陳凱文 朱俊杰 姚曉松
摘 ?要: 為研究心室變化對心臟磁場的影響,本文利用健康人彩色多普勒成像提取一個心動周期的左心室圖像數據,建立了一個動態(tài)的磁場邊界元模型。文中基于該模型研究了電流偶極子在左心室舒張期220 ms和320 ms時刻所產生的心臟磁場數據,結果顯示當偶極子位于左心室腔內時,220 ms時刻的磁場強度大于320 ms時刻的磁場強度;當偶極子位于左心室腔外(心肌中)時,磁場強度相對前者的變化小,且320 ms時刻的磁場強度略小于220 ms時刻的磁場強度。此外文中仿真了健康人的整個心動周期的心臟磁場,并與實測的心臟磁場數據進行了對比,仿真結果顯示仿真的心臟磁場的強度整體上小于實測磁場。這說明了利用彩色多普勒成像數據分別對左心室舒張初期和舒張末期的心臟磁場進行建模仿真能獲得更多的特征信息。
關鍵詞: 心磁圖;邊界元法;左心室;彩色多普勒成像
中圖分類號: TN911.73 ? ?文獻標識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.06.008
本文著錄格式:陳凱文,朱俊杰,姚曉松,等. 動態(tài)軀干—左心室模型的初步研究[J]. 軟件,2019,40(6):3439
【Abstract】: In order to study the influence of ventricular changes on the heart magnetic field, this paper established a dynamic magnetic field boundary element model using a healthy human color Doppler imaging to extract the left ventricular image data of a cardiac cycle. In this paper, we studied the cardiac magnetic field data generated by the current dipole at left 220 ms and 320 ms based this model. The results showed that the dipole in the left ventricle the intensity of the magnetic field at 220 ms is greater than intensity of the magnetic field at 320 ms; when the dipole out the left ventricle (in the myocardium) the intensity of the magnetic field is smaller than the former, and the intensity of the magnetic field at 320 ms is slightly smaller than intensity of the magnetic field at 220 ms. In addition, we simulated a whole heart cycle of the healthy peoples heart magnetic field and compared with the SQUID magnetic field data. The simulation results show that the intensity of the simulated cardiac magnetic field is less than the SQUID magnetic field. It indicates that more characteristic information can be obtained by modeling and simulating the cardiac magnetic field at the left ventricular initial-diastolic and end-diastolic respectively by using color Doppler four-dimensional imaging data.
【Key words】: Magnetocardiography; Boundary element model; Left ventricular; Color Doppler ultrasonography
0 ?引言
進入21世紀后,多通道超導量子干涉儀(super?conducting quantum interference device,SQUID)在心臟磁場中的應用為心臟磁場的研究帶來了新的發(fā)展機遇。超導量子干涉儀能夠在人體表面測量出心臟磁場信號并用心磁圖(magnetocar-diography,MCG)表示出來[1-2]。在心臟磁場的正問題和逆問題研究中,通常會建立一個包含人體心臟和軀干的模型用于研究心臟磁場的研究。由于心臟組織結構的較為復雜跳動時伴隨著扭轉,因此,建立一個符合人體解剖學原理和心臟電生理學的人體心臟模型對心臟磁場的研究是非常有必要的。
在心臟磁場的研究中通常使用醫(yī)學成像來建立人體的心臟、軀干等模型。1991年J Nenonent和Forsman K等建立了包括心臟和肺部在內的真實的軀干模型并以此模型研究了不同條件下和器官和血液對心磁圖的影響[3]。近年來,浙江大學的夏靈等人利用CT圖像用有限元法建立了心臟-軀干模型,基于該模型進行心電仿真[4,5],張琛和壽國法等人利用CT圖像建立了包含肺部和心臟的人體軀干邊界元模型,其中心臟模型只有半個心臟包含兩個心室,利用該模型研究了仿真的MCG和實測數據的差異[6,7]。Czapski P和Ramon C等人曾利用核磁共振成像(magnetic resonance imaging, MRI),建立了包含心臟在內的人體軀干模型[8, 9],文中指出,MRI對軟組織的對比度明顯高于CT。同濟大學的蔣式勤等人根據胸腔MRI圖像數據建立了一個包含心房、心室的多腔體心臟—軀干BEM模型,并將其用于完全性左、右束支傳導阻滯(complete right bundle branch block/complete left bundle branch block, CLBBB/ CRBBB)病人的電興奮傳導研究[10-12]。此外Soo-Kng Te和Sarayu Parimal等人利用MRI成像建立了一個有限元的心臟模型,該模型用于研究心臟運動過程中心壁的形變[13]。2016年Erick A Perez Alday和Chen Zhang等建立了軀干和心臟模型,通過該模型研究了ECG和MCG的差異[14]。
4 ?結論
本文采用彩色多普勒4D成像技術提取到清晰度更高的完整心動周期的心臟解剖結構數據,并根據舒張過程中的左心室邊界,分別研究了220 ms和320 ms時刻的軀干—左心室磁場邊界元模型。研究結果表明,當偶極子的偶極矩固定,給定的單電流偶極子位于左心室內部時,這兩個時刻的磁場圖在大小、空間分布有較為明顯的差異;當偶極子位于左心室腔外時,這兩個時刻的模型所產生的磁場數據整體上都大于偶極子位于左心室腔內時的磁場數據,而這兩個時刻的磁場分布和大小的變化并不明顯;這種差異主要是心室邊界變化所導致的。這就說明在心臟磁場建模過程中非常有必要考慮心臟收縮過程對心臟磁場所造成的影響。這也說明對于心臟舒張時期,在心臟正問題和逆問題研究中都應進行相應的分析處理,從而使得結果與心臟電生理過程更加吻合。此外,本文對一個心動周期內健康人的心臟磁場進行了仿真,實驗結果表明,仿真的磁場的強度小于SQUID實測心臟磁場,QRS群波時段明顯小于實測心臟磁場值。
綜上所述,利用彩色多普勒4D成像對于建立更為精確的心室模型是必要的。針對心臟舒張期內心臟的不同形態(tài)構建心臟磁場模型,從而對心磁模型進行深入的研究,這將有助于對心臟磁場的產生、傳播等機理有一個更為全面的認識。
參考文獻
[1] Cohen D, Hosaka H, Magnetic Field Produced by a C urrent Dipole [J]. Journal of Electrocardiology, 1976, 9(4): 409- 417.
[2] De Melis M, Tanaka K, Uchikawa Y. Magnetocardiography Signal Reconstruction with Reduced Source Space Based on Current Source Variance [J]. IEEE Transactions on Magnetics, 2010, 46(5): 1203-2107.
[3] Nenonen J, Forsman K, et al. Magnetocardiographic localisation and modelling[J]. Institute of Physical Sciences in Medicine. 1991. 12: 11-14.
[4] Xia Ling, Huo Meimei, Wei Qing, et. al. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model [J]. Physics in Medicine and Biology, 2005, 8(50): 1901-1917.
[5] Shou Guofa. Xia Ling, Jiang Mingfeng, et. al. Solving the ECG Forward Problem by Means of Standard h- and h-Hierarchical Adaptive Linear Boundary Element Method: Comparison With Two Refinement Schemes [J]. IEEE Transactions on Biomedical Engineering. 2009, 5(56): 1454-1464.
[6] Shou Guofa, Xia Ling, Ma Ping, et al. Simulation study of a magnetocardiogram based on a virtual heart model: effect of a cardiac equivalent source and a volume conductor [J]. Chin. Phys. B, 2011, 20(3): 030702.
[7] Zhang Chen, Shou Guofa, Lu Hong, et al. A new magneto- cardiogram study using a vector model with a virtual heart and the boundary element method [J]. Chin. Phys. B, 2013, 22(9): 090701.
[8] Czapski P, Ramon C, Haueisen J, et al. MCG Simulations of Myocardial Infarctions with a Realistic Heart-Torso Model [J]. IEEE Transactions on Magnetics, 1998, 45(11): 1313- 1322.
[9] Ramon C, Czapski P, Haueisen J, et al. MCG Simulations with a Realistic Heart-Torso Model [J]. IEEE Transactions on Biomedical Engineering, 1998, 45(11): 1323-1331.
[10] 王偉遠, 趙晨, 林玉章, 張樹林, 謝曉明, 蔣式勤. 心臟磁場分布電流源重構及其精度分析 [J]. 物理學報 2013, 62(14): 148703.
[11] 朱俊杰, 蔣式勤, 王偉遠, 等. 多腔體心臟磁場模型的研究與應用 [J]. 物理學報 2014, 63(5): 058703.
[12] 周大方, 張樹林, 蔣式勤. 用于心臟電活動成像的空間濾波器輸出噪聲抑制方法[J]. 物理學報2018, 67(15): 158702.
[13] Soo-Kng Te, Sarayu Parimal, Like Gobeawan, et. al. Reconstruction of 3D Dense Cardiac Motion Field from Cine and Tagged Magnetic Resonance Images [J]. Computing in Cardiology, 2016, 43: 1-4
[14] Erick A Perez Alday, Haibo Ni, Chen Zhang. Michael A. Colman, Zizhao Gan, Henggui Zhang. Comparison of Electric-and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso [J]. PLOS ONE, 2016 8. 11: e0160999.
[15] Dekker D L, Piziali R L, Jr E D. A System for Ultrasonically Imaging the Human Heart in Three Dimensions [J]. Comput Biomed Res, 1974, 7: 544-553.
[16] Martin R W, Bashein G, Zimmer R. An Endoscopic Micromanipulator for Multiplanar Transesophageal Imaging [J]. Ultrasound in Med. & Biol, 1986, 12: 965-975.
[17] Van Ramm O T, Smith S W. Real Time Volumetric Ultrasound lmaging System [J]. Journal of Digital Imaging, 1990, 3: 261-266.
[18] Li Zhian, Wang Xinfang, Lu Ping, et al. Study on three- dimensional reconstruction of transesophageal echocardiographic images [J]. Journal of Tongji Medical University, 1995, 15: 10-15.
[19] Wang XF. Four-dimensional echocardiography: imaging methods and clinical applications. J Clin Cardiol, 1995, 11: 383–384.
[20] Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem [J]. Phys. Med. Biol. 1987, 32: 11-22.
[21] Geselowitz D B. On the Magnetic Field Generated Outside an Inhomogeneous Volume Conductor by Internal Current Sources [J]. IEEE Transactions on Magnetics, 1970, 6(2): 346-347.
[22] Vladimirov V S. Equations of Mathematical Physics (New York: Marcel Dekker) [M]//Boundary Value Problems for Elliptic Equations: Discontinuity of the Potential of a Double Layer. 1971: 302-304.
[23] Stenroos M, M?ntynen V, Nenonen J. A Matlab library for solving quasi-static volume conduction problems using the boundary element method [J]. Computer Methods and Programs in Biomedicine, 2007, 88(3): 256-263.
[24] Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues [J]. Phys. Med. Biol. 1996, 41: 2271- 2293.
[25] Rush S, Abildskov J A, Mcfee R. Resistivity of Body Tissues at Low Frequencies [J]. Circulation Research, 1963, 12: 40-50.
[26] Keller D U J, Weber F M, Seemann G, et al. Ranking the influence of tissue conductivities on forward-calculated ECGs [J]. IEEE Transactions on Biomedical Engineering, 2010, 57: 1568-1576.