王鳳梅 張邦建 岳泰新
摘要:【目的】探究葡萄酒相關(guān)酵母的發(fā)酵能力及產(chǎn)酯能力,篩選具有更高產(chǎn)酯能力的非釀酒酵母,為采用本土野生酵母混合發(fā)酵釀制具有地區(qū)特色的葡萄酒提供參考依據(jù)?!痉椒ā恳詢?nèi)蒙古西部地區(qū)分離到的分屬6個(gè)屬7個(gè)種[葡萄汁有孢漢遜酵母(Hanseniaspora uvarum)、釀酒酵母(Saccharomyces cerevisiae)、淺黃隱球酵母(Cryptococcus flavescens)、異常畢赤酵母(Pichia anomala)、星形假絲酵母(Candida stellata)、東方伊薩酵母(Issatchenkia orientalis)和克魯維畢赤酵母(Pichia kluyveri)]的7株葡萄酒相關(guān)酵母菌株為材料,以霞多麗葡萄汁為培養(yǎng)基質(zhì),采用單酵母菌種接種方式進(jìn)行發(fā)酵,通過測(cè)定不同發(fā)酵時(shí)期的酵母細(xì)胞數(shù)量及發(fā)酵液殘?zhí)橇吭u(píng)價(jià)不同酵母菌種的發(fā)酵能力,并采用氣相色譜技術(shù)測(cè)定發(fā)酵產(chǎn)物中的4種酯類物質(zhì)濃度。【結(jié)果】釀酒酵母的發(fā)酵能力顯著高于6種非釀酒酵母(P<0.05,下同),20 ℃發(fā)酵10 d后,釀酒酵母發(fā)酵液中的殘?zhí)橇繛? g/L,酵母細(xì)胞數(shù)107~108個(gè)/mL,酒精度可達(dá)11.6%(v/v),葡萄酒pH為3.33;而6株野生非釀酒酵母菌株釀制的葡萄酒在酒精度、酵母細(xì)胞數(shù)及總失重方面均低于釀酒酵母;不同酵母菌種的產(chǎn)酯能力存在明顯差異,克魯維畢赤酵母產(chǎn)乙酸乙酯濃度為50.20 μg/mL,葡萄汁有孢漢遜酵母產(chǎn)4種酯的濃度均顯著高于釀酒酵母,異常畢赤酵母產(chǎn)乙酸乙酯及乙酸異戊酯濃度(162.00和0.732 μg/mL)顯著高于釀酒酵母(1.36和0.245 μg/mL)。【結(jié)論】克魯維畢赤酵母、葡萄汁有孢漢遜酵母和異常畢赤酵母可顯著提高發(fā)酵終產(chǎn)物中某些酯類物質(zhì)的濃度,因此可采用釀酒酵母與高產(chǎn)酯非釀酒酵母按不同接種量和接種時(shí)間混合發(fā)酵,使酯類物質(zhì)濃度顯著提高,賦予釀制葡萄酒特殊的水果香氣及花香,釀制具有地區(qū)特色的葡萄酒。
關(guān)鍵詞: 釀酒酵母;非釀酒酵母;葡萄酒;揮發(fā)性酯;產(chǎn)酯能力
中圖分類號(hào): S663.109.9;TS261.11? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)04-0825-06
Abstract:【Objective】The aim of this study was to investigate the ability of fermentation and producing esters of wine related yeast, screen some non-Saccharomyces strains with higher ability of producing esters. It would provide refe-rence for applying these local wild yeasts strains to produce wine with specific aroma and flavor. 【Method】Seven wine related yeast strains, which were classified into seven species(Hanseniaspora uvarum, Saccharomyces cerevisiae, Cryptococcus flavescens, Pichia anomala, Candida stellata, Issatchenkia orientalis and Pichia kluyveri) of six genera, isolated from the western district of Inner Mongolia of China, were used as materials. The juice of Chardonnay grape was used as fermentation broth. Single yeast strain was inoculated into fermentation broth, the fermentation ability of yeast strain was tested by examining the cell number and the amount of residual sugar in the fermentation production. Subsequently, gas chromatography was used to determine the concentration of four kinds of esters in the fermentation production. 【Result】The fermentation ability of S. cerevisiae was significantly higher than that of other six non-Saccharomyces(P<0.05, the same below). After fermentation for 10 d at 20 ℃, the concentrations of residual sugar was 3 g/L, yeast cell number was 107-108 cell/mL, alcohol was 11.6%(v/v) and pH was 3.33 in the fermentation broth. While the other six wines made by wild non-Saccharomyces yeasts were significantly lower in the concentration of alcohol, cell number and total weight loss than that made by S. cerevisiae. The ester production capacity of different types of yeasts was different. Among them, P. kluyveri could produce 50.20 μg/mL ethyl acetate; H. uvarum had significantly higher ability in producing four kinds of esters than that of S. cerevisiae; P. anomala had significantly higher ability in producing ethyl acetate and isoamyl acetate than S. cerevisiae, the amounts of these two kinds of esters were 162.00 and 0.732 μg/mL produced by P. anomala, and 1.36 and 0.245 μg/mL produced by S. cerevisiae. 【Conclusion】P. kluyveri, H. uvarum and P. anomala can significantly increase the concentration of some kinds of esters in fermentation production. Therefore, mixed fermentation by inoculating S. cerevisiae with some non-Saccharomyces in different amounts and different times can significantly increase the concentration of esters in fermentation production, endow the wine with specific fruit aroma and flower flavor. This method can be used to produce wine with regional characteristics.
Key words: Saccharomyces cerevisiae; non-Saccharomyces; wine; volatile ester; ester producing ability
0 引言
【研究意義】目前的葡萄酒工業(yè)中大多采用商品活性干釀酒酵母(Saccharomyces cerevisiae)進(jìn)行發(fā)酵。與葡萄汁自發(fā)發(fā)酵相比,接種活性干酵母菌種使發(fā)酵過程更易于控制,降低了可能因非釀酒酵母(non-Saccharomyces)過度生長而導(dǎo)致葡萄酒敗壞的風(fēng)險(xiǎn),保證葡萄酒品質(zhì)的均一性(Padilla et al.,2016),但接種純釀酒酵母會(huì)導(dǎo)致葡萄酒缺乏復(fù)雜的風(fēng)味及獨(dú)有的特色。不同的非釀酒酵母可產(chǎn)生不同的代謝產(chǎn)物,并能賦予葡萄酒獨(dú)特的口感和香氣,改善葡萄酒質(zhì)量。因此,從非釀酒酵母中挑選優(yōu)良菌種進(jìn)行混合發(fā)酵,在保證發(fā)酵過程的穩(wěn)定性和持續(xù)性基礎(chǔ)上獲得特色葡萄酒,對(duì)葡萄酒產(chǎn)業(yè)的健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】傳統(tǒng)觀點(diǎn)認(rèn)為非釀酒酵母是葡萄酒中的敗壞性酵母,因此果酒的研究主要集中于釀酒酵母(陳趕林等,2017;朱娟娟等,2017;于亞敏等,2018)。但近幾年來隨著對(duì)非釀酒酵母的深入研究,人們已認(rèn)識(shí)到其對(duì)葡萄酒復(fù)雜性、口感(結(jié)構(gòu))及香氣的重要性,因此釀酒酵母與非釀酒酵母混合接種發(fā)酵用于提高葡萄酒品質(zhì)的研究陸續(xù)展開(?u? and Jenko,2013;Dashko et al.,2015;Maturano et al.,2015;李婷等,2017),其目的在于保證釀酒酵母高發(fā)酵能力的同時(shí),一些非釀酒酵母合成的揮發(fā)性酯及萜醇等芳香類物質(zhì)可賦予葡萄酒復(fù)雜的香氣與風(fēng)味。Dashko等(2015)選用5種非釀酒酵母菌株,并添加釀酒酵母T73 Lalvin工業(yè)菌株對(duì)麗波拉白葡萄汁進(jìn)行連續(xù)發(fā)酵,通過發(fā)酵動(dòng)力學(xué)測(cè)試、糖的消耗、乙醇生產(chǎn)水平及主要感官檢驗(yàn)等,篩選出Kazachstania gamospora及Zygosaccharomyces kombuchaensis兩株非釀酒酵母,通過可控的方式使麗波拉白葡萄汁具有復(fù)雜的芳香,顯著改善該葡萄酒的口感。Lleixà等(2016)使用葡萄汁有孢漢遜酵母(Hanseniaspora uvarum)與釀酒酵母共發(fā)酵,生產(chǎn)的葡萄酒與單一接種釀酒酵母相比,產(chǎn)生的苯乙酸-2-苯基乙酯濃度增加,表現(xiàn)出更濃郁的水果香氣。葡萄汁有孢漢遜酵母和季也蒙有孢漢遜酵母(H. guilliermondii)在發(fā)酵期間能產(chǎn)生大量的具有蜂蜜、玫瑰及水果香氣的苯乙酸-2-苯基乙酯。Moreira等(2008)利用季也蒙有孢漢遜酵母與釀酒酵母共發(fā)酵生產(chǎn)的葡萄酒乙酸己酯、乙酸乙酯和乙酸異戊酯濃度均比單一接種釀酒酵母生產(chǎn)的葡萄酒有所提高。李婷等(2017)利用模擬葡萄汁對(duì)分離自川南白酒窖池中的35株非釀酒酵母進(jìn)行優(yōu)選,并將優(yōu)選酵母與釀酒酵母進(jìn)行混合發(fā)酵,研究發(fā)酵中的酵母生長動(dòng)力學(xué)及不同碳鏈長度底物對(duì)應(yīng)的酯酶活性變化,結(jié)果表明,優(yōu)選非釀酒酵母與釀酒酵母的同時(shí)接種發(fā)酵具有較高的C4~C8酯酶活性累積量,有增香釀造的應(yīng)用潛力?!颈狙芯壳腥朦c(diǎn)】目前已有不少關(guān)于非釀酒酵母發(fā)酵特性的研究報(bào)道,但針對(duì)內(nèi)蒙古西部地區(qū)野生非釀酒酵母發(fā)酵特性的研究未見報(bào)道。從葡萄表皮分離到的非釀酒酵母數(shù)量龐大,種類繁多,更多的研究主要集中在美及梅奇酵母(Metschnikowia pulcherrima)、葡萄汁有孢漢遜酵母及假絲酵母屬(Candida)等(Varela et al.,2016;Escribano-Viana et al.,2018;Hu et al.,2018),而本研究中的異常畢赤酵母(Pichia anomala)和東方伊薩酵母(Issatchenkia orientalis)鮮見報(bào)道?!緮M解決的關(guān)鍵問題】以內(nèi)蒙古西部地區(qū)篩選到的分屬自6個(gè)屬7個(gè)種的7株葡萄酒相關(guān)酵母菌株為試驗(yàn)菌株,以霞多麗葡萄汁為發(fā)酵液,采用單酵母菌種接種方式進(jìn)行發(fā)酵,通過測(cè)定不同發(fā)酵時(shí)期的酵母細(xì)胞數(shù)量及發(fā)酵液殘?zhí)橇吭u(píng)價(jià)不同酵母菌種的發(fā)酵能力,并采用氣相色譜技術(shù)對(duì)發(fā)酵產(chǎn)物中的4種酯類物質(zhì)濃度進(jìn)行測(cè)定,以探究這些酵母菌株的產(chǎn)酯能力,為采用內(nèi)蒙古地區(qū)野生酵母混合發(fā)酵釀制具有地區(qū)特色的葡萄酒提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
1. 1. 1 酵母菌種 酵母菌種為包頭輕工職業(yè)技術(shù)學(xué)院食品藥品工程學(xué)院微生物實(shí)驗(yàn)室冷凍保存的、分離自內(nèi)蒙古西部阿拉善左旗4種釀酒葡萄(赤霞珠、霞多麗、品麗珠及雷司令)漿果表面分屬6個(gè)屬的7個(gè)種,分別為釀酒酵母(S. cerevisiae)、葡萄汁有孢漢遜酵母(H. uvarum)、淺黃隱球酵母(Cryptococcus flavescens)、異常畢赤酵母(P. anomala)、星形假絲酵母(Candida stellata)、東方伊薩酵母(I. orientalis)及克魯維畢赤酵母(P. kluyveri)(王鳳梅和馬利兵,2015)。從上述7個(gè)酵母菌種(340株菌株)中各選取長勢(shì)旺盛的1株作為試驗(yàn)菌株(表1),用于后續(xù)試驗(yàn)。
1. 1. 2 培養(yǎng)基及主要試劑 酵母浸出粉胨葡萄糖(YPD)液體培養(yǎng)基:1%(m/v)酵母膏、2%(m/v)蛋白胨及2%(m/v)葡萄糖,pH 5.0;YPD瓊脂培養(yǎng)基:1%(m/v)酵母膏、2%(m/v)蛋白胨、2%(m/v)葡萄糖及2%(m/v)瓊脂粉,pH 5.0。聚二甲基硅氧烷(PDMS)、內(nèi)標(biāo)(2-庚酮)及標(biāo)樣(乙酸乙酯、乙酸異丁酯、乙酸異戊酯及2-乙酸苯乙酯)均購自Sigma-Aldrich公司,其他試劑均為國產(chǎn)分析純。
1. 1. 3 主要儀器設(shè)備 頂空螺紋口樣品瓶購自Sigma-Aldrich公司,氣相色譜儀(HP 5890 series II)及色譜柱(30 m×0.20 mm×1.10 μm)購自Agilent公司,水浴恒溫振蕩器(SHA-C)購自常州國華電器有限公司,電熱恒溫培養(yǎng)箱(DHP-9272)購自上海一恒科技有限公司。
1. 2 試驗(yàn)方法
1. 2. 1 菌種活化及擴(kuò)大培養(yǎng) 將上述冷凍保藏的7株酵母菌株分別接種于YPD液體培養(yǎng)基中,于28 ℃下培養(yǎng)48 h,按5%(v/v)接種量將活化后的菌株接種于含100 mL YPD液體培養(yǎng)基的三角瓶中,于28 ℃、72 r/min水平搖床培養(yǎng)24 h,用于后續(xù)試驗(yàn)。
1. 2. 2 葡萄汁發(fā)酵液制備及發(fā)酵條件 采集成熟霞多麗葡萄,經(jīng)壓榨、攪拌后,8000×g離心5 min,上清液經(jīng)0.45 μm濾膜過濾除菌后用于發(fā)酵試驗(yàn)。發(fā)酵在250 mL密閉錐形瓶中進(jìn)行,100 mL葡萄汁按106個(gè)細(xì)胞/mL接種酵母細(xì)胞,于20 ℃下靜置發(fā)酵10 d。
1. 2. 3 酵母菌株發(fā)酵能力檢測(cè) 發(fā)酵液每隔24 h搖動(dòng)瓶子以驅(qū)除CO2,稱重,連續(xù)統(tǒng)計(jì)10 d,確定發(fā)酵液總失重。
每24 h取1 mL發(fā)酵液,經(jīng)YPD液體培養(yǎng)基稀釋107倍后,取0.1 mL涂布于YPD瓊脂培養(yǎng)基上,于28 ℃下培養(yǎng)24 h,平板菌落計(jì)數(shù),連續(xù)統(tǒng)計(jì)10 d。同理,每24 h取1 mL發(fā)酵液,采用費(fèi)林試劑直接滴定法檢測(cè)發(fā)酵液中的殘?zhí)橇?,連續(xù)統(tǒng)計(jì)10 d。于發(fā)酵結(jié)束后,采用pH計(jì)和酒精計(jì)分別對(duì)發(fā)酵液的pH和酒精濃度進(jìn)行檢測(cè)。
1. 2. 4 發(fā)酵液中酯類物質(zhì)濃度檢測(cè) 于發(fā)酵結(jié)束后,采用Ortiz-Serrano和Gil(2007)報(bào)道的固相微萃?。⊿PME)方法提取發(fā)酵液中的揮發(fā)性酯。取3 mL發(fā)酵液,置于7 mL頂空螺紋口樣品瓶中,添加0.6 g 氯化鈉和2 μg 2-庚酮,蓋好蓋(帶螺紋、頂部開孔、內(nèi)襯Teflon墊片)后,采用磁力攪拌器于25 ℃下攪拌1 h,使氣液相達(dá)到平衡;將PDMS萃取頭插入玻璃小瓶中,置于液面之上,于25 ℃下靜置30 min,萃取揮發(fā)性酯類物質(zhì);然后將PDMS萃取頭插入氣相色譜儀進(jìn)樣口,于220 ℃、4 min內(nèi)釋放揮發(fā)性酯類物質(zhì)。氣相色譜儀配備一根HP-VOC色譜柱,參數(shù)設(shè)置:進(jìn)樣口溫度220 ℃,F(xiàn)ID檢測(cè)器溫度300 ℃,進(jìn)樣方式為不分流進(jìn)樣;爐溫40 ℃維持10 min、升溫(1.5 ℃/min)至150 ℃、升溫(20 ℃/min)至250 ℃、250 ℃維持2 min;載氣為氦氣,流速1 mL/min。采用內(nèi)標(biāo)法確定揮發(fā)性酯類物質(zhì)濃度。
1. 3 統(tǒng)計(jì)分析
所有試驗(yàn)均重復(fù)3次,取3次重復(fù)的平均數(shù)±標(biāo)準(zhǔn)差。采用SPSS 19.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。
2 結(jié)果與分析
2. 1 酵母菌株的發(fā)酵能力
酵母細(xì)胞的增殖能力可間接反映其發(fā)酵能力。從圖1-A可看出,釀酒酵母(C54)在接種1 d內(nèi)即可進(jìn)入指數(shù)生長期,酵母細(xì)胞大量增殖;接種2 d后,釀酒酵母即進(jìn)入平臺(tái)期,細(xì)胞數(shù)量在108個(gè)/mL以上,且平臺(tái)期持續(xù)至發(fā)酵第7~8 d;之后,釀酒酵母進(jìn)入衰退期,細(xì)胞數(shù)量逐漸減少,至發(fā)酵第10 d結(jié)束,酵母細(xì)胞數(shù)仍維持在107~108個(gè)/mL水平。表明釀酒酵母菌株C54具有強(qiáng)勁的發(fā)酵能力。6株非釀酒酵母菌株的增殖情況大致相同,于發(fā)酵的1~3 d處于指數(shù)增殖期,但其增殖速率明顯低于釀酒酵母;于發(fā)酵第3~4 d達(dá)到平臺(tái)期,細(xì)胞數(shù)量可達(dá)107~108個(gè)/mL;之后,非釀酒酵母進(jìn)入衰退期,細(xì)胞數(shù)量急劇減少,至發(fā)酵第8 d時(shí),6株非釀酒酵母菌株的細(xì)胞數(shù)量已接近甚至低于接種時(shí)的數(shù)量(106個(gè)/mL)??梢?株非釀酒酵母菌株的發(fā)酵能力遠(yuǎn)低于釀酒酵母,尤其在發(fā)酵的中、后期。
酵母菌株對(duì)發(fā)酵液中糖的消耗能力也可反映其發(fā)酵能力。從圖1-B可看出,葡萄汁接種釀酒酵母后,隨著發(fā)酵的進(jìn)行,糖含量迅速下降,在發(fā)酵后第5~6 d,糖含量即由200 g/L以上降至10 g/L以下;發(fā)酵8 d后,殘?zhí)橇恳恢本S持在3 g/L水平。其余6株非釀酒酵母菌株對(duì)糖的消耗能力遠(yuǎn)低于釀酒酵母,尤其在發(fā)酵的中、后期,與其增殖能力相符合;在發(fā)酵的第3~4 d,發(fā)酵液中的糖含量下降較迅速;從發(fā)酵后第4~5 d開始,發(fā)酵液中的糖含量下降趨緩,至發(fā)酵結(jié)束時(shí),發(fā)酵液中的殘?zhí)橇咳赃_(dá)66~102 g/L水平。這一結(jié)果進(jìn)一步表明6株野生非釀酒酵母菌株的發(fā)酵能力遠(yuǎn)低于野生釀酒酵母菌株。
2. 2 葡萄酒的理化指標(biāo)
霞多麗葡萄汁接種7株野生葡萄酒相關(guān)酵母菌株發(fā)酵結(jié)束后,對(duì)其部分理化指標(biāo)進(jìn)行檢測(cè),結(jié)果如表2所示。從表2可看出,接種釀酒酵母菌株發(fā)酵10 d后的霞多麗葡萄汁酒精度可達(dá)11.6%(v/v),發(fā)酵過程中總失重達(dá)3.32 g/100 mL,表明該野生釀酒酵母可用于釀造葡萄酒。而其他6株野生非釀酒酵母菌株釀制的葡萄酒在酒精度及總失重方面均顯著低于釀酒酵母(P<0.05,下同),表明這6株非釀酒酵母菌株的發(fā)酵能力較弱。
葡萄酒的pH變化范圍在2.70~3.80,本試驗(yàn)接種6株非釀酒酵母菌株的葡萄酒pH均在此范圍內(nèi),不會(huì)因?yàn)閜H過高導(dǎo)致雜菌的生長繁殖,也不會(huì)因?yàn)閜H過低導(dǎo)致酵母菌的活動(dòng)代謝受到抑制,保證酵母菌能夠正常發(fā)酵。
2. 3 酵母菌株的產(chǎn)酯能力
從表3可看出,不同酵母菌種的產(chǎn)酯能力存在明顯差異,葡萄汁有孢漢遜酵母所產(chǎn)4種酯的濃度均顯著高于釀酒酵母,異常畢赤酵母所產(chǎn)乙酸乙酯和乙酸異戊酯的濃度顯著高于釀酒酵母,克魯維畢赤酵母所產(chǎn)乙酸乙酯的濃度顯著高于釀酒酵母,星形假絲酵母和東方伊薩酵母的產(chǎn)酯能力與釀酒酵母無顯著差異(P>0.05),而淺黃隱球酵母產(chǎn)2-乙酸苯乙酯的濃度顯著低于釀酒酵母。
與釀酒酵母相比,葡萄汁有孢漢遜酵母雖可顯著提高葡萄酒中乙酸異丁酯、乙酸異戊酯及2-乙酸苯乙酯濃度,但其形成的過高乙酸乙酯濃度會(huì)對(duì)葡萄酒質(zhì)量產(chǎn)生負(fù)面影響;同理,異常畢赤酵母雖可顯著提高葡萄酒中乙酸異戊酯濃度,但高濃度的乙酸乙酯同樣會(huì)對(duì)葡萄酒產(chǎn)生負(fù)面影響。
3 討論
本研究對(duì)內(nèi)蒙古西部地區(qū)分離到的分屬6個(gè)屬7個(gè)種野生葡萄酒相關(guān)酵母的發(fā)酵能力進(jìn)行檢測(cè),結(jié)果顯示,釀酒酵母C54在發(fā)酵期間的生長曲線及糖消耗曲線與Moreira等(2005)描述的釀酒酵母PYCC 3507T相近,顯示出C54強(qiáng)勁的發(fā)酵能力,而其他6株非釀酒酵母菌株的發(fā)酵能力遠(yuǎn)低于釀酒酵母,發(fā)酵結(jié)束后發(fā)酵液中的糖含量仍達(dá)60 g/L以上。說明導(dǎo)致非釀酒酵母進(jìn)入衰退期的原因不是發(fā)酵液中糖的耗盡,而是發(fā)酵液中乙醇濃度的逐漸升高。非釀酒酵母乙醇耐受力較低已被許多研究所證實(shí)(van Keulen et al.,2003;?uranská et al.,2012)。事實(shí)上,在葡萄汁自發(fā)發(fā)酵過程中,一些非釀酒酵母啟動(dòng)發(fā)酵,隨著發(fā)酵液中乙醇濃度不斷升高,低酒精耐受力的非釀酒酵母逐漸凋亡,而高酒精耐受力的釀酒酵母逐漸占據(jù)主導(dǎo)地位,成為發(fā)酵中、后期的優(yōu)勢(shì)、甚至唯一的酵母菌種(van Keulen et al.,2003;Fleet,2008;?uranská et al.,2012;Padilla et al.,2016)。本研究中,經(jīng)10 d靜態(tài)發(fā)酵后,釀酒酵母發(fā)酵產(chǎn)物的酒精度和總失重顯著高于非釀酒酵母發(fā)酵產(chǎn)物,進(jìn)一步驗(yàn)證了釀酒酵母發(fā)酵能力強(qiáng)于非釀酒酵母的正確性。
不同酯類物質(zhì)對(duì)葡萄酒香氣的影響不同,其感官閾值也不相同,如乙酸乙酯的香氣閾值為7.50 mg/L,但高濃度(150~200 mg/L)的乙酸乙酯會(huì)導(dǎo)致葡萄酒易敗壞;乙酸異戊酯的香氣閾值為0.03 mg/L,該類酯可賦予葡萄酒類似香蕉的水果香氣;2-乙酸苯乙酯的香氣閾值為0.25 mg/L,該類酯可賦予葡萄酒水果香氣及花香;乙酸異丁酯的香氣閾值未見報(bào)道,該類酯同樣可賦予葡萄酒水果香氣及花香(Lambrechts and Pretorius,2000;Rojas et al.,2001;Viana et al.,2008;Lee et al.,2013)。漢遜酵母屬(Hanseniaspora)、畢赤酵母屬(Pichia)、星形酵母屬(Candida)和紅酵母屬(Rhodotorula)中一些菌株的高產(chǎn)酯能力已被證實(shí)(Rojas et al.,2001;Moreira et al.,2005;Viana et al.,2008)。本研究中,檢測(cè)的1株克魯維畢赤酵母菌株可顯著提高發(fā)酵液中乙酸乙酯濃度,且該濃度低于150 mg/L,不會(huì)導(dǎo)致葡萄酒易腐敗特征的出現(xiàn),基于該株酵母菌株單獨(dú)發(fā)酵時(shí)的低發(fā)酵能力,該酵母菌株可與釀酒酵母混合發(fā)酵制備葡萄酒;檢測(cè)的1株異常畢赤酵母菌株及1株葡萄汁有孢漢遜酵母菌株雖可顯著提高2種甚至4種酯類物質(zhì)濃度,但其產(chǎn)生的過高濃度乙酸乙酯將會(huì)賦予葡萄酒易敗壞的特征,基于此,可考慮采用釀酒酵母與這兩株非釀酒酵母按不同接種比例混合發(fā)酵,在降低發(fā)酵產(chǎn)物乙酸乙酯濃度的同時(shí),使其他3種酯類物質(zhì)的濃度得到顯著提高,賦予釀制葡萄酒特殊的水果香氣及花香。已有不少研究報(bào)道了采用釀酒酵母與非釀酒酵母按不同接種比例混合發(fā)酵可釀制含高濃度高級(jí)醇、脂肪酸及芳香酯的葡萄酒(Anfang et al.,2009;Lee et al.,2013)。近兩年我國非釀酒酵母與釀酒酵母的混菌發(fā)酵研究主要集中在克魯斯假絲酵母(C. crusei)、葡萄汁有孢漢遜酵母(李藝凡等,2018)、發(fā)酵畢赤酵母(P. fermentans)(王倩倩等,2018)和美極梅奇酵母(Mestschnikowia pulcherrima)(王媛等,2018)等,本研究中除葡萄汁有孢漢遜酵母外的其他5株非釀酒酵母的混菌發(fā)酵研究未見報(bào)道。
4 結(jié)論
供試6株非釀酒酵母的發(fā)酵能力均較弱,無法用其單獨(dú)發(fā)酵釀制葡萄酒,但克魯維畢赤酵母、葡萄汁有孢漢遜酵母和異常畢赤酵母能顯著提高發(fā)酵終產(chǎn)物中某些酯類物質(zhì)的含量,因此可采用釀酒酵母與高產(chǎn)酯非釀酒酵母按不同接種量和接種時(shí)間混合發(fā)酵,使酯類物質(zhì)濃度顯著提高,賦予釀制葡萄酒特殊的水果香氣及花香,釀制具有地區(qū)特色的葡萄酒。
參考文獻(xiàn):
陳趕林,任紅,鄭鳳錦,方曉純,邢軍,孫健. 2017. 不同干酵母對(duì)蓮霧果酒釀造的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(4):704-709. [Chen G L,Ren H,Zheng F J,F(xiàn)ang X C,Xing J,Sun J. 2017. Effects of different dry yeasts on Syzygium samarangense wine brewing[J]. Journal of Southern Agriculture,48(4):704-709.]
李婷,陳景樺,馬得草,王星晨,陶永勝. 2017. 優(yōu)選非釀酒酵母與釀酒酵母在模擬葡萄汁發(fā)酵中生長動(dòng)力學(xué)及酯酶活性分析[J]. 食品科學(xué),38(22):60-66. [Li T,Chen J H,Ma D C,Wang X C,Tao Y S. 2017. Growth kinetics and esterase activities of selected non-Saccharomyces yeast and Saccharomyces cerevisiae in the fermentation of model grape juice[J]. Food Science, 38(22):60-66.]
李藝凡,薛逸軒,趙璐,王菁,肖世娣,張博,張惠玲. 2018. 一株非釀酒酵母分離鑒定及多菌種混菌發(fā)酵對(duì)葡萄酒香氣的影響研究[J]. 食品工業(yè)科技,39(11):113-120. [Li Y F,Xue Y X,Zhao L,Wang J,Xiao S D,Zhang B,Zhang H L. 2018. Study on isolation and identification of a non-Saccharomyces cerevisiae and the effect of multi-strain mixed fermentation on wine aroma[J]. Science and Technology of Food Industry,39(11):113-120.]
王鳳梅,馬利兵. 2015. 內(nèi)蒙古西部地區(qū)釀酒葡萄漿果表面酵母的分離與鑒定[J]. 食品科技,40(11):8-13. [Wang F M,Ma L B. 2015. Isolation and identification of yeasts on the surface of wine grape in the west of Inner Mongolia[J]. Food Science and Technology,40(11):8-13.]
王倩倩,覃杰,馬得草,陶永勝. 2018. 優(yōu)選發(fā)酵畢赤酵母與釀酒酵母混合發(fā)酵增香釀造愛格麗干白葡萄酒[J]. 中國農(nóng)業(yè)科學(xué),51(11):2178-2192. [Wang Q Q,Tan J,Ma D C,Tao Y S. 2018. Aroma enhancement of ecolly dry white wine by co-inoculation of selected Pichia fermentans and Saccharomyces cerevisiae[J]. Scientia Agricultura Sinica,51(11):2178-2192.]
王媛,祝霞,楊學(xué)山,黎潔,任超,秦麗,韓舜愈. 2018. 混菌發(fā)酵對(duì)美樂低醇桃紅葡萄酒香氣的影響[J]. 核農(nóng)學(xué)報(bào),32(11):2195-2207. [Wang Y,Zhu X,Yang X S,Li J,Ren C,Qin L,Han S Y. 2018. Effects of co-fermentation on volatile compounds of merlot low alcohol rose wine[J]. Journal of Nuclear Agricultural Sciences,32(11):2195-2207.]
于亞敏,李霞,唐國冬,楊繼紅. 2018. 兩種釀酒酵母混合發(fā)酵對(duì)赤霞珠干紅葡萄酒香氣成分的影響[J]. 中國釀造,37(4):121-126. [Yu Y M,Li X,Tang G D,Yang J H. 2018. Effects of mixed fermentation with two kinds of Saccharomyces cerevisiae on aroma components of Cabernet Sau-vignon dry red wine[J]. China Brewing,37(4):121-126.]
朱娟娟,鄭少陽,李炎杰,曹岐,馬海軍. 2017. 不同釀酒酵母對(duì)臍橙果酒發(fā)酵特性的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(5):870-875. [Zhu J J,Zheng S Y,Li Y J,Cao Q,Ma H J. 2017. Effects of different yeasts on fermentation characteristics of navel orange wine[J]. Journal of Southern A-griculture,48(5):870-875.]
Anfang N,Brajkovich M,Goddard M R. 2009. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc[J]. Australian Journal of Grape and Wine Research,15(1):1-8.
?u? F,Jenko M. 2013. The influence of yeast strains on the composition and sensory quality of Gewurztraminer wine[J]. Food Technology and Biotechnology,51(4):547-553.
Dashko S,Zhou N,Tinta T,Sivilotti P,Lemut M S,Trost K,Gamero A,Boekhout T,Butinar L,Vrhovsek U,Piskur J. 2015. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla[J]. Journal of Industrial Microbiology and Biotechnology,42(7):997-1010.
Escribano-Viana R,González-Arenzana L,Portu J,Garijo P,López-Alfaro I,López R,Santamaría P,Gutiérrez A R. 2018. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non-Saccharomyces/saccharomyces yeasts[J]. Food Research International,112(10):17-24.
Fleet G H. 2008. Wine yeasts for the future[J]. FEMS Yeast Research,8(7):979-995.
Hu K,Jin G J,Xu Y H,Tao Y S. 2018. Wine aroma response to different participation of selected Hanseniaspora uva-rum in mixed fermentation with Saccharomyces cerevisiae[J]. Food Research International,108(6):119-127.
Lambrechts M G,Pretorius I S. 2000. Yeast and its importance to wine aroma[J]. South African Journal of Enology and Viticulture,21:97-129.
Lee P R,Kho S H,Yu B,Curran P,Liu S Q. 2013. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae[J]. Microbial Biotechnology,6(4):385-393.
Lleixà J,Martín V,Portillo M C,Carrau F,Beltran G,Mas A. 2016. Comparison of fermentation and wines produced by inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae[J]. Frontiers in Microbiology,7:338.
Maturano Y P,Assof M,F(xiàn)abani M P,Nally M C,Jofré V,Rodríguez Assaf L A,Toro M E,de Figueroa L I C,Vazquez F. 2015. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures:Relationship with wine volatile composition[J]. Antonie Van Leeuwenhoek,108(5):1239-1256.
Moreira N,Mendes F,Guedes de Pinho P,Hogg T,Vasconcelos I. 2008. Heavy sulphur compounds,higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must[J]. International Journal of Food Microbiology,124(3):231-238.
Moreira N,Mendes F,Hogg T,Vasconcelos I. 2005. Alcohols,esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts[J]. International Journal of Food Microbiology,103(3):285-294.
Ortiz-Serrano P,Gil J V. 2007. Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on threetomato varieties(Solanum lycopersicum L.)[J]. Journal of Agricultural and Food Chemistry,55(22):9170-9176.
Padilla B,Gil J V,Manzanares P. 2016. Past and future of non-Saccharomyces yeasts:From spoilage microorganisms to biotechnological tools for improving wine aroma complexity[J]. Frontiers in Microbiology,7:411.
Rojas V,Gil J V,Pi?aga F,Manzanares P. 2001. Studies on acetate ester production by non-Saccharomyces wine yeasts[J]. International Journal of Food Microbiology,70(3):283-289.
?uranská H,Vránová D,Omelková J,Vadkertiová R. 2012. Monitoring of yeast population isolated during sponta-neous fermentation of Moravian wine[J]. Chemical Papers,66(9):861-868.
van Keulen H,Lindmark D G,Zeman K E,Gerlosky W. 2003. Yeasts present during spontaneous fermentation of Lake Erie Chardonnay,Pinot Gris and Riesling[J]. Antonie van Leeuwenhoek,83(2):149-154.
Varela C,Sengler F,Solomon M,Curtin C. 2016. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum[J]. Food Chemistry,209:57-64.
Viana F,Gil J V,Genovés S,Vallés S,Manzanares P. 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits[J]. Food Microbiology,25(6):778-785.
(責(zé)任編輯 羅 麗)