李志輝
一、小升初數(shù)學教學銜接存在的問題
(一)教師教學銜接上存在斷層現(xiàn)象
小升初數(shù)學教學的銜接是一個系統(tǒng)性、長期性工程,做好銜接有利于學生順利適應初中學習環(huán)境,實現(xiàn)學習能力與心理共同發(fā)展。但是,由于當前我國基礎教育的,主要模式依舊是小學與初中獨立辦學,大部分地區(qū)教育行政部門對開展小升初教育銜接沒有形成常規(guī),次數(shù)也較少,一般為一學期2-3次,這直接影響了小學與初中教育教學的有效交流,在一定程度上導致兩個學段之間教師對數(shù)學教學內(nèi)容、知識點延伸、串聯(lián)的理解以及教育教學方法上出現(xiàn)斷層。
(二)學習內(nèi)容的增多及變化讓學生措手不及
新課標實施后,“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“綜合與實踐”等四個學習領(lǐng)域分散分布在各個學段內(nèi),且在不同學段內(nèi),發(fā)展層次與要求不盡相同,特別是初中教學內(nèi)容中還引入了負數(shù)、有理數(shù)和實數(shù),運算方面增加了乘方、開方,又出現(xiàn)相反數(shù)、絕對值、整式和分式等新的概念。學習內(nèi)容的增加及變化,要求學生的認知要從過去的具體形象思維轉(zhuǎn)變?yōu)槌橄笏季S。但由于小升初數(shù)學教學銜接活動不夠普遍,學生在小升初過渡期內(nèi)沒能接受較好的引導和訓練,導致他們上初中后難以適應。
(三)學生數(shù)學思維因為過渡期訓練不足而“卡殼”
從心理發(fā)展特點上看,小升初期間,學生對事物認知由形象思維向抽象思維過渡。但由于小學數(shù)學教學知識較為簡單,例子豐富,教材敘述方法比較簡單、直觀,語言通俗、易懂,很多知識是通過圖片、表格來給出的,趣味性強,結(jié)論也容易記憶。同時,小學課時相對充足,對重點、難點內(nèi)容均有充足的時間去反復強調(diào),對各類習題的解法,教師有時間進行足夠的范例引導鞏固,學生的數(shù)學思維方式也因為不斷的強調(diào)而變得相對“固化”。而到了初中,課程數(shù)量徒然增多,數(shù)學課時相對少,課堂知識容量大、進度快,內(nèi)容敘述相對規(guī)范嚴謹,知識的呈現(xiàn)主要通過類比、歸納和推理等給出,需要一定的想象能力和抽象概括能力。另外,由于初中教師對重點、難點的講解沒有小學時那么充分,對各題型也不可能完全細化和全部鞏固,學生的抽象思維在過渡期沒有受到系統(tǒng)的訓練,“小學考一百,初中不及格”現(xiàn)象便出現(xiàn)了。
二、小升初數(shù)學教學銜接的基本原則及策略
(一)注重整體謀劃,形成常規(guī)性銜接
小升初數(shù)學教學銜接是一個整體性工程,既要學校層面上的溝通銜接,也要求兩個不同學段教師與教師、教師與學生以及學生與學生之間的溝通銜接。這就需要教育行政部門從政策上注重區(qū)域內(nèi)的整體謀劃,以實現(xiàn)小學與初中各層面溝通理解為出發(fā)點,以促進學生加深對初中教學方式、方法以及內(nèi)容認識為目標,把小升初數(shù)學教學銜接作為一項常規(guī)性教學教研活動開展。以鳳崗鎮(zhèn)為例,目前,該鎮(zhèn)已有全鎮(zhèn)性的公民辦幫扶計劃以及較為系統(tǒng)的初中質(zhì)量提升工程,也形成了常規(guī)性的幫扶活動及質(zhì)量提升教育教研活動。但是,這僅僅限于小學與小學,或中學與中學之間,且活動次數(shù)較少,基本沒有學生層面的對接活動。為此,該鎮(zhèn)可以在已有的公民辦幫扶活動和初中質(zhì)量提升工程中探索增加每學期至少5次的常規(guī)性小升初數(shù)學教學銜接活動,通過搭建“小學-初中”教師之間的同臺教學以及座談溝通的“橋梁”,增加教師之間對兩個學段學生心理發(fā)展特點、教育教學內(nèi)容的認識與理解。
(二)注重搭建家校與社區(qū)協(xié)同教育橋梁,促使教師、學生、家長三方心理無縫銜接
小升初銜接的關(guān)鍵在學生,促進其無縫銜接的重要支撐是學校、家庭以及社區(qū)的有效對接。東莞是一個“特殊”的制造業(yè)之城——《2017年東莞市國民經(jīng)濟和社會發(fā)展統(tǒng)計公報》(以下簡稱《公報》)顯示,截止2017年年底,東莞市戶籍人口211.31萬人,常住人口834.25萬人。其中,現(xiàn)有超過1000萬“新莞人”(東莞市對來莞務工、經(jīng)商人員的特定稱謂),思維方式與結(jié)構(gòu)還在很大程度上保留傳統(tǒng)的農(nóng)民與鄉(xiāng)村因素,缺乏現(xiàn)代市民的某些精神特質(zhì),也在城市居民的注視下缺乏身份認同感,形成了對自身身份認同“既是農(nóng)民,又是工人/市民”的交叉模糊狀態(tài)。另外,據(jù)不完全統(tǒng)計,東莞各鎮(zhèn)區(qū)的中小學在校生中本地戶籍生源不到40%,新莞人子弟占60%之多。多元文化交融又相互排斥的現(xiàn)狀下,在莞學生的小升初銜接顯得更為復雜。為此,在小升初銜接過程中,既要重點關(guān)注“復雜”環(huán)境下學生心理的培育與過渡,更要凝聚“家庭-學校-社區(qū)”三方合力,讓銜接成為一個全關(guān)注、全投入、全參與的教育行為和過程。
因此,學校要以本校教育教學工作為依托,充分發(fā)揮校園場地、設備、師資以及活動優(yōu)勢,把學生小升初心理輔導培訓列為固定課程,并借助社區(qū)或家長群體中的有效資源,開展形式多樣、符合學生心理特點的活動課。例如,鳳崗鎮(zhèn)近年來大力發(fā)展家庭教育,把家長、社區(qū)資源充分調(diào)動、融入到學校常規(guī)的“四節(jié)”——藝術(shù)節(jié)、體育節(jié)、讀書節(jié)、科技中,并開設家庭教育講師培訓、成立家長委員會、開展社區(qū)親子活動,“書香家庭”與“最美家庭”評比等,其中,最有特色的是體驗式社區(qū)活動,如東莞市鳳崗鎮(zhèn)鎮(zhèn)田小學根據(jù)雁田社區(qū)兩大樓盤——藍山錦灣和翠湖豪苑,將集居在同一樓盤以及周邊的學生分成小社區(qū),然后組織策劃相應的活動,例如參觀污水處理廠、工廠、敬老院以及感動中國體驗式課堂、親子社區(qū)讀經(jīng)會、親子外出拓展體驗活動等。集體性社區(qū)體驗活動,一方面有利于以獨生子女為主的家庭相互之間認識,促進家長層面的交流與合作,另一方面有利于獨生子女們走出“院子里高墻上的四角天空”,認識更多的“小升初”成長伙伴。
教育資源的多方整合,讓學校成為協(xié)同教育活動的中心和紐帶——通過教師的引導,讓家長積極參與到孩子的教育活動中,繼而形成一個教育群體,最終實現(xiàn)以家庭為單位的社區(qū)教育資源匯聚在一起,形成以教育孩子為目的的社會關(guān)系網(wǎng)絡,促使不同文化、不同地域的父母與孩子教育心理相互認同、共同成長,為小升初銜接打下了較好的心理基礎。
(三)注重知識與方法的銜接,促使學生數(shù)學思維轉(zhuǎn)變與順利過渡
學習內(nèi)容的增多、難度增加以及常年以來小學教師偏重生活情景引導、較少數(shù)學邏輯推理培養(yǎng)是導致小升初銜接過程的“痛點”,也是學生出現(xiàn)在初中“水土不服”的主要原因之一。因此,在小升初數(shù)學教學銜接過程中,教師們既要注重知識內(nèi)容的銜接教育,又要注重方式方法的相互“交接”。具體如下:
1.教學方法方面,作為小學畢業(yè)班或初一數(shù)學教師,要充分了解小學與初中教材知識點之間的關(guān)聯(lián),在教學中一方面要加強合情推理和演繹推理訓練,例如,進行有理數(shù)的乘法交換律教學時,教師應教授學生使用不完全歸納法,如例題10×(-25)=-250,(-25)×10=-250,所以10×(-25)=(-25)×10……以此類推,讓學生在多次論證中,認識到交換因數(shù)的位置、積不變的結(jié)果,從而歸納出在有理數(shù)的范圍中,乘法具有交換律。另一方面,要加強數(shù)學思想和數(shù)學方法的滲透和影響。例如,求平行四邊形面積,可以引導學生通過“分割”——把平行四邊形分割為兩個三角形來處理,并以此類推,引導學生通過轉(zhuǎn)化的方式處理菱形、梯形面積的計算方法。
2.教學形式方面,小升初數(shù)學教學銜接可以根據(jù)學生心理發(fā)展特點,以“變教為導、以導促學、學思結(jié)合、導學互動”為目標任務,通過師生合作編寫包括“目標式、問題式、程序式”等三種形式的導學提綱,促進教與學的轉(zhuǎn)變。具體如下:
目標式:即“導學綱”的內(nèi)容,就是本節(jié)課要完成的目標。如:在教學四年級下冊《乘法運算定律》時設計的“導學綱”是:(1)理解和掌握乘法三大定律。(2)會用符號和字母表示交換律和結(jié)合律及分配率。(3)能夠應用運算定律進行簡便計算。(4)在解決問題過程中嘗試不同的方法,體會簡便計算的優(yōu)越性。這個“導學提綱”中的三個問題全部用陳述性的語言表述,包括理解、掌握、應用三個層次的知識與技能方面的教學目標,學生依據(jù)這個“導學綱”逐題自學,小組討論,師生互動,逐個解決問題,就完成了本節(jié)課的教學目標。
問題式:即“導學綱”的內(nèi)容全部用設問性的語句表述,引發(fā)學生帶著疑問去自學教材,逐一落實教學目標。如:五年級數(shù)學上冊《平行四邊形面積的計算》,其 “導學提綱”可編寫為:(1) 通過剪一剪、移一移、拼一拼的方法把平行四邊形可否變成我們以前學過的圖形(會求其面積)?(2)拼出的圖形的長和 平行四邊形的底有什么關(guān)系?(3)拼出的圖形的寬和平行四邊形的高有什么關(guān)系?(4)拼出來的面積和原來平行四邊形的面積有什么關(guān)系?(5)你認為平行四邊形的面積應該怎樣計算?帶著這些問題,細心的學生通過自學,很容易找到答案。同樣,這種模式可以遷移到《三角形的面積》和《梯形的面積》的教學中。
程序式:即“導學綱”的內(nèi)容是按學生解決問題時思維的先后順序設計的,以利于學生順向思維。如:六年級數(shù)學《分數(shù)應用題》解決例一:飼養(yǎng)小組養(yǎng)的黑兔和白兔共有18只,其中黑兔的只數(shù)是白兔的五分之一,白兔和黑兔各有多少只?設計的“導學提綱”是:(1)這道題和前面的復習題(指處理該題前已引導學生復習了的整數(shù)應用題——飼養(yǎng)小組里的白兔和黑兔共18只,其中白兔的只數(shù)是黑兔的五倍,白兔和黑兔各有多少只?)有什么相同點和不同點?(2)你能找出這道題的數(shù)量關(guān)系式嗎?(3)把一個量看作單位“1”,另一個量怎么表示?(4)你覺得解決這類應用題的關(guān)鍵是什么?這四個問題的第一個問題是引導學生審清題意,第二個問題是在審清題意的基礎上建立數(shù)量關(guān)系式,第三個問題是建立在數(shù)量關(guān)系式后,還要考慮確定那個量作為單位“1”后而另一個量所發(fā)生的相應變化,第四個問題則是對第二、三個問題的總結(jié)和強調(diào)。
師生合作編寫“導學綱”,本質(zhì)上是對小學與初中數(shù)學教學內(nèi)容上的“穿針引線”——通過導學綱,既鞏固提高小學數(shù)學知識內(nèi)容,也為進入初中學習找到“抓手”。
總之,在小升初數(shù)學教學銜接過程中,教育行政部門要整體謀劃,為銜接“搭橋鋪路”,家長、學校、社區(qū)三方則要注重學生心理的協(xié)同教育,師生之間在教學內(nèi)容、教育方法上做好“穿針引線”工作,“授學生以漁”,讓學生學會學習、學會思考,才能真正有效實現(xiàn)小升初數(shù)學教學的順利銜接。