蘭燕月 張飲江 宋增福 吳圣哲 徐成龍 趙志淼
摘要:【目的】設(shè)計(jì)一種可有效降低海水暫養(yǎng)循環(huán)系統(tǒng)中氮濃度的新型脫氮技術(shù)工藝,提高鮮活海產(chǎn)品的暫養(yǎng)存活率,以確保健康安全海產(chǎn)品的流通及滿足人們的膳食需求?!痉椒ā酷槍?duì)暫養(yǎng)水體溫度低、碳氮比低及溶解氧高等特點(diǎn),采用農(nóng)業(yè)廢棄物玉米芯作為碳源和生物膜載體,通過(guò)馴化低溫脫氮菌(硝化菌和反硝化菌)并結(jié)合人工強(qiáng)化掛膜方式建立同步硝化反硝化脫氮系統(tǒng)。【結(jié)果】經(jīng)低溫、高鹽馴化富集培養(yǎng)的硝化菌富集液和反硝化菌富集液均以變形菌門(Proteobacteria)和擬桿菌門(Bacteroidetes)為主,但在綱水平上,硝化菌富集液中以γ-變形菌綱(Gammaproteobacteria)和α-變形桿菌綱(Alphaproteobacteria)為主,其相對(duì)豐度分別為83.50%和12.90%,而在反硝化菌富集液中γ-變形菌綱為主要綱,其相對(duì)豐度為91.30%。通過(guò)電鏡掃描發(fā)現(xiàn),置于脫氮反應(yīng)器內(nèi)的玉米芯表層有微生物膜覆蓋,其表層孔隙數(shù)量明顯減少;玉米芯還作為固相碳源,促使反硝化過(guò)程持續(xù)進(jìn)行。玉米芯脫氮反應(yīng)器裝置運(yùn)行60 d內(nèi),出水口水樣的總氮、氨氮和硝氮去除率均隨時(shí)間推移呈先升高后降低的變化趨勢(shì),最高去除率分別達(dá)(63.46±0.55)%、(62.79±0.52)%和(65.00±0.63)%?!窘Y(jié)論】以玉米芯為碳源和生物膜載體、利用人工強(qiáng)化掛膜構(gòu)建的玉米芯脫氮反應(yīng)器裝置能同步實(shí)現(xiàn)硝化反硝化過(guò)程,脫氮效果佳且可保證系統(tǒng)長(zhǎng)期運(yùn)行,還具有構(gòu)建工藝簡(jiǎn)單、體積小及成本低等特點(diǎn),適用于大部分海產(chǎn)品低溫暫養(yǎng)系統(tǒng)。
關(guān)鍵詞: 海水暫養(yǎng)循環(huán)系統(tǒng);低溫;玉米芯;同步硝化反硝化;脫氮效果
中圖分類號(hào): S983.022? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)08-1836-08
Construction and application of denitrification system of seawater temporary nutrition system at low temperature
LAN Yan-yue1, ZHANG Yin-jiang1,2*, SONG Zeng-fu3,4, WU Sheng-zhe5,
XU Cheng-long1, ZHAO Zhi-miao1
(1College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai? 201306, China; 2Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai? 201306, China; 3College of Fisheries and Life Science, Shanghai Ocean University, Shanghai? 201306, China; 4National Pathogen Collection Center for Aquatic Animals(Shanghai Ocean University), Shanghai? 201306, China; 5Fuzhou Xinhengzhi Aquarium & Equipment Co.,Ltd., Fuzhou? 350000, China)
Abstract:【Objective】To design a new denitrification technology which could effectively reduce the nitrogen concentration in the seawater temporary nutrient circulation system and improve the temporary survival rate of fresh seafood, so as to ensure the circulation of healthy and safe seafood and continuously meet people’s dietary needs. 【Method】In view of the characteristics of low temperature, low C/N ratio and high dissolved oxygen in temporary water, corn cob was used as carbon source and biofilm carrier to establish simultaneous nitrification and denitrification system by domesticating low-temperature denitrifying bacteria(nitrifying bacteria and denitrifying bacteria) combined with artificial enhanced film-hanging. 【Result】Proteobacteria and Bacteroidetes were the main components of nitrifying bacteria and denitrifying bacteria enrichment solution after acclimation at low temperature and high salinity, but gammaproteobacteria and alphaproteobacteria were the main components of nitrifying bacteria enrichment solution at class level, and their relative abundances were 83.50% and 12.90% respectively. The relative abundance of gammaproteobacteria in denitrifying bacteria enrichment solution was 91.30%. By scanning electron microscopy, it was found that microbial membrane covered the surface of corn cob in denitrification reactor, and the number of pore in the surface decreased greatly. Corn cob was also used as so-lid carbon source to promote denitrification. Within 60 d of operation of corn cob denitrification reactor, the removal rates of total nitrogen, ammonia nitrogen and nitrate nitrogen in outlet water increased first and then decreased with time. The highest removal rates were(63.46±0.55)%, (62.79±0.52)% and (65.00±0.63)% respectively. 【Conclusion】Corn cob denitrification reactor with corn cob as carbon source and biofilm carrier and artificial strengthening film formation can realize simultaneous nitrification and denitrification process. The effect of denitrification is good and the system can run for a long time. It also has the characteristics of simple construction process, small size and low cost. It is suitable for most marine products temporary maintenance system.
Key words: seawater temporary nutrition circulation system; low temperature; corn cob; simultaneous nitrification and denitrification; denitrification effect
0 引言
【研究意義】近年來(lái),隨著人們生活水平的不斷提高,市場(chǎng)對(duì)鮮活海產(chǎn)品的需求量也逐年增長(zhǎng)(孫娟和楊德利,2011;李湘江等,2018)。由于傳統(tǒng)海水暫養(yǎng)系統(tǒng)的水體循環(huán)不合理、過(guò)濾器效果差,且缺乏專門的脫氮設(shè)備,導(dǎo)致海產(chǎn)品存活率低的問(wèn)題仍然制約著鮮活海產(chǎn)品運(yùn)輸、銷售等產(chǎn)業(yè)鏈的延伸與發(fā)展(何蓉和謝晶,2012;Yang et al.,2012;徐子涵和茅林春,2018),因此,科學(xué)改進(jìn)低溫條件下的海水暫養(yǎng)系統(tǒng)以提高鮮活海產(chǎn)品存活率及其品質(zhì)迫在眉睫?!厩叭搜芯窟M(jìn)展】傳統(tǒng)的養(yǎng)殖水體處理工藝主要關(guān)注氨氮和亞硝態(tài)氮去除效果(李玲和楚國(guó)生,2010;李梅,2017;李冬梅等,2018),而忽略硝酸鹽積累對(duì)水產(chǎn)品造成的危害。Heather等(2008)、van Bussel等(2012)研究表明,在高濃度的硝酸鹽條件下,水生動(dòng)物組織發(fā)育減緩、激素分泌功能下降、生理機(jī)能變?nèi)酰踔了劳?。Kuhn等(2010)研究表明,硝酸鹽的累積能明顯抑制蝦類存活率,并引發(fā)胰腺病變,降低產(chǎn)量。目前,提高鮮活海產(chǎn)品存活率的手段主要是采取低溫暫養(yǎng)。低溫暫養(yǎng)可有效保證海產(chǎn)品的鮮活度(何登菊等,2010;王榮業(yè),2018),尤其是低溫高濕環(huán)境能降低其代謝水平,而有利于提高鮮活海產(chǎn)品的存活率(張飲江等,2005);但低溫條件下脫氮微生物難以富集,導(dǎo)致暫養(yǎng)系統(tǒng)的水質(zhì)較差(Shapovalova et al.,2008)。因此,富集培養(yǎng)耐鹽、耐低溫的脫氮菌及合理構(gòu)建脫氮系統(tǒng)是解決傳統(tǒng)海水暫養(yǎng)系統(tǒng)海產(chǎn)品存活率問(wèn)題的關(guān)鍵。Larsen等(2015)研究表明,將水溫降至15 ℃能有效提高美國(guó)牡蠣的存活效果,且降低副溶血性弧菌和創(chuàng)傷弧菌的感染風(fēng)險(xiǎn)。王振華等(2015)研究發(fā)現(xiàn),水溫以1 ℃/h的速度降至應(yīng)激溫度[(14.3±0.8)℃]時(shí),吉富羅非魚的血糖、肌糖原和乳酸水平均呈上升趨勢(shì),其中肌糖原上升趨勢(shì)最明顯;低溫應(yīng)激影響在24 h后通過(guò)羅非魚自身調(diào)整消除,各生理生化指標(biāo)最終趨于穩(wěn)定。潘瀾瀾等(2017)研究發(fā)現(xiàn),凈化暫養(yǎng)循環(huán)水系統(tǒng)與低溫離水?;钕嘟Y(jié)合能有效延長(zhǎng)蝦夷扇貝的?;顣r(shí)間并提高其品質(zhì)。賈晉和賈濤(2018)針對(duì)國(guó)內(nèi)小龍蝦市場(chǎng)供不應(yīng)求的現(xiàn)狀,自主研發(fā)了一套低溫暫養(yǎng)循環(huán)水系統(tǒng),有效解決了小龍蝦車載運(yùn)輸及車間長(zhǎng)期暫養(yǎng)的問(wèn)題。【本研究切入點(diǎn)】綜上所述,如何優(yōu)化海水暫養(yǎng)系統(tǒng)水體循環(huán),實(shí)現(xiàn)低溫脫氮效果的同時(shí)保證海產(chǎn)品存活率,且經(jīng)濟(jì)有效是構(gòu)建海產(chǎn)品活體循環(huán)暫養(yǎng)系統(tǒng)亟待解決的關(guān)鍵問(wèn)題(黃嘯和陸茵,2010;張成林等,2016),但目前鮮見(jiàn)低溫條件下海水暫養(yǎng)裝置脫氮系統(tǒng)構(gòu)建及其應(yīng)用的相關(guān)研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】針對(duì)暫養(yǎng)水體溫度低、碳氮比低及溶解氧高等特點(diǎn),采用農(nóng)業(yè)廢棄物玉米芯作為碳源和生物膜載體,通過(guò)馴化低溫脫氮菌(硝化菌和反硝化菌)并結(jié)合人工強(qiáng)化掛膜方式建立同步硝化反硝化脫氮系統(tǒng),最終設(shè)計(jì)出一種可有效降低海水暫養(yǎng)循環(huán)系統(tǒng)中氮濃度的新型脫氮技術(shù)工藝,旨在提高鮮活海產(chǎn)品的暫養(yǎng)存活率,確保健康安全海產(chǎn)品的流通及滿足人們的膳食需求。
1 材料與方法
1. 1 試驗(yàn)材料
硝化菌樣品于2018年3月采自上海海洋大學(xué)海參循環(huán)水養(yǎng)殖系統(tǒng),水溫15.0 ℃。反硝化菌樣品采自上海海洋大學(xué)濱?;爻靥琉B(yǎng)殖底泥,4 ℃保存?zhèn)溆?。玉米芯取自上海市寶山區(qū)羅南鎮(zhèn)羅南新村農(nóng)田,以蒸餾水浸泡4 h過(guò)濾清洗后,置于鼓風(fēng)干燥箱中50.0 ℃干燥12 h,取出置于干燥器中保存?zhèn)溆?。參照常?guī)海產(chǎn)品循環(huán)暫養(yǎng)系統(tǒng)的水質(zhì)指標(biāo)(表1),以海水晶配制人工海水(鹽度25.00‰~27.00‰),添加適量硝酸鉀、硫酸銨和磷酸二氫鉀后即獲得試驗(yàn)用養(yǎng)殖海水。
1. 2 硝化菌和反硝化菌馴化富集培養(yǎng)
硝化菌與反硝化菌馴化富集培養(yǎng)裝置見(jiàn)圖1。硝化菌馴化:取500 mL水樣放入5 L錐形瓶中,加入4 L改良Stephenson硝化菌培養(yǎng)液,以氯化鈉調(diào)整鹽度至(25.00±0.50)‰,碳酸氫鈉溶液調(diào)節(jié)pH 7.0~7.5,充氧并攪拌,溶解氧含量保持在4 mg/L以上,15.0 ℃恒溫馴化培養(yǎng)60 d(鄭林雪等,2015;劉洋等,2017)。反硝化菌馴化:取適量底泥樣品放入5 L錐形瓶中,加入4 L反硝化菌培養(yǎng)液(硝酸鉀2.00 g/L,檸檬酸鈉5.00 g/L,磷酸氫二鈉1.00 g/L,硫酸鎂0.02 g/L,磷酸氫二鉀1.00 g/L),厭氧馴化培養(yǎng)15 d。
1. 3 人工強(qiáng)化掛膜
成功馴化富集培養(yǎng)硝化菌和反硝化菌后,取適量反硝化菌液置于10 L玻璃容器中,參考邵留等(2018)的人工強(qiáng)化掛膜方式,將玉米芯投放至反硝化菌液中充分浸泡3 d,溫度保持在15.0 ℃,然后將馴化富集培養(yǎng)好的硝化菌用噴壺均勻噴灑在已浸泡過(guò)反硝化菌的玉米芯柱外層。采用掃描電鏡法對(duì)玉米芯載體表面生物掛膜情況及生膜表面形態(tài)進(jìn)行觀察分析。
1. 4 同步硝化反硝化脫氮系統(tǒng)構(gòu)建
同步硝化反硝化脫氮系統(tǒng)即玉米芯脫氮反應(yīng)器裝置(圖2),玉米芯柱置于反應(yīng)器內(nèi),反應(yīng)器(底部直徑24 cm,高26 cm)為PVC材質(zhì),分別設(shè)有進(jìn)水口和出水口,進(jìn)水口和出水口距反應(yīng)器底部高度分別為3和23 cm。將經(jīng)人工強(qiáng)化掛膜的玉米芯(干重1 kg)置于過(guò)篩孔徑2 cm的網(wǎng)箱內(nèi)塑成柱狀,垂直固定于反應(yīng)器內(nèi)。試驗(yàn)?zāi)M循環(huán)暫養(yǎng)水由儲(chǔ)水池經(jīng)蠕動(dòng)泵推流進(jìn)入反應(yīng)器,控制流速為15.00±0.24 mL/min,反應(yīng)器內(nèi)溫度保持在(15.0±0.2)℃,設(shè)3組平行裝置。
1. 5 微生物群落結(jié)構(gòu)分析
微生物群落結(jié)構(gòu)采用16S rRNA基因文庫(kù)進(jìn)行分析,取混合樣品,每個(gè)樣品10 mL,以干冰凍存后24 h內(nèi)完成檢測(cè)。硝化菌液高通量測(cè)序采用細(xì)菌通用引物(5'-CARTGYCAYGTBGARTA-3'和5'-TWN GGCATRTGRCARTC-3'),反硝化菌液高通量測(cè)序采用nrfA引物(5'-CARTGYCAYGTBGARTA-3'和5'-TWNGGCATRTGRCARTC-3')。具體技術(shù)路線(潘彥碩等,2018;佟延南等,2018):微生物組總DNA提取→目標(biāo)片段PCR擴(kuò)增→擴(kuò)增產(chǎn)物回收純化→擴(kuò)增產(chǎn)物熒光定量→測(cè)序文庫(kù)制備→上機(jī)進(jìn)行高通量測(cè)序。依據(jù)高通量測(cè)序所得數(shù)據(jù)分析菌種多樣性水平及樣本菌群的代謝功能。
1. 6 水質(zhì)檢測(cè)方法
玉米芯脫氮反應(yīng)器裝置運(yùn)行60 d,期間每2 d采集1次進(jìn)水口和出水口的水樣。總氮采用過(guò)硫酸鉀氧化法測(cè)定,氨氮采用次溴酸鹽氧化法測(cè)定,硝氮采用鋅—鉻還原法測(cè)定,總有機(jī)碳(TOC)采用總有機(jī)碳分析儀(TOC-L,日本島津)進(jìn)行測(cè)定,pH和水溫采用多參數(shù)水質(zhì)分析儀進(jìn)行檢測(cè)。
1. 7 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2013和SPSS 20.0進(jìn)行統(tǒng)計(jì)分析。
2 結(jié)果與分析
2. 1 硝化菌和反硝化菌的馴化富集情況
利用微生物馴化富集培養(yǎng)裝置,在低溫條件下將硝化菌和反硝化菌分別馴化富集培養(yǎng)60和15 d后,硝化菌液和反硝化菌液各取2個(gè)平行樣品。利用微生物高通量測(cè)序技術(shù)對(duì)富集液內(nèi)的微生物群落結(jié)構(gòu)進(jìn)行檢測(cè)分析,經(jīng)低溫、高鹽度馴化富集培養(yǎng)的硝化菌富集液和反硝化菌富集液在各分類水平下的微生物類群數(shù)量如表2所示。在門水平上,硝化菌富集液、反硝化菌富集液的優(yōu)勢(shì)菌群均以變形菌門(Proteobacteria)和擬桿菌門(Bacteroidetes)為主,對(duì)應(yīng)的相對(duì)豐度分別為95.76%和2.70%、95.21%和3.54%。在綱水平上,硝化菌富集液中以γ-變形菌綱(Gammaproteobacteria)和α-變形桿菌綱(Alphaproteobacteria)為主(圖3-A),其相對(duì)豐度分別為83.50%和12.90%;而在反硝化菌富集液中以γ-變形菌綱為主要綱(圖3-B),其相對(duì)豐度為91.30%。
2. 2 微生物膜表觀結(jié)構(gòu)的電鏡掃描結(jié)果
使用反硝化菌液浸泡玉米芯3 d后,再將硝化菌液噴灑于玉米芯表層,肉眼觀察玉米芯表面附著有透明水狀膜。通過(guò)電鏡對(duì)玉米芯表面生物膜的附著情況及其表面形態(tài)進(jìn)行掃描分析,結(jié)果顯示,玉米芯經(jīng)人工強(qiáng)化掛膜后其表層孔隙數(shù)量明顯減少(圖4-A和圖4-B),即減少的孔隙可能已被微生物所附著;而未掛膜的玉米芯表層呈蜂窩狀,孔隙數(shù)較多(圖4-C和圖4-D)。
2. 3 玉米芯脫氮反應(yīng)器的脫氮效果
試驗(yàn)期間玉米芯脫氮反應(yīng)器裝置出水口水樣的總氮、氨氮、硝氮濃度及其去除率變化情況分別如圖5-A、圖5-B和圖5-C所示。經(jīng)人工強(qiáng)化掛膜,玉米芯脫氮反應(yīng)器運(yùn)行2 d后,循環(huán)水樣的總氮、氨氮和硝氮去除率分別為(54.03±0.41)%、(46.56±0.32)%和(56.60±0.40)%。在整個(gè)試驗(yàn)期間,總氮去除率隨時(shí)間推移呈先升高后降低的變化趨勢(shì),最高可達(dá)(63.46±0.55)%,試驗(yàn)后期去除率降低的原因是微生物數(shù)量減少所致。玉米芯脫氮反應(yīng)器裝置運(yùn)行期間,氨氮、硝氮的去除率最高可達(dá)(62.79±0.52)%和(65.00±0.63)%,其變化趨勢(shì)與總氮基本一致,說(shuō)明經(jīng)低溫、高鹽馴化富集培養(yǎng)的硝化菌和反硝化菌在玉米芯脫氮反應(yīng)器裝置系統(tǒng)內(nèi)具有良好的適應(yīng)性。
試驗(yàn)前、中期循環(huán)水樣的總氮、氨氮和硝氮均能保持相對(duì)穩(wěn)定的去除率,基本維持在(45.00±0.33)%~(65.00±0.71)%;試驗(yàn)后期(≥45 d),總氮、氨氮和硝氮的去除率呈明顯下降趨勢(shì)。結(jié)合圖5-D可看出,出水口水樣TOC濃度下降明顯,說(shuō)明玉米芯內(nèi)易分解有機(jī)物被大量消耗,反硝化碳源不斷減少,從而導(dǎo)致總氮去除率下降;但硝氮去除率仍保持在(50.00±0.48)%~(42.00±0.34)%,可能是玉米芯此時(shí)又作為固相碳源,促使反硝化過(guò)程得以持續(xù)進(jìn)行。
3 討論
3. 1 微生物馴化富集培養(yǎng)與人工強(qiáng)化掛膜
目前,人們對(duì)海產(chǎn)品質(zhì)量及水質(zhì)量要求越來(lái)越高與暫養(yǎng)系統(tǒng)水處理效果較差的矛盾日益突出。本研究用于低溫、高鹽馴化富集培養(yǎng)的微生物種類是常用水處理菌群,且與多數(shù)同步硝化反硝化反應(yīng)器細(xì)菌群落分布情況一致。Bae等(2010)研究發(fā)現(xiàn),厭氧氨氧化生物反應(yīng)器啟動(dòng)后其細(xì)菌群落結(jié)構(gòu)中以變形菌門為主,占42.00%,且遠(yuǎn)高于浮霉菌門(Planctomycetes)的20.00%。李濱等(2012)通過(guò)分析穩(wěn)定運(yùn)行的UASB厭氧氨氧化反應(yīng)器,也發(fā)現(xiàn)是變形菌門占據(jù)主導(dǎo)位置(41.90%)。本研究結(jié)果表明,硝化菌富集液、反硝化菌富集液的優(yōu)勢(shì)菌群均以變形菌門和擬桿菌門為主,但在綱水平上,硝化菌富集液中以γ-變形菌綱和α-變形桿菌綱為主,其相對(duì)豐度分別為83.50%和12.90%,而在反硝化菌富集液中γ-變形菌綱為主要綱,其相對(duì)豐度為91.30%。變形菌綱是一類分布廣泛的環(huán)境微生物類群,可從海洋、超鹽環(huán)境、堿性或酸性生境中分離獲得。張現(xiàn)輝和孔凡晶(2010)研究表明,西藏扎布耶鹽湖的細(xì)菌類群多樣性主要分布在變形菌綱、擬桿菌綱(Bacteroidetes)、芽孢桿菌綱(Bacilli)和疣微菌綱(Verrucomicrobiae)中,尤其以變形菌綱為主。朱德銳等(2012)研究發(fā)現(xiàn),青海湖湖域生境中的嗜鹽微生物以γ-變形菌綱為優(yōu)勢(shì)類群,約占68.60%??梢?jiàn),本研究通過(guò)低溫、高鹽馴化富集培養(yǎng)獲得的菌群是適用于海水養(yǎng)殖水處理的菌種。
馴化富集培養(yǎng)的微生物菌群能利用玉米芯作為生物膜載體進(jìn)行人工強(qiáng)化掛膜,而載體表面粗糙程度和孔隙度是影響微生物附著和生長(zhǎng)的重要因素,因?yàn)楦街d體比表面積和孔隙越大,與微生物可接觸面積就越大,越有利于微生物附著(李華等,2016)。玉米芯作為生物膜附著載體應(yīng)用于污水處理時(shí),可間接增大與水體的接觸面積,從而提高水體凈化效率(陳濤等,2018;邵留等,2018)。從本研究中玉米芯掛膜前后的電鏡掃描結(jié)果可知,玉米芯表層孔隙多且密集,非常有利于微生物附著。掛膜后的玉米芯表層孔隙明顯減少,說(shuō)明微生物在低溫、高鹽條件下掛膜情況良好。
3. 2 裝置脫氮效果及其作用機(jī)理分析
玉米芯脫氮反應(yīng)器裝置運(yùn)行期間,pH始終穩(wěn)定在7.2~7.6,適宜于同步硝化反硝化的發(fā)生(鄒聯(lián)沛等,2001)。本研究以玉米芯作為載體,通過(guò)人工強(qiáng)化掛膜,使玉米芯內(nèi)部附著反硝化菌、外部附著硝化菌,即實(shí)現(xiàn)同步硝化反硝化過(guò)程。邵留等(2018)利用玉米芯作為生物膜載體以去除羅非魚養(yǎng)殖水體中的總氮,其去除效果良好,去除率達(dá)85%。本研究構(gòu)建的玉米芯脫氮反應(yīng)器裝置在低溫、高鹽環(huán)境下可持續(xù)運(yùn)行并保證較高的總氮去除效果[總氮去除率(63.46±0.55)%],說(shuō)明該裝置可在低溫、高鹽條件下同步實(shí)現(xiàn)硝化反硝化脫氮,且能保持長(zhǎng)期運(yùn)行。玉米芯脫氮反應(yīng)器裝置運(yùn)行40 d后,出水口水樣的TOC濃度(約30 mg/L)進(jìn)入穩(wěn)定期,結(jié)合硝氮去除率的變化趨勢(shì)可知,試驗(yàn)前、中期是以玉米芯所分解的有機(jī)物作為微生物反硝化碳源,從而促進(jìn)脫氮(王芳等,2014;陳濤等,2018);試驗(yàn)后期當(dāng)水體中碳源含量較低時(shí),玉米芯本身可作為固相碳源,釋放出一定量的有機(jī)碳促進(jìn)反硝化持續(xù)進(jìn)行。在同步硝化反硝化的過(guò)程中,碳源含量直接影響脫氮效率(趙冰怡等,2009)。本研究利用可釋放溶解性有機(jī)碳的玉米芯,經(jīng)微生物菌液人工強(qiáng)化掛膜后將其置于反應(yīng)器中用于處理海產(chǎn)品暫養(yǎng)污水,效果佳且可保證系統(tǒng)長(zhǎng)期運(yùn)行。此外,玉米芯表層附著的硝化菌需消耗大量進(jìn)水溶解氧,導(dǎo)致擴(kuò)散至玉米芯柱內(nèi)部的溶解氧減少,促使玉米芯內(nèi)部呈缺/厭氧環(huán)境,而有利于反硝化菌的生長(zhǎng)與繁殖;當(dāng)水體中碳源含量不足時(shí),玉米芯所釋放的有機(jī)碳源亦可保證反硝化過(guò)程順利進(jìn)行。
4 結(jié)論
以玉米芯為碳源和生物膜載體、利用人工強(qiáng)化掛膜構(gòu)建的玉米芯脫氮反應(yīng)器裝置能同步實(shí)現(xiàn)硝化反硝化過(guò)程,脫氮效果佳且可保證系統(tǒng)長(zhǎng)期運(yùn)行,還具有構(gòu)建工藝簡(jiǎn)單、體積小及成本低等特點(diǎn),適用于大部分海產(chǎn)品低溫暫養(yǎng)系統(tǒng)。
參考文獻(xiàn):
陳濤,于魯冀,張新民,柏義生,范鵬宇. 2018. 玉米芯強(qiáng)化水平潛流人工濕地脫氮研究[J]. 工業(yè)安全與環(huán)保,44(8):73-76. [Chen T,Yu L J,Zhang X M,Bo Y S,F(xiàn)an P Y. 2018. Advanced nitrogen removal under the condition of corncob laid in subsurface flow constructed wetland[J]. Industrial Safety and Environmental Protection,44(8):73-76.]
何登菊,楊興,姚俊杰,梁正其,劉霆. 2010. 低溫保活運(yùn)輸對(duì)鱘魚肌肉主要營(yíng)養(yǎng)成分的影響[J]. 貴州農(nóng)業(yè)科學(xué),38(6):157-158. [He D J,Yang X,Yao J J,Liang Z Q,Liu T. 2010. Effect of low temperature transport on major nutritional components in muscle of Acipenser sturio[J]. Guizhou Agricultural Sciences,38(6):157-158.]
何蓉,謝晶. 2012. 水產(chǎn)品?;罴夹g(shù)研究現(xiàn)狀和進(jìn)展[J]. 食品與機(jī)械,28(5):243-246. [He R,Xie J. 2012. Curren status and advances in studies on technology of keeping alive of aquatic products[J]. Food and Machinery,28(5):243-246.]
黃嘯,陸茵. 2010. 水產(chǎn)活體流通運(yùn)輸?shù)难芯楷F(xiàn)狀[J]. 浙江農(nóng)業(yè)科學(xué),(2):431-434. [Huang X,Lu Y. 2010. Research status of aquatic product circulation and transportation[J]. Journal of Zhejiang Agricultural Sciences,(2):431-434.]
賈晉,賈濤. 2018. 克氏螯蝦低溫暫養(yǎng)循環(huán)水系統(tǒng)構(gòu)建[J]. 黑龍江水產(chǎn),(5):21-24. [Jia J,Jia T. 2018. Construction of circulating water system for crayfish temporary culture at low temperature[J]. Fisheries of Heilongjiang,(5):21-24.]
李濱,趙志瑞,馬斌,張樹軍,劉新春,王曉輝,白志輝. 2012. 克隆文庫(kù)方法分析厭氧氨氧化反應(yīng)器中細(xì)菌群落結(jié)構(gòu)[J]. 環(huán)境科學(xué)與技術(shù),35(12):159-164. [Li B,Zhao Z R,Ma B,Zhang S J,Liu X C,Wang X H,Bai Z H. 2012. Analysis on bacterial diversity of an anaerobic ammo-nium-oxidizing reactor by use of 16S rDNA clone library[J]. Environmental Science and Technology,35(12):159-164.]
李冬梅,黃俊,吳翠如,梁金玲,黃明珠,王子熙. 2018. 生物—納米改性濾料處理氨氮與CODMn研究[J]. 水處理技術(shù),44(9):124-128. [Li D M,Huang J,Wu C R,Liang J L,Huang M Z,Wang Z X. 2018. Research on NH4+-N and CODMn treatment efficiency by biological-nano modified filter materials[J]. Technology of Water Treatment,44(9):124-128.]
李華,周子明,劉青松,董宏標(biāo),段亞飛,李純厚,張家松. 2016. 稻殼作為反硝化碳源在海水中的脫氮性能研究[J]. 工業(yè)水處理,36(3):58-61. [Li H,Zhou Z M,Liu Q S,Dong H B,Duan Y F,Li C H,Zhang J S. 2016. Research on the denitrification capacity of rice husk as denitrification carbon source in seawater[J]. Industrial Water Treatment,36(3):58-61.]
李玲,楚國(guó)生. 2010. 封閉循環(huán)養(yǎng)殖系統(tǒng)氨氮和亞硝酸鹽去除效果研究[J]. 吉林水利,(2):34-38. [Li L,Chu G S. 2010. A study on removal ammonia,nitrogen and nitrite in close-cycle aquaculture system[J]. Jilin Water Resour-ces,(2):34-38.]
李梅. 2017. 全封閉式循環(huán)水養(yǎng)殖系統(tǒng)中生物濾器生物膜培養(yǎng)[J]. 農(nóng)業(yè)與技術(shù),37(16):241-242. [Li M. 2017. Biofilm culture of biofilter in fully enclosed recirculated aquaculture system[J]. Agriculture and Technology,37(16):241-242.]
李湘江,丁源,徐曉蓉,鄭睿行. 2018. 我國(guó)即食水產(chǎn)品現(xiàn)狀與發(fā)展趨勢(shì)[J]. 農(nóng)產(chǎn)品加工,(9):82-83. [Li X J,Ding Y,Xu X R,Zheng R X. 2018. Status and development trend of instantt aquatic products in China[J]. Farm Products Processing,(9):82-83.]
劉洋,梁滬蓮,劉意康,閆坤朋,顧錦釗,宋志文. 2017. 低溫海水硝化細(xì)菌富集培養(yǎng)過(guò)程及影響因素[J]. 河北漁業(yè),(12):1-5. [Liu Y,Liang H L,Liu Y K,Yan K P,Gu J Z,Song Z W. 2017. The enrichment process of seawater nitrifying bacteria and the influencing factors at low temperature[J]. Hebei Fisheries,(12):1-5.]
潘瀾瀾,林成新,張國(guó)琛,母剛,王洋. 2017. 凈化暫養(yǎng)及低溫離水保活運(yùn)輸對(duì)蝦夷扇貝品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),33(19):301-307. [Pan L L,Lin C X,Zhang G C,Mu G,Wang Y. 2017. Effects of purification,temporary rearing and low temperature waterless-keeping alivetrans-portation on quality characteristics of live Patinopecten yessoensis[J]. Transactions of the Chinese Society of Agricultural Engineering,33(19):301-307.]
潘彥碩,朱清禾,李聰,王幽靜,吳坤,李烜楨,張世敏,吳宇澄. 2018. 纖維素、秸稈和木屑對(duì)農(nóng)田土壤硝化作用及微生物的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),52(5):785-792. [Pan Y S,Zhu Q H,Li C,Wang Y J,Wu K,Li X Z,Zhang S M,Wu Y C. 2018. Effects of cellulose,straw and sawdust on soil nitrification and microorganisms in farmland[J]. Journal of Henan Agricultural University,52(5):785-792.]
邵留,蘭燕月,姬芬,張昊,嚴(yán)銘,張飲江. 2018. 玉米芯強(qiáng)化生物反應(yīng)器對(duì)羅非魚循環(huán)養(yǎng)殖廢水脫氮效果研究[J]. 海洋漁業(yè),40(2):217-226. [Shao L,Lan Y Y,Ji F,Zhang H,Yan M,Zhang Y J. 2018. On nitrogen removal from tilapia recirculating aquaculture wastewater using corncob as carbon source and biofilm carrier[J]. Marine Fishery,40(2):217-226.]
孫娟,楊德利. 2011. 我國(guó)海水養(yǎng)殖業(yè)的可持續(xù)發(fā)展研究[J]. 山西農(nóng)業(yè)科學(xué),39(7):733-735. [Sun J,Yang D L. 2011. Study on sustainable development of sea aquaculture in China[J]. Journal of Shanxi Agricultural Sciences,39(7):733-735.]
佟延南,李芳遠(yuǎn),李忠琴,趙光軍,李高俊,王德強(qiáng). 2018. 不同養(yǎng)殖階段羅非魚腸道微生物多樣性的動(dòng)態(tài)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(7):1415-1422. [Tong Y N,Li F Y,Li Z Q,Zhao G J,Li G J,Wang D Q. 2018. Dynamic analysis of intestinal microbial diversity in tilapia at different culture stages[J]. Journal of Southern Agriculture,48(7):1415-1422.]
王芳,張匯文,吳國(guó)華,趙良杰,張飲江. 2014. 生物質(zhì)碳源組合型生態(tài)浮床系統(tǒng)脫氮效果研究[J]. 環(huán)境工程學(xué)報(bào),8(8):3099-3106. [Wang F,Zhang H W,Wu G H,Zhao L J,Zhang Y J. 2014. Study on nitrogen removal effect of biomass carbon release combined ecological floating bed system[J]. Chinese Journal of Environmental Enginee-ring,8(8):3099-3106.]
王榮業(yè). 2018. 聚焦?fàn)I養(yǎng)與健康 創(chuàng)新發(fā)展海洋食品產(chǎn)業(yè)[J]. 產(chǎn)業(yè)創(chuàng)新研究,(4):115-117. [Wang R Y. 2018. Focus on nutrition and health innovation to develop marine food industry[J]. Industrial Innovation,(4):115-117.]
王振華,宋紅橋,吳凡,吳錦婷. 2015. 低溫暫養(yǎng)環(huán)境對(duì)羅非魚血液生化指標(biāo)與排泄水平的影響[C]//中國(guó)水產(chǎn)學(xué)會(huì). 2015年中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集. 杭州:中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì). [Wang Z H,Song H Q,Wu F,Wu J T. 2015. Effects of cold stress on biochemical parameters and ammonia nitrogen excretion in GIFT strain of Nile tilapia(Oreochromis niloticus)[C]//China Society of Fishe-ries. Abstracts of Papers at the Academic Annual Mee-ting of the Chinese Society of Fisheries in 2015. Hangzhou:Academic Annual Meeting of China Aquatic Socie-ty.]
徐子涵,茅林春. 2018. 蝦?;钸\(yùn)輸?shù)年P(guān)鍵技術(shù)及裝備研究進(jìn)展[J]. 食品工業(yè)科技,39(9):306-310. [Xu Z H,Mao L C. 2018. Research progress on key technologies and equipment for live transportation of shrimp[J]. Science and Technology of Food Industry,39(9):306-310.]
張成林,管崇武,張宇雷. 2016. 鮮活水產(chǎn)品主要運(yùn)輸方式及發(fā)展建議[J]. 中國(guó)水產(chǎn),(11):106-108. [Zhang C L,Guan C W,Zhang Y L. 2016. Main transportation methods and development suggestions for fresh aquatic products[J]. China Fisheries,(11):106-108.]
張現(xiàn)輝,孔凡晶. 2010. 西藏扎布耶鹽湖細(xì)菌多樣性的免培養(yǎng)技術(shù)分析[J]. 微生物學(xué)報(bào),50(3):334-341. [Zhang X H,Kong F J. 2010. Bacterial diversity in Zabuye Salt Lake of Tibet by culture-independent approaches[J]. Acta Microbiologica Sinica,50(3):334-341.]
張飲江,汪之和,沈月新,陳劍波,孫潔. 2005. 日本鰻鱺離水?;罴夹g(shù)的初步研究[J]. 水產(chǎn)科技情報(bào),32(6):256-258. [Zhang Y J,Wang Z H,Shen Y X,Chen J B,Sun J. 2005. Preliminary study on the technology of water conservation of Japanese eel[J]. Fisheries Sicence & Technology Information,32(6):256-258.]
趙冰怡,陳英文,沈樹寶. 2009. C/N比和曝氣量影響MBR同步硝化反硝化的研究[J]. 環(huán)境工程學(xué)報(bào),3(3):400-404. [Zhao B Y,Chen Y W,Shen S B. 2009. Study on effects of C/N ratio and aeration rate on the simultaneous nitrification and denitrification(SND) in MBR[J]. Chinese Jour-nal of Environmental Engineering,3(3):400-404.]
鄭林雪,李軍,胡家瑋,侯愛(ài)月,卞偉,鄭照明. 2015. 同步硝化反硝化系統(tǒng)中反硝化細(xì)菌多樣性研究[J]. 中國(guó)環(huán)境科學(xué),35(1):116-121. [Zheng L X,Li J,Hu J W,Hou A Y,Bian W,Zheng Z M. 2015. Analysis of denitrifying bacteria community composition in simultaneous nitrification and denitrification systems[J]. China Environmental Science,35(1):116-121.]
朱德銳,劉建,韓睿,沈國(guó)平,楊芳,龍啟福,劉德立. 2012. 青海湖嗜鹽微生物系統(tǒng)發(fā)育與種群多樣性[J]. 生物多樣性,20(4):495-504. [Zhu D R,Liu J,Han R,Shen G P,Yang F,Long Q F,Liu D L. 2012. Population diversity and phylogeny of halophiles in the Qinghai Lake[J]. Biodiversity Science,20(4):495-504.]
鄒聯(lián)沛,劉旭東,王寶貞,范延臻. 2001. MBR中影響同步硝化反硝化生態(tài)因子[J]. 環(huán)境科學(xué),22(4):51-55. [Zou L P,Liu X D,Wang B Z,F(xiàn)an Y Z. 2001. The influence of ecological factors simultaneous nitrification and denitrification in MBR[J]. Chinese Journal of Enviromental Scien-ce,22(4):51-55.]
Bae H,Chung Y C,Jung J Y. 2010. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process[J]. Water Science & Technology,61(11):2723-2732.
Heather J H,Brandon C M,Thea M E,Iskande L V L,Ashley B,Wiliam J H,Kevan L M,Louis J G J. 2008. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon(Acipenser baeri) in commercial aquaculture[J]. Aquaculture,281:118-125. doi: 10.1016/j.aquaculture.2008.05.030.
Kuhn D D,Smith S,Boardman G D,Angier M W,Marsh L,F(xiàn)lick G. 2010. Chronic toxicity of nitrate to Pacific white shrimp,Litopenaeus vannamei:Impacts on survival,growth,antennae length,and pathology[J]. Aquaculture,309(1-4):109-114.
Larsen A M,Rikard F S,Walton W C,Arias C R. 2015. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica)[J]. International Journal of Food Microbiology,192:66-71.
Shapovalova A A,Khijniak T V,Tourova T P,Muyzer G,Sorokin D Y. 2008. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobaeteria from hypersaline soda lakes[J]. Extremophiles,12(5):619-625.
van Bussel C G J,Schroeder J P,Wuertz S,Schulz C. 2012. The chronic effect of nitrate on production performance and health status of juvenile turbot(Psetta maxima)[J]. Aquaculture,326:163-167. doi:10.1016/j.aquaculture. 2011.11.019.
Yang G L,F(xiàn)rinsko M,Chen X F,Wang J Y,Hu G,Gao Q. 2012. Current status of the giant freshwater prawn(Macrobrachium rosenbergii) industry in China,with special reference to live transportation[J]. Aquaculture Research,43(7):1049-1055.
(責(zé)任編輯 蘭宗寶)