張凱旋 陳廣新 邱收
摘 ?要: 探討椎動(dòng)脈阻斷前后基底動(dòng)脈瘤的血流動(dòng)力學(xué)變化。采集基底動(dòng)脈瘤患者顱內(nèi)CTA影像DICOM格式數(shù)據(jù),應(yīng)用MIMICS 21.0軟件三維重建椎動(dòng)脈模型,應(yīng)用3-matic軟件對(duì)初步獲得的模型進(jìn)行修復(fù),并使用Ansys ICEM軟件對(duì)模型進(jìn)行離散化網(wǎng)格劃分,最后通過(guò)Ansys fluent軟件對(duì)動(dòng)脈瘤有限元模型進(jìn)行數(shù)值模擬運(yùn)算,獲得顱內(nèi)正常動(dòng)脈與術(shù)前、術(shù)后動(dòng)脈瘤部位血流速度、壁切應(yīng)力、壁壓力的分布特征,比較分析正常、術(shù)前、術(shù)后三種模型之間的血流動(dòng)力學(xué)參數(shù)差異。椎動(dòng)脈阻斷前后基底動(dòng)脈瘤的血流動(dòng)力學(xué)參數(shù)存在顯著差異,三種模型的血流速度、壁切應(yīng)力、壁壓力分別兩兩之間差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。通過(guò)椎動(dòng)脈阻斷的方式,基底動(dòng)脈瘤的血流動(dòng)力學(xué)發(fā)生顯著的改變:血流速度下降、壁切應(yīng)力升高、壁壓力下降。
關(guān)鍵詞: 顱內(nèi)動(dòng)脈瘤;血流動(dòng)力學(xué);數(shù)值模擬;計(jì)算流體力學(xué)
中圖分類號(hào): TP319 ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.06.021
本文著錄格式:張凱旋,陳廣新,邱收,等. 椎動(dòng)脈阻斷術(shù)前后基底動(dòng)脈瘤的血流動(dòng)力學(xué)數(shù)值模擬分析[J]. 軟件,2019,40(6):96100
【Abstract】: To investigate the hemodynamic changes of basilar aneurysms before and after vertebral artery occlusion. Using Mimics21.0 import case of patients with intracranial aneurysms CTA images DICOM format data, obtain the intracranial aneurysm model, will import the model 3-matic model to build further, Ansys workbench to build a good model for grid division, numerical simulation calculation, the gain of intracranial aneurysm of blood flow velocity, wall pressure and wall shear stress (WSS) values, compare and analyze the hemodynamic parameters of the differences between the three models. There were differences in hemodynamic parameters of basilar aneurysm before and after vertebral artery occlusion, and the differences in blood flow velocity, WSS and wall pressure between the three models were statistically significant (P<0.05). The hemodynamics of basilar aneurysms were significantly altered by vertebral artery occlusion: flow velocity decreased, wall shear stress increased, and wall pressure decreased.
【Key words】: Intracranial aneurysm; Hemodynamics; Numerical simulation; Computational fluid dynamics
0 ?引言
顱內(nèi)動(dòng)脈瘤屬于顱內(nèi)動(dòng)脈壁疾病,好發(fā)于Willis環(huán)的動(dòng)脈分叉處,可導(dǎo)致血管病理性擴(kuò)張。顱內(nèi)出現(xiàn)動(dòng)脈瘤導(dǎo)致的最嚴(yán)重的后果是由動(dòng)脈瘤破裂引起的蛛網(wǎng)膜下腔出血[1-4]。由于患有未破裂動(dòng)脈瘤的患者在日常生活中沒(méi)有出現(xiàn)任何癥狀,因此顱內(nèi)動(dòng)脈瘤的檢測(cè)及其預(yù)防和治療非常困難。成像診斷系統(tǒng)技術(shù)的增強(qiáng),如計(jì)算機(jī)斷層掃描血管造影(CTA)和磁共振血管造影(MRA),大大提高了未破裂動(dòng)脈瘤的發(fā)現(xiàn)率,這有利于對(duì)動(dòng)脈瘤患者提早治療,以防止蛛網(wǎng)膜下腔出血[5,6]。本文使用的是一例基底動(dòng)脈瘤的CTA影像數(shù)據(jù),運(yùn)用有限元軟件對(duì)該患者的不同的血流模式進(jìn)行數(shù)值模擬,模擬結(jié)果可對(duì)基底動(dòng)脈瘤手術(shù)方案進(jìn)行指導(dǎo)。
1 ?材料與方法
1.1 ?實(shí)驗(yàn)數(shù)據(jù)采集
采集牡丹江醫(yī)學(xué)院附屬紅旗醫(yī)院1例男性顱內(nèi)CTA影像數(shù)據(jù),年齡66歲,采用日本東芝Aquilion64排螺旋CT,掃描參數(shù):管電壓120 KV、管電流250 mA、掃描矩陣512×512、視野239.62 mm、像素尺寸0.468 mm、掃描層厚0.5 mm,以4.0 ml/s經(jīng)肘靜脈注射造影劑150 ml,要求患者在掃描過(guò)程中
不做吞咽動(dòng)作,掃描數(shù)據(jù)以DICOM(Digital imaging and Communications in Medicine)格式儲(chǔ)存。
1.2 ?實(shí)驗(yàn)條件
實(shí)驗(yàn)設(shè)備使用的是戴爾Precision T7810:Xeon E5-2609 v3處理器、16 G內(nèi)存、nVIDIA Quadro k2200顯卡。實(shí)驗(yàn)應(yīng)用的軟件:Mimics 21.0;3-matic 12.0;Ansys workbench 18.0;SPSS 22.0。
1.3 ?有限元模型建立及網(wǎng)格劃分
1.3.1 ?模型的三維重建及修復(fù)
將CTA影像數(shù)據(jù)導(dǎo)入Mimics 21.0軟件,采用使用閾值分割(Thresholding)和手動(dòng)分割、區(qū)域增長(zhǎng)(Region Growing)、蒙板編輯(Edit Masks)等分割方法獲得感興趣區(qū)域,去除非感興趣區(qū)域,再通過(guò)計(jì)算三維工具(Calculate Part)對(duì)感興趣區(qū)域進(jìn)行三維重建。在3-matic中對(duì)模型進(jìn)行光滑、修剪處理,最后以stl格式保存重建的模型。
對(duì)動(dòng)脈瘤模型分別進(jìn)行以下處理:①阻斷左側(cè)椎動(dòng)脈 ②阻斷右側(cè)椎動(dòng)脈。未經(jīng)過(guò)處理的動(dòng)脈瘤模型為:模型Ⅰ;阻斷左側(cè)椎動(dòng)脈為:模型Ⅱ;阻斷右側(cè)椎動(dòng)脈為:模型Ⅲ(圖1)。
1.3.2 ?網(wǎng)格劃分
在Ansys ICEM CFD中對(duì)動(dòng)脈瘤進(jìn)行網(wǎng)格劃分(圖2),網(wǎng)格采用非結(jié)構(gòu)化四面體。為保證精度,邊界層設(shè)置為5層。
1.4 ?邊界條件設(shè)置和數(shù)值模擬
將血流設(shè)定為牛頓流體、層流,設(shè)置血液密度為1056 kg/m3,粘度為0.0035 Pa·s[7]。設(shè)定動(dòng)脈瘤壁為剛性,血液和血管壁面無(wú)滑動(dòng)及滲透。椎動(dòng)脈為入口,基底動(dòng)脈為出口。入口速度設(shè)定為0.85 m/s,出口處的壓力設(shè)定為0[8]。使用Ansys Fluent進(jìn)行計(jì)算,時(shí)間步長(zhǎng)為0.01 s,總共計(jì)算200步。
1.5 ?統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS統(tǒng)計(jì)學(xué)軟件。對(duì)結(jié)果進(jìn)行方差分析,使用LSD-t檢驗(yàn)對(duì)均數(shù)進(jìn)行兩兩比較。P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 ?結(jié)果及統(tǒng)計(jì)學(xué)分析
2.1 ?動(dòng)脈瘤內(nèi)血流流線圖分析
圖3A中的血流從兩側(cè)椎動(dòng)脈注入動(dòng)脈瘤,血流注入后流場(chǎng)變得復(fù)雜,可見(jiàn)內(nèi)部血流形成多個(gè)渦流,流動(dòng)軌跡雜亂,最后從基底動(dòng)脈流出,血流轉(zhuǎn)折處流速明顯上升。圖3B中的血流由右側(cè)椎動(dòng)脈進(jìn)入動(dòng)脈瘤,血流進(jìn)入動(dòng)脈瘤后,多數(shù)呈層流,動(dòng)脈瘤中心位置血流明顯低于圖3A。圖3C中的血流由左側(cè)椎動(dòng)脈進(jìn)入動(dòng)脈瘤,血流流動(dòng)與圖3B相似,動(dòng)脈瘤中心位置血流最低。三種模型的血流速度兩兩之間均有顯著性差異(P<0.05,表1)。
2.2 ?動(dòng)脈瘤壁切應(yīng)力(Wall Shear Stress,WSS)云圖分析
圖4A中整個(gè)動(dòng)脈瘤的WSS均處于較低的狀態(tài)。在圖4B中動(dòng)脈瘤入口處、出口處周圍以及瘤囊接近瘤頂部的位置的WSS比模型Ⅰ高。在圖4C中,入口處、出口處周圍以及瘤囊的一部分的WSS比模型Ⅰ高。圖4B和4C的WSS變化的不同是由于兩個(gè)不同的血流入射方向?qū)е?。圖4B和4C中均可見(jiàn)到在出口血管轉(zhuǎn)折處的WSS較模型Ⅰ變化最大。三種模型的WSS兩兩之間均有顯著性差異(P<0.05,表2)。
2.3 ?動(dòng)脈瘤壁壓力(Wall Pressure, P)圖分析
圖5A中動(dòng)脈瘤壁壓力整體較高,在入口處、出口處周圍和靠近瘤頂部的位置相對(duì)較低。圖5B和圖5C的動(dòng)脈瘤壁壓力明顯低于模型Ⅰ,在圖5B中,瘤囊有一小部分區(qū)域的壁壓力高于其他部位,出口處周圍的壓力高于瘤囊。與圖5B不同的是,圖5C的入口處、出口處周圍的壓力要高,而動(dòng)脈瘤囊的壓力整體較低。三種模型的壁壓力兩兩之間均有顯著性差異(P<0.05,表3)。
3 ?討論
本文通過(guò)使用數(shù)值模擬的方法,對(duì)顱內(nèi)動(dòng)脈瘤的CTA數(shù)據(jù)進(jìn)行三維重建,并進(jìn)行血流動(dòng)力學(xué)分析,模擬了一例顱內(nèi)動(dòng)脈瘤阻斷前和阻斷后的血流動(dòng)力學(xué)變化。本研究對(duì)阻斷前后的動(dòng)脈瘤內(nèi)血流動(dòng)力學(xué)的變化表明:阻斷后,動(dòng)脈瘤內(nèi)血流速度和壁壓力下降,WSS升高。WSS是顱內(nèi)動(dòng)脈瘤起始,生長(zhǎng)和破裂過(guò)程中的關(guān)鍵血流動(dòng)力學(xué)因素[9]。WSS近年來(lái)一直都是研究的熱點(diǎn),Xiang等人發(fā)現(xiàn)具有復(fù)雜流動(dòng)模式伴有多個(gè)漩渦的動(dòng)脈瘤較單個(gè)渦流的簡(jiǎn)單流動(dòng)模式的動(dòng)脈瘤更容易破裂,由圖3可以看出,在阻斷之后動(dòng)脈瘤的血流模式變?yōu)楹?jiǎn)單的流動(dòng)模式。WSS是血流與血管內(nèi)皮間的摩擦力,其與血液特性,血流速度和血管形態(tài)由密切關(guān)系,改變血流速度,WSS會(huì)發(fā)生相應(yīng)的變化,因此改變動(dòng)脈瘤內(nèi)和局部載瘤動(dòng)脈瘤的血流動(dòng)力學(xué)因素對(duì)動(dòng)脈瘤的治療有非常大的幫助。此外還發(fā)現(xiàn)與未破裂動(dòng)脈瘤相比,破裂動(dòng)脈瘤具有更大的WSS幅度和更大的低WSS區(qū)域[10]。Jou和Boussel等人實(shí)驗(yàn)研究表明在動(dòng)脈瘤生長(zhǎng)區(qū)域內(nèi)異常低的WSS區(qū)域[11,12]。Valencia等人的報(bào)告中指出破裂動(dòng)脈瘤的低WSS面積平均大于未破裂動(dòng)脈瘤[13]。Fukazawa等人和Omodaka等人采用CFD方法研究了18例大腦中動(dòng)脈動(dòng)脈瘤術(shù)中確定破裂點(diǎn),這兩項(xiàng)研究結(jié)果獲得了類似的結(jié)果,即破裂點(diǎn)的時(shí)間平均WSS顯著低于沒(méi)有破裂點(diǎn)的動(dòng)脈瘤壁處的時(shí)間平均WSS[14,15]。Shojima等人使用CTA數(shù)據(jù)對(duì)動(dòng)脈瘤進(jìn)行研究,低WSS可促進(jìn)生長(zhǎng)并引發(fā)動(dòng)脈瘤破裂[16]。Jou等人同樣提出低WSS區(qū)域與破裂有關(guān)[17]。低WSS可以促進(jìn)巨噬細(xì)胞相關(guān)的慢性炎癥和動(dòng)脈粥樣硬化改變,由巨噬細(xì)胞造成的動(dòng)脈粥樣硬化炎癥改變和金屬蛋白酶的產(chǎn)生可使動(dòng)脈瘤壁易于變薄并進(jìn)一步破裂[18]。破裂動(dòng)脈瘤破裂區(qū)域的舒張末期WSS較低,收縮期峰值壓力較高,其可能的機(jī)制是低WSS導(dǎo)致動(dòng)脈瘤壁變形和變薄,收縮期峰值的高壓導(dǎo)致變薄壁破 ?裂[19]。低WSS導(dǎo)致動(dòng)脈瘤壁發(fā)生變化、變薄,進(jìn)而導(dǎo)致動(dòng)脈瘤壁的破裂,在阻斷之后動(dòng)脈瘤的WSS升高,壁壓力降低,可以避免其繼續(xù)生長(zhǎng)及破裂。
綜上所述,通過(guò)椎動(dòng)脈阻斷的方式,基底動(dòng)脈瘤的血流動(dòng)力學(xué)發(fā)生顯著的改變:血流速度下降、WSS升高、壁壓力下降,計(jì)算結(jié)果可對(duì)臨床手術(shù)規(guī)劃提供借鑒。
參考文獻(xiàn)
[1] Bederson JB I, Awad A, Wiebers DO, Piepgras D, Haley EC Jr, Brott T, Hademenos G, Chyatte D, Rosenwasser R, Caroselli C. Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the stroke council of the american heart association. Stroke. 2000; 31: 2742–2750.
[2] Bockman MD, Kansagra AP, Shadden SC, Wong EC, Marsden AL. Fluid mechanics of mixing in the vertebrobasilar system: comparison of simulation and mri. Cadiovasc Eng Technol. 2012; 3: 450–461.
[3] Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008; 39: 2997–3002.
[4] Castro MA, Putman CM, Cebral JR. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodyna?mics. Am J Neuroradiol. 2006; 27: 1703–1709.
[5] Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. Efficient pipeline for image-based patient- specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging. 2005; 24: 457–467.
[6] Cebral JR, Hendrickson S, Putman CM. Hemodynamics in a lethal basilar artery aneurysm just before its rupture. AJNR Am J Neuroradiol. 2009; 30: 95–98.
[7] Paliwal, N, et al. Association between hemodynamic modi?fications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc SPIE Int Soc Opt Eng, 2017; 1(2): 13-15.
[8] Yazici, B, B. Erdogmus and A. Tugay. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagnostic and Interventional Radiology, 2005. 11(4): 195.
[9] Wang, C, et al. Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm. Acta Neurochirurgica, 2016. 158(4): 811-819.
[10] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic- morphologic discriminants for intracranial aneurysm rupture. Stroke. 2010; 42: 144-152.
[11] Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D. Aneurysm growth occurs at region of low wall shear stress: patientspecific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008; 39(11): 2997-3002.
[12] Jou LD, Wong G, Dispensa B, Lawton MT, Higashida RT, Young WL, Saloner D. Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol. 2005; 26(9): 2357-63.
[13] Valencia A, Morales H, Rivera R, Bravo E, Galvez M. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys. 2008; 30: 329-340.
[14] Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 2015;83: 80–6.
[15] Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis. 2012;34: 121–9.
[16] Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke. 2004; 35: 2500-2505.
[17] Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol. 2008; 29: 1761-1767.
[18] Nixon, A. M, Gunel, M. & Sumpio, B. E. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg. 2010; 1(12): 1240–1253.
[19] Kono, K, et al. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery. 2012. 71(6): 1202-8.