周利明 房瑋
摘 要:植物的花粉管生長是一個多因素參與的生理學過程,需要多種信號傳導系統(tǒng)來引導植物細胞完成。鈣離子作為第二信使,可以通過鈣傳感器CBLs激活下游的蛋白激酶CIPKs參與調控細胞的極性發(fā)育過程。該研究中CIPK9被確定為候選基因,其C端與綠色熒光蛋白(GFP)相融合,通過基因槍技術在煙草花粉中進行瞬時表達,觀察對應的亞細胞定位及花粉管中誘導的表型。結果表明:(1)GFP標記的CIPK9定位于花粉管中高速運動的顆粒狀細胞器,并可隨胞質環(huán)流進行規(guī)律的運動,為進一步探究CIPK9的生物學功能,還構建了持續(xù)激活型CIPK9(CACIPK9)。(2)與全長CIPK9相比較,CACIPK9缺少C末端的調控區(qū)域,并在激酶區(qū)域的激活環(huán)中進行了點突變,從而表現(xiàn)出不受調控的持續(xù)高活性。(3)缺少C端調控區(qū)的CACIPK9表現(xiàn)出非特異性的亞細胞定位,即與GFP對照相同的胞內彌散定位,說明CIPK9的C末端調控區(qū)對于其在花粉管中的正確定位發(fā)揮重要的調控作用。另外,CACIPK9過表達可以引起花粉管的去極化生長表型。這表明CIPK9作為鈣信號下游家族的一員參與了花粉管極性生長的相關過程,并對花粉管的生長具有一定的調控作用。
關鍵詞:花粉管, 鈣離子, CBL互作蛋白激酶, 極性生長, 信號傳導
中圖分類號:Q945.6
文獻標識碼:A
文章編號:1000-3142(2019)06-0788-06
Abstract:Pollen tube growth is a physiological process in which multi-factors are involved. The entire growth process requires multiple signaling systems to regulate plant cell growth and orientation. Calcium, as the second messenger, is achieved by calcium sensors CBLs, and then activates downstream target CIPKs to participate in the regulation of cell polarity development. In this study, CIPK9 was identified as a candidate gene, and subsequently the PCR-amplified co-ding region of CIPK9 was cloned into pLAT52-GFP vector for transient expression in pollen tubes. The C-terminus of CIPK9 was fused to green fluorescent protein (GFP), and the resulting constructs were transiently expressed in tobacco pollen grains by gene-gun transform technology. CIPK9-GFP subcellular localization and biological function in pollen tube were studied by transient expression system (particle bombardment). The results were as follows:(1) GFP-labeled CIPK9 was localized in granular organelles with high-speed movement in pollen tubes, and shifted regularly with the cytoplasmic circulation. In order to further study the biological function of CIPK9, a constitutively active CIPK9 (CACIPK9) was constructed. (2) Compared with full-length CIPK9, CACIPK9 lacked the regulatory region at the C-terminal and had a Thr-178-to-Asp point mutation in the activation loop containing conserved Asp-Phe-Gly and Ala-Pro-Glu motifs. CACIPK9 thus had sustained high kinase activity without regulation. (3) While CACIPK9 lacking C-terminal regulatory region evenly distributed in the pollen tube cytoplasm, similar to that of GFP control, suggesting that the C-terminal of CIPK9 plays an important role in the correct subcellular localization of CIPK9 in pollen tube. In addition, overexpression of CACIPK9 could induce the depolarization of pollen tube growth. In conclusion, CIPK9, as a member of the downstream family of calcium signaling, participates in the process of pollen tube polarity growth and plays a certain role in pollen tube growth.
Key words:pollen tube, calcium ion, CBL-interactive protein kinase, polarized growth, signaling pathway
植物花粉萌發(fā)及生長是一個復雜的動力學過程:散落到柱頭上的花粉經(jīng)過相互識別之后,從萌發(fā)孔生長出花粉管,穿過花柱組織到達子房,最終將攜帶的精細胞釋放到胚囊中完成受精過程。整個過程發(fā)生在雌雄配子之間,涉及多條信號調控途徑,包括鈣信號、小G蛋白、活性氧(ROS)和磷脂等(Kolukisaoglu et al., 2004)。細胞的生長模式主要分為彌散生長(diffuse growth)與頂端生長(tip growth)兩種類型。彌散生長是整個細胞的均勻膨脹過程(缺少方向性),而頂端生長則主要集中在細胞的某一特定區(qū)域(花粉管頂端)。花粉管作為一類典型的頂端生長模式系統(tǒng),被廣泛用于研究植物細胞的極性發(fā)育(Yang, 2002; Fu et al., 2001)?;ǚ酃艿捻敹松L有賴于細胞骨架的動態(tài)排布、囊泡的極性運輸和胞吐作用等多方面,以此決定萌發(fā)起始的位點及極性生長的方向。目前已知多個信號分子如鈣離子、小G蛋白、活性氧(ROS)和磷脂等在花粉管頂端生長過程中發(fā)揮重要作用(Rounds & Bezanilla, 2013)。其中,鈣信號可被某類鈣傳感器識別,并引起一系列的下游級聯(lián)反應(Kroeger & Geitmann, 2012; Rounds & Bezanilla, 2013)。類鈣調神經(jīng)磷酸酶B亞基(calcineurin B-like protein, CBL)作為一類典型的鈣傳感器家族,協(xié)同其下游互作蛋白激酶(CBL interacting protein kinase, CIPK),可以形成錯綜復雜的CBL-CIPK介導的鈣信號網(wǎng)絡(Luan, 2009; Hepler et al., 2011)。目前,CBL-CIPK相關研究主要集中在植物脅迫響應機制方面,如在鹽脅迫下,CBL4-CIPK24復合物調節(jié)質膜上的Na+/K+逆向轉運體SOS1以排除鈉離子,而CBL10-CIPK24復合物可能參與液泡中鈉離子的固定作用(Liu et al., 2000; Kim et al., 2007; Quan et al., 2007)。對于低鉀脅迫,CBL1和CBL9與CIPK23相互作用,進而調節(jié)一個鉀離子通道(Arabidopsis K+ transporter 1, AKT1),以介導根毛中鉀離子的攝?。╔u et al., 2006)。
近年來,CBL-CIPK復合物在非生物脅迫(寒冷、干旱和鹽害)耐受中的作用已被廣泛研究,但對CBL-CIPK在花粉管極性生長中的作用研究卻十分有限。本文主要研究鈣信號下游家族中的CIPK9參與的花粉管極性生長過程。全長CIPK9及其持續(xù)激活型與綠色熒光蛋白(GFP)相融合,通過基因槍技術在煙草花粉中進行瞬時表達,觀察其亞細胞定位及其在花粉管中誘導的表型,從而探究CIPK9在極性生長過程中發(fā)揮的作用。研究成果對深入揭示花粉管生長過程中的相關信號調控網(wǎng)絡具有一定的理論指導意義。
1 材料與方法
1.1 植物材料及生長條件
目前用作研究的植物材料為擬南芥(Arabidopsis thaliana,Col-0)培育在22 ℃的溫室中,光照16 h,黑暗8 h。煙草(Nicotiana tabacum)培育在28 ℃溫室中,光周期為12 h/12 h。
1.2 瞬時表達載體構建
CIPK9全長cDNA(序列號為U15436 )購自ABRC(Arabidopsis Biological Resource Center),然后設計引物序列用于PCR擴增CIPK9基因片段。上游引物(TCTAGAATGAGTGGAAGCAGAAGGA)攜帶Xba I酶切位點,下游引物(GGATCCCTTGCTTTTGTTCTTCA)攜帶BamH I酶切位點,擴增所得CIPK9基因片段接入T載體(Promega公司),轉化大腸桿菌 DH5α,選定陽性克隆并進行質粒提取,隨后進行酶切鑒定及序列測序,序列檢測正確的目的片段被接入pLAT52:GFP載體中(Wu et al., 2001)。對于CACIPK9的構建,CIPK9的C端調控區(qū)域(316~451位氨基酸)被切除,隨后將保守DFG-APE模體(位于激酶結構域中的激活環(huán),activation loop)中的178位的蘇氨酸(THR)突變?yōu)樘於彼幔ˋSP)(Guo et al., 2001; Albrecht et al., 2001),最后測序正確的目的片段被接入pLAT52:GFP載體中。
1.3 基因槍瞬時表達試驗
收集新鮮的煙草花粉(8朵花的花粉/每批瞬時轉化)備用,通過Plasmid Mini Kits試劑盒(QIAGEN, Germany)提取目的質粒DNA,隨后紫外分光光度計測定具體濃度。按照以往的瞬時表達煙草花粉的實驗步驟(Fu et al., 2001),每組轉化實驗使用0.8 μg的質粒DNA,轉化后的煙草花粉粒在28 ℃中,避光培養(yǎng)3~4 h,然后利用熒光顯微鏡或者共聚焦掃描顯微鏡進行表型及亞細胞定位觀察。
1.4 花粉管表型分析
通過熒光倒置顯微鏡(BX51;OLYMPUS)觀察轉化成功的花粉管,并以CCD攝像機(DP70型;OLYMPUS)拍攝相應照片。使用Zeiss LSM圖像瀏覽器(3.2版)中的測量功能分析所獲得的照片,分別測量花粉管的長度及花粉管頂端最寬處的直徑。每種基因型分別進行3次獨立的轉化實驗,一共收集80根左右的花粉管長度與寬度,以此作為判定花粉管是否具備去極化生長的表型特征。
1.5 亞細胞定位觀察
利用共焦激光掃描顯微鏡(Model LSM 510 META; Zeiss, Germany)觀察GFP標簽化的CIPK9(或CACIPK9)在花粉管中的亞細胞定位情況(激發(fā)光為488 nm,發(fā)射光為505~530 nm),使用Zeiss LSM圖像瀏覽器(3.2版)進行相應的圖像分析。
2 結果與分析
2.1 CIPK9的亞細胞定位及過表達表型
類鈣調神經(jīng)磷酸酶B亞基(CBL)屬于植物所特有的一類鈣離子感受器,其下游存在一組互作的蛋白激酶(CBL-interactive protein kinase, CIPK)(Luan et al., 2002; Shi et al., 1999)。本研究挑選CIPK9作為候選基因,將其與綠色熒光蛋白(GFP)相融合,在花粉特異啟動子LAT52的驅動下,利用基因槍技術在煙草花粉中進行瞬時表達,最終通過顯微鏡觀察對應的表型及亞細胞定位。實驗結果顯示過量表達CIPK9并沒有使花粉管極性生長發(fā)生顯著的表型變化(圖 1:B)。亞細胞定位結果顯示GFP單獨表達(對照實驗)在花粉管中呈現(xiàn)彌散分布,而CIPK9-GFP則定位于花粉管中的顆粒狀細胞器上(圖 1:A),這些顆粒狀細胞器可隨胞質環(huán)流進行“反式噴泉式”的規(guī)律運動,即沿著花粉管兩側運動到質膜頂端,然后從花粉管中軸返回到基端(圖 1:C)。
2.2 持續(xù)激活型CIPK9(CACIPK9)引起表型及定位異常
為進一步研究CIPK9在花粉管生長中的功能,我們構建了CIPK9的持續(xù)激活形式(constitutively active, CA)。如圖 2:A所示,全長CIPK9包含2個重要的結構域,一個是激酶結構域(kinase domain),另一個是調控結構域(regulatory domain)。CIPK9的調控結構域位于序列的C末端,包含一個高度保守的NAF模體(NAF motif),由21個氨基酸組成,是一段與CBLs互作的區(qū)域(Kim et al., 2000)。除此之外,NAF模體可通過結合CIPKs的激酶結構域,對其激酶活性進行自抑制作用(Kolukisaoglu et al., 2004)。NAF模體旁邊是一段PPI模體(protein phosphatase interaction motif),CIPKs與蛋白磷酸酶2C之間的相互作用可能通過這一結構區(qū)域得以實現(xiàn)(Ohta et al., 2003)。CACIPK9主要保留了激酶結構域,而去除了自身的調控結構域(包含自抑制區(qū))。另外對激酶結構域中的激活環(huán)(activation loop)進行點突變(將178位的蘇氨酸突變?yōu)樘於彼幔M一步提高CIPK9的激酶活性。
構建成功的CACIPK9片段采取與全長CIPK9相似的策略,通過基因槍在煙草花粉中進行瞬時表達,進而研究CACIPK9-GFP的表型與定位。結果顯示CACIPK9的瞬時表達可以引起花粉管的去極化生長,即花粉管長度有所縮短(從對照的381.67 μm減少到335.41 μm),而花粉管的寬度有所增加(從對照的8.74 μm增加到10.11 μm)。對于亞細胞定位研究,與CIPK9-GFP的顆粒狀細胞器定位不同,CACIPK9-GFP表現(xiàn)出非特異性的亞細胞定位,即與GFP對照相同的花粉管中彌散定位。這一結構暗示CIPK9的正常定位與其結構的完整性密切相關。
3 討論與結論
細胞極性是細胞發(fā)育的基本屬性之一,主要體現(xiàn)為細胞結構與組成成分的不對稱性(Yang, 2008)。植物細胞極性的確立與維持涉及多種信號調控因子,如鈣離子、胞吞與胞吞及細胞骨架等,各信號因子需要維持在特定水平,已形成穩(wěn)定的花粉管頂端生長(Kroeger & Geitmann, 2012)。
鈣離子濃度對于調控花粉管的生長和導向,起著至關重要的作用。擬南芥基因組中包含4個主要的鈣離子感受器家族,分別為鈣調素(CaM)、類鈣調素(CML)、類鈣調神經(jīng)磷酸酶B亞基(CBL)以及鈣依賴蛋白激酶(CPK)(McCormack et al., 2005)。其中CBL是一類植物中特有的基因家族,在結構上與動物中的神經(jīng)磷酸酶的B亞基類似。CBL的下游效應子是一類Ser/Thr的蛋白激酶(CIPK),CBL-CIPK體系共同作用,感知并傳遞鈣信號的變化(Luan et al., 2002)。本研究中CIPK9-GFP定位于隨胞質環(huán)流運動的顆粒狀細胞器上,從運動方式上推測該結構可能是花粉管內膜系統(tǒng)的囊泡,實驗結果暗示CIPK9可能通過調控花粉管中的囊泡系統(tǒng)影響細胞的極性生長。CIPK9的C末端含有一段自抑制區(qū)域(NAF motif),同時也是一段與其上游效應子(CBLs)結合的區(qū)域。CBLs結合到相應CIPKs上,解除其自抑制作用,從而激活CIPK的激酶活性(Luan et al., 2002; Kim et al., 2000)。本研究中構建的持續(xù)激活型CIPK9(CACIPK9)體現(xiàn)了相同的效果,并在此基礎之上,通過突變激酶區(qū)域的保守結構進一步激活了CIPK9的激酶活性。實驗結果顯示CACIPK9在煙草花粉中的瞬時表達抑制了花粉管的縱向生長,促進了花粉管的橫向生長,最終造成了細胞的去極化生長表型。另外,由于C端的缺失造成了CACIPK9-GFP的亞細胞定位呈現(xiàn)出非特異性的彌散定位,說明CIPK9的C端調控結構域是其在花粉管中正確定位的關鍵因素,同時亞細胞定位的異常也可以影響CIPK9在花粉管極性生長中功能的正常發(fā)揮。
前人(Quan et al., 2007; Cheong et al., 2007; Xu et al., 2006)關于CBL-CIPK網(wǎng)絡的研究主要集中于脅迫信號途徑。本研究為CIPK9在花粉管極性生長的作用做出了新的介紹,為CIPK9的生物學功能提供了新的認識,但CIPK9在花粉管中定位細胞器的具體性質(是否囊泡體系)和調控花粉管極性生長的具體作用機理,還有待于進一步的研究和探索。未來CIPK9下游靶蛋白的確定及其作用機制的闡明將進一步揭示CIPK信號網(wǎng)絡在花粉管極性生長中所發(fā)揮的重要作用。
參考文獻:
ALBRECHT V, RITZ O, LINDER S, et al., 2001. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases? [J]. Embo J, 20(5):1051-1063.
CHEONG YH, PANDEY GK, GRANT JJ, et al., 2007. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis? [J]. Plant J, 52(2):223-239.
FU Y, WU G, YANG Z, 2001. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes? [J]. J Cell Biol, 152(5):1019-1032.
GUO Y, HALFTER U, ISHITANI M, et al., 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance? [J]. Plant Cell, 13(6):1383-1400.
HEPLER PK, KUNKEL JG, ROUNDS CM, et al., 2011. Calcium entry into pollen tubes? [J]. Trends Plant Sci, 17(1):32-38.
KIM BG, WAADT R, CHEONG YH, et al., 2007. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis? [J]. Plant J, 52(3):473-484.
KIM KN, CHEONG YH, GUPTA R, et al., 2000. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases? [J]. Plant Physiol, 124(4):1844-1853.
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al., 2004. Calcium sensors and their interacting protein kinases:Genomics of the Arabidopsis and rice CBL-CIPK signaling networks? [J]. Plant Physiol, 134(1):43-58.
KROEGER J, GEITMANN A, 2012. The pollen tube paradigm revisited? [J]. Curr Opin Plant Biol, 15(6):618-624.
LIU J, ISHITANI M, HALFTER U, et al., 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance? [J]. PNAS, 97(7):3730-3734.
LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al., 2002. Calmodulins and calcineurin B-like proteins:Calcium sensors for specific signal response coupling in plants? [J]. Plant Cell, 14(Suppl.):389-400.
LUAN S, 2009. The CBL-CIPK network in plant calcium signaling? [J]. Trends Plant Sci, 14(1):37-42.
MCCORMACK E, TSAI YC, BRAAM J, 2005. Handling calcium signaling:Arabidopsis CaMs and CMLs? [J]. Trends Plant Sci, 10(8):383-389.
OHTA M, GUO Y, HALFTER U, et al., 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2? [J]. PNAS, 100(20):11771-11776.
QUAN R, LIN H, MENDOZA I, et al., 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress? [J]. Plant Cell, 19(4):1415-1431.
ROUNDS CM, BEZANILLA M, 2013. Growth mechanisms in tip-growing plant cells? [J]. Ann Rev Plant Biol, 64:243-265.
SHI J, KIM KN, RITZ O, et al., 1999. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis? [J]. Plant Cell, 11(12):2393-2405.
WU G, GU Y, LI S, et al., 2001. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets? [J]. Plant Cell, 13(12):2841-2856.
XU J, LI HD, CHEN LQ, et al., 2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis? [J]. Cell, 125(7):1347-1360.
YANG Z, 2002. Small GTPases versatile signaling switches in plants? [J]. Plant Cell, 14(Suppl. 1):375-388.
YANG Z, 2008. Cell polarity signaling in Arabidopsis? [J]. Ann Rev Cell Dev Biol, 24:551-575.