)過(guò)程中發(fā)揮重要作用(Beato et al.,1995;Escriva et al.,2000)。趙苗鑫(2016)成功克隆獲得羅氏沼蝦ERR基因的cDNA序列,其組織表達(dá)譜顯示ERR基因在雌蝦的卵巢組織中高表達(dá),推測(cè)該基因參與調(diào)控羅氏沼蝦的卵巢發(fā)育(趙苗鑫等,2017)。在前期研究的基礎(chǔ)上,劉金磊等(2018)通過(guò)雙鏈RNA(double-strand RNA,dsRNA)干擾沉默羅氏沼蝦ERR基因,并對(duì)dsRNA干擾前后的卵巢樣本進(jìn)行轉(zhuǎn)錄組測(cè)序,結(jié)果共獲得318269674條Clean reads和96272條Unigenes,差異表達(dá)分析得到2490條上調(diào)表達(dá)Unigenes、2557條下調(diào)表達(dá)Unigenes,GO功能富集分析和KEGG通路富集分析發(fā)現(xiàn),差異表達(dá)的Unigenes被富集到與生殖相關(guān)的GO分類條目或KEGG通路上,且發(fā)現(xiàn)ERR基因可能通過(guò)影響cyclinB、PPP2A和ADCY9基因表達(dá)以調(diào)控羅氏沼蝦的卵巢發(fā)育。

隨著第二代測(cè)序技術(shù)的廣泛應(yīng)用,對(duì)羅氏沼蝦性腺進(jìn)行轉(zhuǎn)錄組測(cè)序已成為挖掘性別決定和性別分化候選基因的主要手段。Jung等(2016)以18尾羅氏沼蝦的卵巢和精巢組織為材料,基于454測(cè)序平臺(tái)進(jìn)行轉(zhuǎn)錄組測(cè)序分析,結(jié)果得到超過(guò)750000條高質(zhì)量Clean reads和44407條Contigs,在羅氏沼蝦的卵巢和精巢組織分別得到112和270個(gè)差異表達(dá)基因,提示這些基因可能與性別分化相關(guān)。

2. 2 性別相關(guān)分子標(biāo)記

穩(wěn)定的性別特異分子標(biāo)記對(duì)開展蝦蟹類早期性別鑒定及后期單性化養(yǎng)殖至關(guān)重要。Ventura等(2011)利用AFLP技術(shù)鑒定出一段與羅氏沼蝦性別相關(guān)、3 kb長(zhǎng)的基因組區(qū)域,且該片段存在串聯(lián)序列和逆重復(fù)序列。在此基礎(chǔ)上,設(shè)計(jì)特異性引物并將其轉(zhuǎn)換為SCAR(Sequence-characterized amplified region)分子標(biāo)記,進(jìn)一步分析發(fā)現(xiàn)該段序列在雌、雄羅氏沼蝦中存在細(xì)微差別:雌蝦中,在SCAR上游區(qū)域存在3 bp缺失,且存在2個(gè)雌性特異的SNP位點(diǎn),而該位點(diǎn)基因型表現(xiàn)為雌蝦雜合、雄蝦純合,即SCAR分子標(biāo)記能有效區(qū)分雌、雄和超雌羅氏沼蝦。Jiang和Qiu(2013)利用64對(duì)引物組合對(duì)羅氏沼蝦進(jìn)行AFLP擴(kuò)增,結(jié)果獲得8400條條帶,其中13條為雌性特有的條帶,將其進(jìn)行重?cái)U(kuò)增、克隆及測(cè)序分析,成功篩選出2條可靠的SCAR分子標(biāo)記。上述研究結(jié)果同時(shí)進(jìn)一步佐證羅氏沼蝦可能為WZ/ZZ染色體性別決定類型。

3 羅氏沼蝦單性化養(yǎng)殖

目前,在甲殼類動(dòng)物中主要采用外源激素處理、溫度調(diào)控、種間雜交、雌核發(fā)育、多倍體誘導(dǎo)和促雄性腺移植或摘除等方法進(jìn)行性別控制研究。尤其是性別相關(guān)關(guān)鍵基因的挖掘與鑒定,為甲殼類動(dòng)物的性別控制提供了契機(jī),至今羅氏沼蝦單性化養(yǎng)殖已取得長(zhǎng)足發(fā)展。

3. 1 全雄羅氏沼蝦

國(guó)外關(guān)于全雄羅氏沼蝦的研究始于1990年。Sagi等(1990)通過(guò)摘除早期雄性羅氏沼蝦的促雄性腺,發(fā)現(xiàn)其雄性個(gè)體性逆轉(zhuǎn)為雌性個(gè)體,即偽雌(表型WZ,生理型ZZ),將偽雌個(gè)體與正常雄性個(gè)體雜交即可獲得全雄后代。制約該方法推廣應(yīng)用的最主要技術(shù)瓶頸是無(wú)法準(zhǔn)確、有效地判定羅氏沼蝦的早期發(fā)育階段。為克服這一難題,Aflalo等(2006)開發(fā)兩步法進(jìn)行羅氏沼蝦全雄育種,首先摘除雄性親本的促雄性腺并結(jié)合后裔測(cè)定法確定獲得偽雌個(gè)體,然后與正常雄性羅氏沼蝦雜交獲得F1代,經(jīng)性逆轉(zhuǎn)后大批量生產(chǎn)偽雌個(gè)體,再與正常雄性個(gè)體進(jìn)行回交,而達(dá)到大規(guī)模生產(chǎn)全雄羅氏沼蝦的目的。隨著羅氏沼蝦性別特異分子標(biāo)記的成功挖掘,使得其單性化繁殖更便捷,可操作性更強(qiáng)(Ventura et al.,2011)。隨后,Ventura等(2012)采用注射Mr-IAG基因的dsRNA干擾方法(圖1),成功實(shí)現(xiàn)雄性羅氏沼蝦的性逆轉(zhuǎn)并獲得偽雌個(gè)體;與正常雄性個(gè)體進(jìn)行雜交后,利用前期鑒定獲得的性別特異分子標(biāo)記對(duì)F1代個(gè)體進(jìn)行驗(yàn)證,發(fā)現(xiàn)F1代羅氏沼蝦全為雄性個(gè)體,該結(jié)論為后續(xù)規(guī)?;鄯敝炒蛳铝藞?jiān)實(shí)的基礎(chǔ)。Lezer等(2015)基于性逆轉(zhuǎn)技術(shù)手段進(jìn)行大規(guī)模全雄羅氏沼蝦的生產(chǎn),并對(duì)其后代的生長(zhǎng)性狀表型數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,結(jié)果發(fā)現(xiàn)羅氏沼蝦的性逆轉(zhuǎn)成功率達(dá)86%。通常情況下,偽雌個(gè)體的體重較正常雌性個(gè)體重,生長(zhǎng)速度快,養(yǎng)殖產(chǎn)量較雌雄混養(yǎng)模式提高17%,對(duì)應(yīng)經(jīng)濟(jì)利潤(rùn)提高60%(呂華當(dāng)和沙燮雪,2014)。在國(guó)內(nèi),廣東海洋大學(xué)朱春華教授從1994年開始著手于羅氏沼蝦種苗培育技術(shù)研究,近年來(lái)其團(tuán)隊(duì)基于引進(jìn)的泰國(guó)羅氏沼蝦原種,結(jié)合群體選育和物理、化學(xué)因素的性別控制等手段,成功培育獲得全雄羅氏沼蝦群體(方瓊玟,2017)。

3. 2 全雌羅氏沼蝦

盡管雄蝦較雌蝦生長(zhǎng)快、養(yǎng)殖產(chǎn)出量高;但雄蝦個(gè)體大,性情兇殘,且具有明顯的侵略行為和領(lǐng)地意識(shí),導(dǎo)致單位養(yǎng)殖面積養(yǎng)殖密度較低,進(jìn)而嚴(yán)重影響整個(gè)羅氏沼蝦群體的生長(zhǎng)(Mohanakumaran Nair et al.,2006)。相對(duì)而言,雌蝦具有性情溫順、體型較小及單位面積養(yǎng)殖密度高等優(yōu)點(diǎn),更重要的是含有高營(yíng)養(yǎng)價(jià)值且味美如蟹黃的生殖腺(Gopal et al.,2010;Malecha,2012)。由于雄性羅氏沼蝦的殘殺現(xiàn)象和雌蝦的高營(yíng)養(yǎng)價(jià)值,相同養(yǎng)殖條件下雌蝦養(yǎng)殖所帶來(lái)的經(jīng)濟(jì)效益遠(yuǎn)高于雄蝦養(yǎng)殖。早在1992年,國(guó)外研究學(xué)者就提出甲殼類動(dòng)物全雌養(yǎng)殖極具優(yōu)越性的理念(Malecha et al.,1992)。

繼全雄選育之后,全雌養(yǎng)殖模式將成為一個(gè)全新的養(yǎng)殖策略。以色列本·古里安大學(xué)的Sgai教授團(tuán)隊(duì)率先研發(fā)出羅氏沼蝦全雌養(yǎng)殖技術(shù)(Levy et al.,2016),該技術(shù)是采用移植雄性腺體方法替代傳統(tǒng)的激素、化學(xué)處理或轉(zhuǎn)基因方法,以獲得超雌蝦群體(WW型),目前已實(shí)現(xiàn)大規(guī)模的商業(yè)化模式運(yùn)轉(zhuǎn)。羅氏沼蝦全雌養(yǎng)殖的理論基礎(chǔ)是基于促雄性腺對(duì)動(dòng)物性別分化、精子發(fā)生及雄性性征的調(diào)控作用,其具體操作流程如下:采用眼柄摘除法去除成熟雄性羅氏沼蝦神經(jīng)內(nèi)分泌X器官竇腺體復(fù)合物,使其促雄性腺肥大增生,然后利用酶解法進(jìn)行肥大增生促雄性腺(Hypertrophied androgenic gland,hAG)細(xì)胞的分離和培養(yǎng),獲得的hAG細(xì)胞培養(yǎng)21 d后,以2×103個(gè)細(xì)胞為單位注射到羅氏沼蝦幼體第一腹節(jié)的肌肉組織中,結(jié)合外部形態(tài)特征、組織切片觀察及分子標(biāo)記技術(shù)進(jìn)行偽雄個(gè)體鑒定。通過(guò)對(duì)雌蝦注射hAG細(xì)胞后能成功誘導(dǎo)其性逆轉(zhuǎn)為新的偽雄個(gè)體,與正常雄蝦個(gè)體雜交后,其子代個(gè)體的WW型∶WZ型∶ZZ型比例為1∶2∶1,即獲得25%的WW型超雌個(gè)體。采用分子標(biāo)記技術(shù)對(duì)WW型和WZ型個(gè)體進(jìn)行分離,再與正常雄性個(gè)體進(jìn)行雜交,可獲得100%的全雌個(gè)體(圖2)。大規(guī)模養(yǎng)殖結(jié)果顯示,全雌養(yǎng)殖模式下羅氏沼蝦具有更優(yōu)的生長(zhǎng)性能,主要表現(xiàn)為:①在成蝦養(yǎng)殖過(guò)程中無(wú)個(gè)體殘殺現(xiàn)象,養(yǎng)殖成活率較混養(yǎng)模式提高22%;②養(yǎng)殖群體中無(wú)雄性個(gè)體,雌性個(gè)體不存在抱卵現(xiàn)象,保證在養(yǎng)殖期間持續(xù)增重,成蝦平均體重達(dá)40 g/尾左右;③全雌養(yǎng)殖條件下,羅氏沼蝦總產(chǎn)量較混養(yǎng)模式提高36%;④全雌養(yǎng)殖模式顯著提高了成蝦規(guī)格均一性,飼料轉(zhuǎn)化率提高20%。

4 展望

開展性別分化和性別決定相關(guān)基因研究是實(shí)現(xiàn)羅氏沼蝦單性化養(yǎng)殖及提高其產(chǎn)量的前提工作,但至今鮮見羅氏沼蝦性別相關(guān)基因克隆鑒定的研究報(bào)道。隨著高通量測(cè)序技術(shù)的快速發(fā)展,利用轉(zhuǎn)錄組測(cè)序技術(shù)挖掘缺乏參考基因組信息的羅氏沼蝦性別特異功能基因已成為可能,為揭開羅氏沼蝦性別決定和性別分化的分子機(jī)制提供了技術(shù)保障?;蚓庉嫾夹g(shù)的發(fā)展為人類疾病和動(dòng)、植物復(fù)雜性狀的改良提供了機(jī)遇,目前已在甲殼類動(dòng)物基因編輯方面展開了大量研究工作(Hiruta et al.,2014;Nakanishi et al.,2014;Naitou et al.,2015;Martin et al.,2016)。中國(guó)科學(xué)院海洋研究所張繼泉博士團(tuán)隊(duì)基于CRISPR/Cas9技術(shù)成功實(shí)現(xiàn)了脊尾白蝦的基因組編輯(Gui et al.,2016;Sun et al.,2017),為羅氏沼蝦性別控制指明了新方向,可基于鑒定獲得的性別決定和性別分化主效基因,借助基因編輯技術(shù)實(shí)現(xiàn)性別控制。可見,全雄/全雌羅氏沼蝦育種的關(guān)鍵技術(shù)是偽雌或超雌蝦制備。盡管以色列本·古里安大學(xué)Sagi教授的團(tuán)隊(duì)(Ventura et al.,2011;Lezer et al.,2015)已將全雄羅氏沼蝦制種技術(shù)公之于眾,但具體細(xì)節(jié)及操作規(guī)程仍需進(jìn)一步摸索完善,加之超雌蝦的制備程序繁瑣,選育耗時(shí)較長(zhǎng),且使用年限有限,極大限制了全雌蝦的大規(guī)模生產(chǎn)。受羅非魚三系[原系(XX♀)、雄性純合系(YY♂)和雄性純合轉(zhuǎn)化系(YY♀)]配套方案(楊永銓等,1980,2012)的啟發(fā),今后可對(duì)羅氏沼蝦遺傳型WW超雌個(gè)體進(jìn)行性逆轉(zhuǎn),獲得偽雄個(gè)體(遺傳型WW,生理型ZZ),經(jīng)回交所得后代用于構(gòu)建超雌蝦種質(zhì)庫(kù),即通過(guò)性別決定和性別分化機(jī)制解析及超雌種質(zhì)庫(kù)構(gòu)建,研發(fā)自主的單性化羅氏沼蝦制種技術(shù),培育全雄/全雌羅氏沼蝦將成為可能。

參考文獻(xiàn):

戴習(xí)林,周夢(mèng)穎,鞠波,過(guò)正乾,蔣飛,蘇建,丁福江. 2016. 養(yǎng)殖密度對(duì)羅氏沼蝦生長(zhǎng)、性別分化與性腺發(fā)育的影響[J]. 水產(chǎn)學(xué)報(bào),40(12):1874-1882. [Dai X L,Zhou M Y,Ju B,Guo Z Q,Jiang F,Su J,Ding F J. 2016. Effects of stocking density on growth,sexual differentiation and gonad development of Macrobrachium rosenbergii[J]. Journal of Fisheries of China,40(12):1874-1882.]

方瓊玟. 2017. 朱春華:全雄性羅氏沼蝦已選育到第五代[J]. 海洋與漁業(yè),(9):52-53. [Fang Q W. 2017. Zhu Chunhua:All-male prawns(Macrobrachium rosenbergii) have been bred to the fifth generation[J]. Marine and Fisheries,(9):52-53.]

劉金磊,鄧思平,江東能,陳華譜,李廣麗,吳天利,田昌緒,朱春華. 2018. ERR-dsRNA對(duì)羅氏沼蝦卵巢中ERR及生殖相關(guān)基因表達(dá)的影響[J]. 廣東海洋大學(xué)學(xué)報(bào),38(3):8-16. [Liu J L,Deng S P,Jiang D N,Chen H P,Li G L,Wu T L,Tian C X,Zhu C H. 2018. Screening of ovarian genes associated with reproduction in Macrobrachium rosenbergii and their changes in expression pattern in di-fferent development stages after ERR interference[J]. Journal of Guangdong Ocean University,38(3):8-16.]

樓允東,劉艷紅,邱高峰. 2004. 蝦蟹類性別決定研究進(jìn)展[J]. 上海水產(chǎn)大學(xué)學(xué)報(bào),13(2):157-163. [Lou Y D,Liu Y H,Qiu G F. 2004. Advances in sex determination of shrimps (prawns) and crabs[J]. Journal of Shanghai Fishe-ries University,13(2):157-163.]

呂華當(dāng),沙燮雪. 2014. “全雄性羅氏沼蝦項(xiàng)目”獲首屆諾偉司全球水產(chǎn)創(chuàng)新獎(jiǎng)[J]. 海洋與漁業(yè),(1):17. [Lü H D,Sha Y X. 2014. The project of all-male prawns(Macrobra-chium rosenbergii) won the first novus global aquatic innovation award[J]. Marine and Fisheries,(1):17.]

農(nóng)業(yè)部漁業(yè)漁政管理局. 2017. 中國(guó)漁業(yè)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)農(nóng)業(yè)出版社. [Bureau of Fisheries, Ministry of Agriculture. 2017. China fishery statistical yearbook[M]. Beijing:Chinese Agriculture Press.]

宋艷,柳學(xué)廣,司馬楊虎,朱曉蘇,徐麗,徐世清. 2009. 野桑蠶Bmand-Sxl基因的克隆及原核表達(dá)[J]. 江蘇蠶業(yè),(1):14-18. [Song Y,Liu X G,Sima Y H,Zhu X S,Xu L,Xu S Q. 2009. Cloning and prokaryotic expression of Bmand-Sxl gene in Bambyx mandarina[J]. Jiangsu Sericulture,(1):14-18.]

吳楠,張毅,李惠云,張高峰,劉青,魏華. 2007. 壬基酚和雌二醇干擾羅氏沼蝦卵黃蛋白原VTG基因表達(dá)的效應(yīng)[J]. 動(dòng)物學(xué)雜志,42(4):1-7. [Wu N,Zhang Y,Li H Y,Zhang G F,Liu Q,Wei H. 2007. Endocrine disruption effects of 4-nonylphenol and estradiol on vitellogenin gene expression in vivo in Macrobrachium rosenbergii[J]. Chinese Journal of Zoology,42(4):1-7.]

楊永銓,張海明,陳遠(yuǎn)生. 2012. 尼羅超雄魚的規(guī)?;品N與生產(chǎn)應(yīng)用[J]. 淡水漁業(yè),42(4):75-78. [Yang Y Q,Zhang H M,Chen Y S. 2012. Large-scale breeding production and application of super male Oreochromis niloticus[J]. Freshwater Fisheries,42(4):75-78.]

楊永銓,張中英,林克宏,魏于生,黃二春,高志慧,徐振,柯善春,衛(wèi)建國(guó). 1980. 應(yīng)用三系配套途徑產(chǎn)生遺傳上全雄莫桑比克羅非魚[J]. 遺傳學(xué)報(bào),7(3):241-246. [Yang Y Q,Zhang Z Y,Lin K H,Wei Y S,Huang E C,Gao Z H,Xu Z,Ke S C,Wei J G. 1980. Use of three line combination for production of genetic all-male tilapia Mossambica[J]. Journal of Genetics and Genomics,7(3):241-246.]

俞炎琴. 2013. 羅氏沼蝦中性別發(fā)育相關(guān)基因Sxl和Dmrt基因的分子特征和功能研究[D]. 杭州:浙江大學(xué). [Yu Y Q. 2013. The molecular characterization and functional ana-lysis of sexual development related genes Sxl and Dmrt in the prawn,Macrobrachium rosenbergii[D]. Hangzhou:Zhejiang University.]

趙苗鑫. 2016. 羅氏沼蝦雌激素相關(guān)受體的克隆與表達(dá)及壬基酚對(duì)其表達(dá)的影響[D]. 湛江:廣東海洋大學(xué). [Zhao M X. 2016. Molecular cloning and expression of the estrogen related receptor in Macrobrachium rosenbergii and the effect of nonylphenol on its gene expresstion[D]. Zhanjiang:Guangdong Ocean University.]

趙苗鑫,陳華譜,劉金磊,鄧思平,李廣麗,朱春華,洪宇聰. 2017. 羅氏沼蝦雌激素相關(guān)受體(ERR)基因原核表達(dá)與純化[J]. 廣東海洋大學(xué)學(xué)報(bào),37(1):108-112. [Zhao M X,Chen H P,Liu J L,Deng S P,Li G L,Zhu C H,Hong Y C. 2017. Prokaryotic expression and purification of estrogen related receptor(ERR) gene from Macrobrachium rosenbergii[J]. Journal of Guangdong Ocean University,37(1):108-112.]

周夢(mèng)穎. 2014. 養(yǎng)殖密度、鹽度和溫度對(duì)羅氏沼蝦性別分化和早期性腺發(fā)育的影響[D]. 上海:上海海洋大學(xué). [Zhou M Y. 2014. Effect of stocking density,salinity and temperature on sex differention and early gonadal development on Macrobrachium rosenbergii[D]. Shanghai:Shanghai Ocean University.]

朱春華,薛海波,李郁嬌,黃國(guó)鐘,劉易洋,李廣麗. 2011. 壬基酚(NP)對(duì)羅氏沼蝦幼蝦生長(zhǎng)和性別分化的影響[J]. 水產(chǎn)學(xué)報(bào),35(3):365-371. [Zhu C H,Xue H B,Li Y J,Huang G Z,Liu Y Y,Li G L. 2011. Effects of 4-nonylphenol on growth and sex differentiation in Macrobra-chium rosenbergii[J]. Journal of Fisheries of China,35(3):365-371.]

Aflalo E D,Hoang T T,Nguyen V H,Lam Q,Nguyen D M,Trinh Q S,Raviv S,Sagi A. 2006. A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii[J]. Aquaculture,256(1-4):468-478.

Beato M,Herrlich P,Schütz G. 1995. Steroid hormone receptors:Many actors in search of a plot[J]. Cell,83(6):851-857.

Benzie J A,Kenway M,Ballment E. 2001. Growth of Penaeus monodon×Penaeus esculentus tiger prawn hybrids relative to the parental species[J]. Aquaculture,193(3-4):227-237.

Burtis K C,Coschigano K T,Baker B S,Wensink P C. 1991. The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer[J]. The EMBO Journal,10(9):2577-2582.

Cao J X,Dai J Q,Dai Z M,Yin G L,Yang W J. 2007. A male reproduction-related Kazal-type peptidase inhibitor gene in the prawn,Macrobrachium rosenbergii:Molecular characterization and expression patterns[J]. Marine Biotechnology,9(1):45-55.

Cao J X,Yin G L,Yang W J. 2006. Identification of a novel male reproduction-related gene and its regulated expre-ssion patterns in the prawn,Macrobrachium rosenbergii[J]. Peptides,27(4):728-735.

Chen C,Jack J,Garofalo R S. 1996. The drosophila insulin receptor is required for normal growth[J]. Endocrinology,137(3):846-856.

Curtis M C,Jones C M. 1995. Observations on monosex culture of redclaw crayfish Cherax quadricarinatus von Martens(Decapoda:Parastacidae) in earthen ponds[J]. Journal of the World Aquaculture Society,26(2):154-159.

Escriva H,Delaunay F,Laudet V. 2000. Ligand binding and nuclear receptor evolution[J]. BioEssays,22(8):717-727.

Fafalios A,Ma J,Tan X,Stoops J,Luo J,Defrances M C,Zarnegar R. 2011. A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism[J]. Nature Medicine,17(12):1577-1584.

Gopal C,Gopikrishna G,Krishna G,Jahageerdar S S,Rye M,Hayes B J,Paulpandi S,Kiran R P,Pillai S M,Ravichandran P,Ponniah A G,Kumar D. 2010. Weight and time of onset of female-superior sexual dimorphism in pond reared Penaeus monodon[J]. Aquaculture,300(1-4):237-239.

Gui T S,Zhang J Q,Song F G,Sun Y Y,Xie S J,Yu K J,Xiang J H. 2016. CRISPR/Cas9-mediated genome edi-ting and mutagenesis of EcChi4 in Exopalaemon carinicauda[J]. G3(Bethesda),6(11):3757-3764.

Hiruta C,Ogino Y,Sakuma T,Toyota K,Miyagawa S,Yamamoto T,Iguchi T. 2014. Targeted gene disruption by use of transcription activator-like effector nuclease(TALEN) in the water flea Daphnia pulex[J]. BMC Biotechnology,14:95. doi:10.1186/s12896-014-0095-7.

Jiang X H,Qiu G F. 2013. Female-only sex-linked amplified fragment length polymorphism markers support ZW/ZZ sex determination in the giant freshwater prawn Macrobrachium rosenbergii[J]. Animal Genetics,44(6):782-785.

Jin S B,F(xiàn)u H T,Zhou Q,Sun S M,Jiang S F,Xiong Y W,Gong Y S,Qiao H,Zhang W Y. 2013. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn,Macrobrachium nippo-nense,using Illumina Hiseq 2000[J]. PLoS One,8(10):e76840.

Jung H T,Yoon B H,Kim W J,Kim D W,Hurwood D A,Lyons R E,Salin K R,Kim H S,Baek I,Chand V,Mather P B. 2016. Optimizing hybrid de novo transcriptome assembly and extending genomic resources for giant freshwater prawns(Macrobrachium rosenbergii):The identification of genes and markers associated with reproduction[J]. International Journal of Molecular Sciences,17(5):690. doi:10.3390/ijms17050690.

Keyes L N,Cline T W,Schedl P. 1992. The primary sex determination signal of Drosophila acts at the level of transcription[J]. Cell,68(5):933-943.

Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism[J]. Trends in Genetics,28(4):175-184.

Lécher P,Defaye D,Noel P. 1995. Chromosomes and nuclear-DNA of crustacea[J]. Invertebrate Reproduction & Development,27(2):85-114.

Levy T,Rosen O,Eilam B,Azulay D,Aflalo E D,Manor R,Shechter A,Sagi A. 2016. A single injection of hypertrophied androgenic gland cells produces all-female aquaculture[J]. Marine Biotechnology,18(5):554-563.

Lezer Y,Sagi A,Aflalo E D,Abilevich L K,Sharabi O,Manor R. 2015. On the safety of RNAi usage in aquaculture:The case of all-male prawn stocks generated through manipulation of the insulin-like androgenic gland hormone[J]. Aquaculture,435:157-166.

Li Y,Ma W M,Dai J Q,F(xiàn)eng C Z,Yang F,Ohira T,Nagasawa H,Yang W J. 2008. Inhibition of a novel sperm gelatinase in prawn sperm by the male reproduction-related kazal-type peptidase inhibitor[J]. Molecular Reproduction and Development,75(8):1327-1337.

Lugo J M,Morera Y,Rodríguez T,Huberman A,Ramos L,Estrada M P. 2006. Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti. Functional analysis by double-stranded RNA interference technique[J]. The FEBS Journal,273(24):5669-5677.

Ma K Y,Yu S H,Du Y X,F(xiàn)eng S Q,Qiu L J,Ke D Y,Luo M Z,Qiu G F. 2019. Construction of a genomic bacterial artificial chromosome(BAC) library for the prawn Macrobrachium rosenbergii and initial analysis of ZW chromosome-derived BAC inserts[J]. Marine Biotechnology,21(2):206-216.

Malecha S R,Nevin P A,Ha P,Barck L E,Lamadrid-Rose Y,Masuno S,Hedgecock D. 1992. Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns,Macrobrachium rosenbergii[J]. Aquaculture,105(3-4):201-218.

Malecha S. 2012. The case for all-female freshwater prawn,Macrobrachium rosenbergii (De Man),culture[J]. Aquaculture Research,43(7):1038-1048.

Manor R,Weil S,Oren S,Glazer L,Aflalo E D,Ventura T,Chalifa-Caspi V,Lapidot M,Sagi A.2007. Insulin and gender:An insulin-like gene expressed exclusively in the androgenic gland of the male crayfish[J]. General and Comparative Endocrinology,150(2):326-336.

Martin A,Serano J M,Jarvis E,Bruce H S,Wang J,Ray S,Barker C A,O'Connell L C,Patel N H. 2016. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution[J]. Current Biology,26(1):14-26.

Mohanakumaran Nair C,Salin K R,Raju M S,Sebastian M. 2006. Economic analysis of monosex culture of giant freshwater prawn(Macrobrachium rosenbergii De Man):A case study[J]. Aquaculture Research,37(9):949-954.

Naitou A,Kato Y,Nakanishi T,Matsuura T,Watanabe H. 2015. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna[J]. Biology Open,4(3):364-369.

Nakanishi T,Kato Y,Matsuura T,Watanabe H. 2014. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna[J]. PLoS One,9(5):e98363.

Nef S,Verma-Kurvari S,Merenmies J,Vassalli J D,Efstratiadis A,Accili D,Parada L F. 2003. Testis determination requires insulin receptor family function in mice[J]. Nature,426(6964):291-295.

Parnes S,Sagi A. 2002. Intensification of redclaw crayfish Cherax quadricarinatus culture I.:Growout in a separate cell system[J]. Aquacultural Engineering,26(4):251-262.

Phoungpetchara I,Tinikul Y,Poljaroen J,Changklungmoa N,Siangcham T,Sroyraya M,Chotwiwatthanakun C,Vanichviriyakit R,Hanna P J,Sobhon P. 2012. Expression of the male reproduction-related gene(Mar-Mrr) in the spermatic duct of the giant freshwater prawn,Macrobra-chium rosenbergii[J]. Cell and Tissue Research,348(3):609-623.

Rosen O,Manor R,Weil S,Gafni O,Linial A,Aflalo E D,Ventura T,Sagi A. 2010. A sexual shift induced by silen-cing of a single insulin-like gene in crayfish:Ovarian upregulation and testicular degeneration[J]. PLoS One,5(12):e15281.

Rungsin W,Paankhao N,Na-Nakorn U. 2006. Production of all-male stock by neofemale technology of the thai strain of freshwater prawn,Macrobrachium rosenbergii[J]. Aquaculture,259(1-4):88-94.

Sagi A,Cohen D,Milner Y. 1990. Effect of androgenic gland ablation on morphotypic differentiation and sexual chara-cteristics of male freshwater prawns,Macrobrachium rosenbergii[J]. General and Comparative Endocrinology,77(1):15-22.

Sagi A,Snir E,Khalaila I. 1997. Sexual differentiation in decapod crustaceans:Role of the androgenic gland[J]. Invertebrate Reproduction & Development,31(1-3):55-61.

Salz H K,Erickson J W. 2010. Sex determination in Drosophi-la:The view from the top[J]. Fly(Austin),4(1):60-70.

Sharabi O,Manor R,Weil S,Aflalo E D,Lezer Y,Levy T,Aizen J,Ventura T,Mather P B,Khalaila I,Sagi A. 2016. Identification and characterization of an insulin-like receptor involved in crustacean reproduction[J]. Endocrinology,157(2):928-941.

Shechter A,Glazer L,Cheled S,Mor E,Weil S,Berman A,Bentov S,Aflalo E D,Khalaila I,Sagi A. 2008. A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix[J]. Proceedings of the National Academy of Sciences of the United States of America,105(20):7129-7134.

Staelens J,Rombaut D,Vercauteren I,Argue B,Benzie J,Vuylsteke M. 2008. High-density linkage maps and sex-linked markers for the black tiger shrimp(Penaeus mono-don)[J]. Genetics,179(2):917-925.

Steele R E,Lieu P,Mai N H,Shenk M A,Sarras M P Jr. 1996. Response to insulin and the expression pattern of a gene encoding an insulin receptor homologue suggest a role for an insulin-like molecule in regulating growth and patterning in Hydra[J]. Development Genes and Evolution,206(4):247-259.

Sun Y Y,Zhang J Q,Xiang J H. 2017. A CRISPR/Cas9-media-ted mutation in chitinase changes immune response to bacteria in Exopalaemon carinicauda[J]. Fish & Shellfish Immunology,71:43-49.

Tri?o A T,Millamena O M,Keenan C. 1999. Commercial evaluation of monosex pond culture of the mud crab Scy-lla species at three stocking densities in the Philippines[J]. Aquaculture,174(1-2):109-118.

Ventura T,Aflalo E D,Weil S,Kashkush K,Sagi A. 2011. Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii[J]. Heredity,107(5):456-461.

Ventura T,Manor R,Aflalo E D,Weil S,Raviv S,Glazer L,Sagi A. 2009. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis[J]. Endocrinology,150(3):1278-1286.

Ventura T,Manor R,Aflalo E D,Weil S,Rosen O,Sagi A. 2012. Timing sexual differentiation:Full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn,Macrobrachium rosenbergii[J]. Biology of Reproduction,86(3):90. doi:10.1095/biolreprod.111.097261.

Zhu L,Wilken J,Phillips N B,Narendra U,Chan Q,Stratton S M,Kent S B,Weiss M A. 2000. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers[J]. Genes & Development,14(14):1750-1764.

(責(zé)任編輯 蘭宗寶)

铁岭县| 台北市| 宁乡县| 察隅县| 犍为县| 三明市| 涿州市| 安陆市| 阿克| 弋阳县| 大厂| 肥东县| 琼中| 太仓市| 万年县| 郁南县| 武冈市| 云浮市| 江陵县| 宁都县| 庆云县| 乐平市| 彰武县| 满城县| 时尚| 高台县| 楚雄市| 宁阳县| 阿荣旗| 宁安市| 巴楚县| 原阳县| 葵青区| 永州市| 靖州| 兴化市| 西林县| 保山市| 松桃| 和政县| 承德市|