漆棟良,胡田田,宋 雪
交替隔溝灌溉制度對制種玉米耗水規(guī)律和產(chǎn)量的影響
漆棟良1,2,胡田田2※,宋 雪3
(1. 長江大學(xué)農(nóng)學(xué)院,荊州 434025;2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100;3. 鄭州大學(xué)綜合設(shè)計研究院有限公司,鄭州 450002)
該文研究交替隔溝灌溉下不同灌溉制度對制種玉米耗水規(guī)律和產(chǎn)量的影響。以制種玉米“金西北22號”為供試材料,2014年在大田條件下采用壟植溝灌技術(shù),設(shè)置7種灌溉制度:全生育期充分供水(CK)、僅苗期中度虧水(T1)、僅苗期重度虧水(T2)、僅穗期中度虧水(T3)、僅穗期重度虧水(T4)、僅花粒期中度虧水(T5)和僅花粒期重度虧水(T6),分析灌溉制度對玉米耗水強度、作物系數(shù)、籽粒產(chǎn)量和水分利用效率(water use efficiency,WUE)的影響。結(jié)果表明:CK 下制種玉米生長期內(nèi)的耗水量、平均作物系數(shù)和籽粒產(chǎn)量均最大,分別是494 mm、0.86和6478 kg/hm2。與CK相比,任一虧水處理均降低制種玉米全生育期的平均耗水強度,且T6處理下全生育期的平均耗水強度較T5處理的相應(yīng)值明顯減少(<0.05);任一生育期虧水均降低該生育階段的作物系數(shù)。T2、T3、T4、T5和T6處理的籽粒產(chǎn)量較CK明顯降低,降幅分別是13.29%、15.48%、28.13%、14.06%和19.87%(<0.05);而T1處理的籽粒產(chǎn)量較CK差異不顯著(>0.05),與此同時,T1處理下玉米的耗水量較CK下降20.44%,使其WUE最大(1.55 kg/m3)、灌溉水WUE最大(2.54 kg/m3)。可見,交替隔溝灌溉下采用苗期中度虧水、其他生育期內(nèi)充分供水的灌溉制度可明顯提高制種玉米的水分利用效率,同時不顯著降低產(chǎn)量。該研究結(jié)果對河西走廊地區(qū)制種玉米灌溉管理具有重要指導(dǎo)意義。
灌溉;虧缺;蒸散;耗水;作物系數(shù);籽粒產(chǎn)量;水分利用效率;制種玉米
近年來,交替隔溝灌溉技術(shù)(alternate partial root zone irrigation,APRI)已在干旱、半干旱地區(qū)得到了廣泛的應(yīng)用,取得了良好的節(jié)水效益[1-2]。一般地,玉米在不同生育期經(jīng)受水分虧缺造成的減產(chǎn)幅度是不一樣的[3]。干旱地區(qū),均勻灌溉下大田玉米對水分虧缺的最敏感時期是抽雄期和灌漿期[4]。APRI下大田玉米大喇叭口至灌漿開始是需水的臨界期,該時期缺水受旱,會對作物產(chǎn)量產(chǎn)生嚴(yán)重影響[5]。畦灌條件下,各生育期土壤水分影響大田玉米產(chǎn)量大小的順序依次是灌漿期、孕穗期、拔節(jié)期、開花期、苗期[6]。灌漿期不灌水不僅對大田玉米產(chǎn)量沒有顯著影響,還可大幅度提高作物水分利用效率(water use efficiency,WUE)[7]。制種玉米在灌漿-乳熟期不灌水,可顯著提高作物產(chǎn)量和WUE[8]。半干旱地區(qū),在拔節(jié)期和灌漿期虧水,開花期充分灌水即可獲得與全生育期充分灌水處理相當(dāng)?shù)拇筇镉衩桩a(chǎn)量[9]??梢?,不同氣候、灌水管理措施及品種下玉米對水分虧缺的敏感程度不同,甚至差異很大。
自20世紀(jì)90年代初以來,河西灌區(qū)成為60多個玉米高產(chǎn)品種的制種基地[10-11]。由于經(jīng)濟(jì)價值高,制種玉米在甘肅石羊河流域得到大面積的種植。在該地區(qū),王增麗等[12-13]研究了畦灌、常規(guī)溝灌和APRI對制種玉米產(chǎn)量、干物質(zhì)積累和WUE的影響,發(fā)現(xiàn)APRI可提高制種玉米的產(chǎn)量和WUE。楊秀英等[14]研究了不同灌溉制度對大田玉米的影響,發(fā)現(xiàn)采用APRI在拔節(jié)、大喇叭口、抽雄、抽穗、灌漿始、灌漿中、乳熟期灌水,灌水定額為300 m3/hm2,可以達(dá)到使玉米不減產(chǎn)而節(jié)水33.3%的目的。漆棟良等[15]研究了不同灌水施氮方式對制種玉米產(chǎn)量及水氮利用效率的影響,發(fā)現(xiàn)APRI下均勻或交替施氮提高產(chǎn)量和WUE。但是,關(guān)于APRI下灌溉制度對制種玉米階段耗水量和產(chǎn)量的研究尚未見報道。因此,本文通過研究APRI下灌溉制度對制種玉米不同生育期耗水規(guī)律和產(chǎn)量的影響,為當(dāng)?shù)刂品N玉米的灌溉提供參考。
2014年在農(nóng)業(yè)部作物高效用水武威科學(xué)觀測試驗站(37°57′20"N、102°50′50"E)進(jìn)行灌溉試驗。多年平均降水量為164.4 mm,多年平均蒸發(fā)量為2 000 mm,土壤為灰鈣質(zhì)粉質(zhì)壤土,容重為1.40 g/cm3,凋萎系數(shù)為12%,田間持水率為30%(體積含水率)。試驗地其他概況見文獻(xiàn)[16]。
試驗采用交替隔溝灌溉方式,設(shè)3個灌水梯度:充分灌水(灌水定額30 mm,約為當(dāng)?shù)爻R?guī)溝灌水定額的75%,可使0~60 cm土層的土壤含水率達(dá)到田間持水量的95%左右)、中度虧水(灌水定額20 mm)和重度虧水(灌水定額10 mm);在玉米播種-拔節(jié)(苗期)、拔節(jié)-抽穗(穗期)、抽穗-成熟(花粒期)施加不同程度的水分虧缺,在此基礎(chǔ)上選取6個可操作性強且對產(chǎn)量影響較大的虧水處理,1個全生育期充分灌水(CK),構(gòu)成試驗方案(表1)。對于CK小區(qū),當(dāng)土壤含水率接近灌水下限(即田間持水量的75%~80%)時,開始灌水,灌水上限為田間持水量的95%。其他處理小區(qū)的灌水時間同CK(表1)。各處理重復(fù)3次,共21個小區(qū)。為進(jìn)行交替灌溉處理,各小區(qū)內(nèi),本次灌水的溝下次不灌水,非灌水溝下次灌水,輪流交替進(jìn)行。
表1 交替隔溝灌溉條件下制種玉米灌溉制度試驗設(shè)計
注:VE、V6、VT和R6分別代表出苗、拔節(jié)、抽雄和成熟。
Note: VE, V6, VT and R6are emergence, jointing, tasseling and maturity stage, respectively.
供試作物為當(dāng)?shù)胤N植的制種玉米“金西北22號”。試驗于2014年4月21日壟上點播,每壟種一行玉米,行距 55 cm,株距 25 cm。4月28日出苗,6月6日拔節(jié),7月13日抽雄,8月11日灌漿,9月22日收獲。制種玉米在不同灌水處理間的生育進(jìn)程無明顯差異。
不同處理氮肥施用方式和施氮量(當(dāng)?shù)厥┑?00 kg/hm2[17],以純N計)均相同。氮肥選用尿素,分3次施入,基施40%,大喇叭口期和抽雄期各追施30%。氮肥分3次施用。第1次在覆膜種植前,均勻撒施在2溝內(nèi)。2次追施分別在大喇叭口期和抽雄期,在相應(yīng)生育期灌水處理前均勻撒施溝內(nèi)。溝壟設(shè)置、底肥實施同文獻(xiàn)[16]。其中,溝深30 cm,溝底寬 20 cm,壟頂寬 20 cm,壟底寬 35 cm。小區(qū)面積 32 m2(8 m×4 m),為東西走向,7個小區(qū)為1個區(qū)組,小區(qū)之間用0.5 m寬壟隔開,7個處理在區(qū)組內(nèi)隨機(jī)排列,共3個區(qū)組區(qū)組之間設(shè)1.5 m寬隔離帶。根據(jù)制種玉米生育進(jìn)程及土壤水分情況,分別在播后13、29、43、56、68、78、89、108和125 d灌水。不同處理的灌水次數(shù)和灌溉定額見表1。
1)氣象資料:距試驗點50 m安裝有自動氣象站,自動測定降雨量、太陽輻射、相對濕度、溫度、風(fēng)速等指標(biāo)。
2)玉米生育期及生長狀況:根據(jù)Ritchie等[18]關(guān)于玉米不同生育期可見葉子數(shù)的標(biāo)準(zhǔn),觀察、記錄玉米生長發(fā)育進(jìn)程。本試驗中玉米生育時期劃分為播種-拔節(jié)、拔節(jié)-大喇叭口、大喇叭口-抽雄、抽雄-抽絲、抽絲-灌漿、灌漿-乳熟、乳熟-成熟共7個生育期。
3)土壤含水率
為確定灌水時間,在制種玉米全生育期內(nèi)用土壤水分儀(Diviner 2000,Sentek Pty Ltd., Australia)測定CK處理0~100 cm (每10 cm為1層)土壤體積含水率,測管布置為壟上,每5~7 d測定1次。
為計算所有7個生育階段及整個生育期內(nèi)玉米的耗水量,播前、收獲后和每個觀測生育期用烘干法(105 ℃)測定壟上0~100 cm(每20 cm為1層)土壤質(zhì)量含水率。
4)籽粒產(chǎn)量:玉米成熟時,在各小區(qū)中間選取2行玉米,收獲果穗,風(fēng)干脫粒、稱質(zhì)量,得到籽粒產(chǎn)量。
1.5.1 參考作物需水量
Zhao等[19]研究發(fā)現(xiàn),F(xiàn)AO在1992年提出的彭曼-蒙太斯(Penman-Moteith)公式在河西走廊地區(qū)應(yīng)用價值和精度較高。故采用1992年FAO專家咨詢會議使用的Penman-Moteith公式計算ET0,如下:
式中ET0為參考作物需水量,mm;R為凈輻射量,MJ/(m2·d);為土壤熱通量,MJ/(m2·d);Δ為飽和水汽壓與溫度關(guān)系曲線的斜率,kPa/℃;為濕度計常數(shù),kPa/℃;為空氣平均溫度,℃;2為地面以上2 m高處的風(fēng)速,m/s;e為空氣飽和水汽壓,kPa;e為空氣實際水汽壓,kPa。
1.5.2 耗水量、耗水強度和耗水模數(shù)
耗水量(evapotranspiration,ET)由水量平衡公式計算
式中為時段內(nèi)的灌水量,mm;為時段內(nèi)的降雨量,mm;為時段內(nèi)的地下水補給量,mm,地下水埋深在40 m以下,可忽略不計,=0;為時段內(nèi)的排水量,mm,可忽略不計,=0;Δ為時段內(nèi)0~100 cm土層土壤儲水量的變化,mm;為地表徑流量,mm,考慮到制種玉米試驗期間無地表徑流發(fā)生,=0。
耗水強度為耗水量(mm)與耗水天數(shù)(d)的比值,mm/d;耗水模數(shù)為某階段耗水量(mm)與全生育期耗水量(mm)的比值,%。
1.5.3 作物系數(shù)
某作物各生育階段需水量的模式可用下式表達(dá)
式中K為第階段的作物系數(shù);ET為第階段的實際作物蒸發(fā)蒸騰量,即階段耗水量(式(2)),mm;ET0i為第階段的參考作物蒸發(fā)蒸騰量(式(1)),mm。
1.5.4 水分利用效率
水分利用效率(water use efficiency,WUE)為籽粒產(chǎn)量與生育期內(nèi)耗水量的比值;灌溉水利用效率(irrigation water use efficiency,IWUE)為籽粒產(chǎn)量與生育期內(nèi)灌水量的比值。
試驗數(shù)據(jù)用Excel 2010軟件繪圖,SPSS12.0統(tǒng)計軟件進(jìn)行方差分析和多重比較,方差分析用One-way,多重比較用Duncan法。
玉米全生育期內(nèi)參考作物蒸發(fā)蒸騰量ET0的平均值為3.70 mm/d,隨時間呈現(xiàn)明顯的季節(jié)性變化(圖1)。4月ET0在4 mm/d以下,后逐漸增大,在7月達(dá)到最高(6.17 mm/d)。8月后,隨太陽輻射強度及氣溫的變化,ET0逐漸減小為約3 mm/d。其受天氣變陰或降雨的影響,6-8月期間出現(xiàn)一些較小的值(圖1)。
圖1 制種玉米全生育期降雨分布和參考作物蒸發(fā)蒸騰量(ET0)變化
耗水量表現(xiàn)為:播種-拔節(jié)期,T1與T2處理<其他處理;拔節(jié)-大喇叭口期,T3與T4處理 表2 不同灌溉制度下制種玉米各生育期的耗水量、耗水強度和耗水模數(shù) 注:同一生育期同列數(shù)字不同字母表示差異性達(dá)0.05顯著水平。WCA、WCI和WCM分別代表耗水量、耗水強度和耗水模數(shù)。V6、V12、VT、R1、R2、R4和R6分別代表出拔節(jié)、大喇叭口、抽雄、抽絲、灌漿、乳熟和成熟;下同。 Note: Different letters after data within same column and growth stage mean significant difference at 0.05 levels. WCA, WCI and WCM represents amount, intensity modulus of water consumption, respectively. V6, V12, VT, R1, R2, R4and R6are jointing, bell, tasseling, silking, filling, milking and maturity stage, respectively; the same as below. 耗水強度表現(xiàn)為:播種-拔節(jié)期,耗水強度在2 mm/d以下。進(jìn)入拔節(jié)期以后,耗水強度迅速增大,在大喇叭口-抽雄期T6處理下達(dá)到峰值4.78 mm/d,其后逐漸減小。抽雄-灌漿時介于2.5~4.5 mm/d之間,灌漿-乳熟期T6處理下降到1.99 mm/d,乳熟-收獲期各處理耗水強度降到2.60 mm/d以下,其中T6處理只有1.44 mm/d。各生育階段的耗水強度在不同處理之間表現(xiàn)與耗水量相似(表2)。任一虧水處理均降低全生育期的平均耗水強度,且T6處理顯著低于T5處理,說明花粒期重度虧水較中度虧水進(jìn)一步降低制種玉米的耗水強度。 從耗水模數(shù)來看,CK的耗水模數(shù)介于9.29%(灌漿-乳熟)~19.33%(拔節(jié)-大喇叭口)之間。播種-拔節(jié)期,與T2處理相比,T1處理的耗水模數(shù)增加8.64%;抽雄-收獲期,與T6處理相比,T5處理的耗水模數(shù)增加5.27%~32.80%,拔節(jié)-抽雄期,與T4處理相比,T3的耗水模數(shù)增加1.21%~3.42%(表2)。說明在苗期和花粒期中度虧水的耗水模數(shù)較重度虧水處理的耗水模數(shù)增加1.21%~32.80%。 K值表現(xiàn)為:播種-拔節(jié)期,T1與T2處理<其他處理;拔節(jié)-抽雄期,T1、T2、T3與T4處理<其他處理;抽雄-抽絲期,T6處理 表3 不同灌溉制度下制種玉米的作物系數(shù)Kc 與CK相比,T2~T6處理的籽粒產(chǎn)量分別顯著下降13.29%、15.48%、28.13%、14.06%和19.87%(<0.05),而T1處理的籽粒產(chǎn)量沒有顯著下降(>0.05)(表4)。籽粒產(chǎn)量在不同虧水處理間表現(xiàn)為T1>T2(T3、T5)>T6>T4。WUE表現(xiàn)為T1(T2)>T6(CK)>T3(T5)>T4。IWUE表現(xiàn)為T1 >T2(T3、T5、CK)>T6 >T4。T1處理下WUE和IWUE均最大,分別是1.55和2.54 kg/m3。可見,APRI下苗期中度虧水有利于維持制種玉米的籽粒產(chǎn)量,顯著提高其WUE和IWUE。 表4 不同灌溉制度下制種玉米的籽粒產(chǎn)量、水分利用效率和灌溉水利用效率 前人研究表明,中國春玉米耗水量變化在400~700 mm,夏玉米耗水量變化在350~400 mm[20]。本文中,不同處理間制種玉米的耗水量在378~494 mm之間,CK下最大(表2)。在同一試驗地區(qū),均勻隔溝灌溉(CI)下,張立勤等[11]發(fā)現(xiàn)制種玉米的耗水量高達(dá)678 mm??梢姡cCI相比,APRI明顯降低制種玉米的耗水量。這與楊秀英等[14]在大田玉米的研究結(jié)果相一致。主要原因是,干旱區(qū)參考作物蒸發(fā)蒸騰量較大,APRI由于只給作物一側(cè)交替供水,使每次灌溉的濕潤面積減少。因此,顯著降低作物的蒸發(fā)量[21]。而且,本研究中T2處理的耗水量(378 mm)與張芮等[22]在膜下滴灌采用充分灌溉得到的耗水量(360 mm)相當(dāng)。因為玉米苗期需水不多,較耐旱,葉片面積較小,農(nóng)田蒸散以棵間蒸發(fā)為主,可以承受一定的程度的干旱[23]。 前人研究表明,不超過植物適應(yīng)范圍的缺水,往往在復(fù)水后產(chǎn)生水分利用和生長上的補償效應(yīng)[24]。本文中,當(dāng)虧水處理恢復(fù)正常供水后,耗水強度明顯增大(表2),說明作物適應(yīng)虧水的補償效應(yīng)存在。另外,灌漿期以前,與CK相比,各生育期T1處理的耗水強度降低(抽雄-抽絲期除外)。可能的原因是,一方面,苗期適當(dāng)虧水(蹲苗)鍛煉后,植株的根系能更新、長出大量新根[25]。另一方面,采用Hoagland溶液培養(yǎng),干濕交替供應(yīng)水分使得玉米根冠比增大,根系分枝的數(shù)目增加,活性根生成增多[26]。與CI相比,APRI顯著促進(jìn)玉米根系生長及深扎[27]。APRI下蹲苗時,二者根系生長的補償效應(yīng)可能疊加,使根系的吸水能力增強。但是,灌漿-乳熟期T1處理的耗水強度與CK相比差異不顯著(表2)。這可能與灌漿期為籽粒產(chǎn)量形成的關(guān)鍵期、對水分和養(yǎng)分的需求量較大有關(guān)[28]。其原因需要進(jìn)一步研究。 在參考作物蒸發(fā)蒸騰量一定的情況下,作物需水量多少是作物系數(shù)K大小的決定因素。本研究表明,任何生育期虧水使該生育階段的K值明顯降低,且很難完全恢復(fù)到CK的水平(表3)。這與肖俊夫等[20]的研究結(jié)果相一致,他們指出虧水處理不但造成階段需水量的降低,而且降低整個生育期的需水量。在同一地區(qū),關(guān)于棉花的研究結(jié)果也表明,灌水方式相同時,K值與灌水量成正相關(guān)[29]。另外,本文發(fā)現(xiàn)T4和T6處理使K值出現(xiàn)劇烈下降,不同的是T4處理K的下降出現(xiàn)在抽絲-乳熟期,而T6處理出現(xiàn)在抽雄-抽絲期(表4)。說明穗期重度虧水降低作物系數(shù)有一定的滯后性。 前人研究結(jié)果表明, 在一定條件下, 適度的水分虧缺不會對作物產(chǎn)量造成影響,卻能顯著提高作物WUE[30-31];調(diào)虧灌溉的適宜時段應(yīng)該是作物生長的早期階段[32]。本文結(jié)果與上述結(jié)論具有一致性,T1處理下制種玉米籽粒產(chǎn)量沒有顯著減少,WUE和IWUE明顯增加,而T6處理與之相反(表4)??赡茉蚴?,苗期作物植株較小,氣溫較低,蒸發(fā)強度?。▓D1),耗水強度也?。ū?),也就是說作物缺水的發(fā)展速度比較慢。較慢的水分虧缺發(fā)展速度對作物產(chǎn)量的影響較小[33]。而在作物的生長中期階段,氣溫升高,蒸發(fā)強度大(圖1),植株生長旺盛,耗水強度也大(表2),作物缺水的發(fā)展速度比較快,不適和進(jìn)行調(diào)虧灌溉。此外,穗期是玉米對水分虧缺最敏感的時期,該時期重度虧水直接導(dǎo)致葉面積、生長速率、株高和產(chǎn)量的顯著下降[34],使WUE顯著降低(表4)。 同一地區(qū),充分供水時,Kang等[35]發(fā)現(xiàn)在均勻隔溝灌溉(CI)和APRI之間大田玉米的WUE差異不大,分別為2.76和2.66 kg/m3;張立勤等[36]研究表明CI下制種玉米的WUE為1.12 kg/m3;張芮等[22]發(fā)現(xiàn)膜下滴灌條件下制種玉米的WUE為2.01 kg/m3,IWUE為2.93 kg/m3。本文中,CK的制種玉米WUE和IWUE分別為1.31和2.39 kg/m3(表4)。可見,APRI較CI顯著提高制種玉米的WUE。但是,制種玉米的WUE普遍低于大田玉米的WUE。這主要是因為大田玉米的產(chǎn)量(8 500~10 500 kg/hm2之間)遠(yuǎn)高于制種玉米的產(chǎn)量(5 500~8 000 kg/hm2之間)。 大田條件下,對APRI不同灌溉制度下制種玉米耗水規(guī)律和產(chǎn)量進(jìn)行研究,結(jié)果表明: 1)苗期重度虧水下制種玉米全生育期的耗水量最?。?78 mm),全生育期充分供水(CK)下制種玉米全生育期的耗水量最大(494 mm)。任一生育期進(jìn)行虧水處理均降低全生育期的平均耗水強度,且花粒期重度虧水下全生育期的平均耗水強度較中度虧水的相應(yīng)值進(jìn)一步降低。 2)CK下制種玉米生育期內(nèi)平均作物系數(shù)最大(0.86),籽粒產(chǎn)量最高(6 478 kg/hm2)。任一生育期虧水均使該生育階段的作物系數(shù)減少。與CK相比,苗期重度、穗期中度、穗期重度、花粒期中度和花粒期重度虧水的籽粒產(chǎn)量分別顯著下降13.29%、15.48%、28.13%、14.06%和19.87%(<0.05);苗期輕度虧水(T1)的籽粒產(chǎn)量與CK 無明顯差異(>0.05)。但T1下全生育期的耗水量(393 mm)較CK顯著下降20.44%。因此,APRI下采用苗期中度虧水、其他生育期內(nèi)充分供水的灌溉制度明顯提高制種玉米的WUE。 [1] Sepaskhah A R, Ahmadi S H. A review on partial root-zone drying irrigation[J]. International Journal of Plant Production, 2010, 4(4): 241-258. [2] Du T S, Kang S Z, Zhang J H, et al. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security[J]. Journal of Experimental Botany, 2015, 66: 2253-2269. [3] Claassen M M, Show R H. Water deficit effects on corn.II. Grain components[J]. Agronomy Journal, 1970, 62: 652-655. [4] Cakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn[J]. Field Crops Research, 2004, 89(1): 1–6. [5] 于保靜,石培澤,楊秀英,等. 干旱區(qū)大田玉米控制性交替隔溝灌溉需水量及需水規(guī)律研究[J]. 甘肅省水利水電技術(shù),2006,42(3):209-212. [6] 王延宇,王鑫,趙淑梅,等. 玉米各生育期土壤水分與產(chǎn)量關(guān)系的研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,1998,16(1):100-105. Wang Yanyu, Wang Xin, Zhao Shumei, et al. Relationship between corn yield and soil water in different growing stages[J]. Agricultural Research in the Arid Areas, 1998, 16(1): 100-105. (in Chinese with English abstract) [7] 薛馮定,張富倉,索巖松,等. 不同生育期虧水對河西地區(qū)春玉米生長、產(chǎn)量和水分利用效率的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報:自然科學(xué)版,2013,41(5):59-66. Xue Fengding, Zhang Fucang, Suo Yansong, et al. Effect of water deficit at different growth stages on growth, yield and water use of spring maize in Hexi area[J]. Journal of Northwest A&F University: Nat Sci Ed, 2013, 41(5): 59-66. (in Chinese with English abstract) [8] 董平國,王增麗,溫廣貴,等. 不同灌溉制度對制種玉米產(chǎn)量和階段耗水量的影響[J]. 排灌機(jī)械工程學(xué)報,2014,32(9):822-828. Dong Pingguo, Wang Zengli, Wen Guanggui, et al. Effects of irrigation schedule on water consumption and yield of seed maize[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(9): 822-828. (in Chinese with English abstract) [9] Igbadun H E, Taribno A R, Salim B A, Mahoo H F. Evaluation of selected crop water production for an irrigated maize crop[J]. Agricultural Water Management, 2007, 94(1): 1-10. [10] 馮守疆,趙欣楠,車宗賢,等. 不同施肥處理對制種玉米的影響研究[J]. 甘肅農(nóng)業(yè)科技,2010(7):7-9. Feng Shoujiang, Zhao Xinnan, Che Zongxian, et al. Study on the effect of different fertilizer treatments in producing corn seeds[J]. Gansu Agricultural Science and Technology, 2010(7): 7-9. (in Chinese with English abstract) [11] 張立勤,馬忠明,王智琦,等. 不同栽培模式下制種玉米的產(chǎn)量及水分生產(chǎn)效應(yīng)[J]. 節(jié)水灌溉,2012(12):43-45. Zhang Liqin, Ma Zhongming, Wang Zhiqi, et al. Yield and water production effect of seed corn under different cultivation mode[J]. Water Saving Irrigation, 2012(12): 43-45. (in Chinese with English abstract) [12] 王增麗,朱興平,溫廣貴. 不同灌溉方式對制種玉米產(chǎn)量及水分利用效率的影響[J]. 節(jié)水灌溉,2017(1):12-15. Wang Zengli, Zhu Xingping, Wen Guanggui. Effects of different irrigation methods on seed maize yield and water use efficiency[J]. Water Saving Irrigation, 2017(1): 12-15. (in Chinese with English abstract) [13] 王增麗,欒元利,溫廣貴,等. 不同灌溉方式下制種玉米葉面積指數(shù)、干物質(zhì)累積與產(chǎn)量研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(6):27-31. Wang Zengli, Luan Yuanli, Wen Guanggui, et al. Research on the leaf area index, dry matter accumulation with yield of seed maize under different irrigation methods[J]. Agricultural Research in the Arid Areas, 2017, 35(6): 27-31. (in Chinese with English abstract) [14] 楊秀英,杜太生,潘英華,等. 沙漠綠洲區(qū)不同灌水方式條件下玉米灌溉制度研究[J]. 灌溉排水學(xué)報,2003,22(3):22-24. Yang Xiuying, Du Taisheng, Pan Yinghua, et al. Scheduling irrigation for maize under different Irrigation methods in Minqin Oasis[J]. Journal of Irrigation and Drainage, 2003, 22(3): 22-24. (in Chinese with English abstract) [15] 漆棟良,胡田田,宋雪. 適宜灌水施氮方式提高制種玉米產(chǎn)量及水氮利用效率[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(21):98-104. Qi Dongliang, Hu Tiantian, Song Xue. Rational irrigation and nitrogen supply methods improving grain yield and water-nitrogen use efficiency of seed maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 98-104. (in Chinese with English abstract) [16] 漆棟良,胡陽光,胡田田,等. 不同灌水方式下春玉米的根系生長分布[J]. 排灌機(jī)械工程學(xué)報,2014,32(11):990-997. Qi Dongliang, Hu Yangguang, Hu Tiantian, et al. Root growth and distribution of spring maize under different irrigation methods[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(11): 990-997. (in Chinese with English abstract) [17] 楊榮,蘇永中. 水氮配合對綠洲沙地農(nóng)田玉米產(chǎn)量、土壤硝態(tài)氮和氮平衡的影響[J]. 生態(tài)學(xué)報,2009,28(3):1460-1469. Yang Rong, Su Yongzhong. Effects of nitrogen fertilization and irrigation rate on grain yield, nitrate accumulation and nitrogen balance on sandy farmland in the marginal oasis in the middle of Heihe River basin[J]. Acta Ecologica Sinica, 2009, 28(3): 1460-1469. (in Chinese with English abstract) [18] Ritchie S W, Hanway J J. How a corn plant develops[R]. Special Report 48. American, IA: Review Iowa State University Cooperation Extensive Service,1982. [19] Zhao W Z, Liu B, Zhang Z H. Water requirement of maize in the middle Heihe River basin, China[J]. Agricultural Water Management, 2010, 97(2): 215-223. [20] 肖俊夫,劉占東,陳玉民. 中國玉米需水量及需水規(guī)律研究[J]. 玉米科學(xué),2008,16(4):21-25. Xiao Junfu, Liu Zhandong, Chen Yumin. Study on the water requirement and water requirement regulation of maize in China[J]. Journal of Maize Sciences, 2008, 16(4): 21-25. (in Chinese with English abstract) [21] Tang L S, Li Y, Zhang J H. Partial root zone irrigation increase water use efficiency, maintains yield and enhance economic profit of cotton in arid area[J]. Agricultural Water Management, 2010, 97: 1527-1533. [22] 張芮,成自勇. 調(diào)虧對膜下滴灌制種玉米產(chǎn)量及水分利用效率的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報,2009,30(4):98-101. Zhang Rui, Cheng Ziyong. Effect of regulated deficit drip irrigation on yield and water use efficiency of plastic film mulched corn for seed[J]. Journal of South China Agricultural University, 2009, 30(4): 98-101. (in Chinese with English abstract) [23] 鐘兆站,趙聚寶,郁小川,等. 中國北方主要旱地作物需水量的計算與分析[J]. 中國農(nóng)業(yè)氣象,2000,21(2):1-4. Zhong Zhaozhan, Zhao Jubao, Yu Xiaochuan, et al. Calculation and analysis on water requirements of major crops in Northern China[J]. Chinese Journal of Agro meteorology, 2000, 21(2): 1-4. (in Chinese with English abstract) [24] 胡田田,康紹忠. 植物抗旱性中的補償效應(yīng)及其在農(nóng)業(yè)節(jié)水中的應(yīng)用[J]. 生態(tài)學(xué)報,2004,25(4):885-891. Hu Tiantian, Kang Shaozhong. The compensatory effect in drought resistance of plants and its application in water-saving agriculture[J]. Acta Ecologica Sinica, 2004, 25(4): 885-891.(in Chinese with English abstract) [25] 余叔文,陳景治,劉存德,等. 小麥苗期千早鍛煉的效果問題及其生理基礎(chǔ)[J]. 作物學(xué)報,1964,3(2):169-179. Yu Shuwen, Chen Jingzhi, Liu Cunde, et al. Effect of drought pre-treatment during wheat seedling stage and its physiological basis[J]. Acta Agronomica Sinica, 1964, 3(2): 169-179. (in Chinese with English abstract) [26] 梁宗鎖,康紹忠,高俊鳳,等. 分根交替滲透脅迫與脫落酸對玉米根系生長和蒸騰效率的影響[J]. 作物學(xué)報,2000,26(2):250-255. Liang Zongsuo, Kang Shaozhong, Gao Junfeng, et al. Effect of abscisic acid (ABA) and alternative split-root osmotic stress on root growth and transpiration efficiency in maize[J]. Acta Agronomica Sinica, 2000, 26(2): 250-255. (in Chinese with English abstract) [27] Qi D L, Hu T T, Niu X L. Responses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation[J]. International Journal of Plant Production, 2017, 11(2): 209-224. [28] Hirel B, Gouis J L, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. Journal of Experimental Botany, 2007, 58: 2369-2387. [29] 杜太生. 干旱荒漠綠洲區(qū)作物根系分區(qū)交替灌溉的節(jié)水機(jī)理與模式研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2006. Du Taisheng. Water-saving Mechanism and Application of Alternate Partial Root-zone Irrigation in the Oasis of Northwest China[D]. Beijing: China Agricultural University, 2006. (in Chinese with English abstract) [30] 山侖. 植物水分利用效率和半干旱地區(qū)農(nóng)業(yè)節(jié)水[J]. 植物生理學(xué)報,1994,30(1):61-66. [31] Turner N C. Further progress in crop water relations[J]. Advances in Agronomy, 1997, 58: 293-338. [32] 蔡煥杰,康紹忠,張振華,等. 作物調(diào)虧灌溉的適宜時間與調(diào)虧程度研究[J]. 農(nóng)業(yè)工程學(xué)報,2000,16(3):24-27. Cai Huanjie, Kang Shaozhong, Zhang Zhenhua, et al. Proper growth stages and deficit degree of crop regulated deficit irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 24-27. (in Chinese with English abstract) [33] Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain filling of spring wheat[J]. Crop Science, 1992, 32: 1238-1242. [34] Doorenbos J, Kassam A K. Yield response to water irrigation[R]. Irrigation and Drainage Paper 33. Rome: FAO, United Nations, 1979:176. [35] Kang S Z, Liang Z S, Pan Y H, et al. Alternate furrow irrigation for maize production in arid area[J]. Agricultural Water Management, 2000, 45: 267-274. [36] 張立勤,馬忠明,俄勝哲. 壟膜溝灌栽培對制種玉米產(chǎn)量和水分利用效率的影響[J]. 西北農(nóng)業(yè)學(xué)報,2007,16(4):83-86. Zhang Liqin, Ma Zhongming, E Shengzhe, et al. Effects of ridge cultivation with plastic film mulching-furrow irrigation on yield and water use efficiency of seed corn[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2007, 16(4): 83-86.(in Chinese with English abstract) Effect of irrigation regime on water consumption pattern and grain yield of seed maize under partial root zone irrigation Qi Dongliang1,2, Hu Tiantian2※,Song Xue3 (1,,434025,; 2,,712100,; 3..,,450002,) Alternate partial zone irrigation (APRI) has been widely practiced worldwide and has been proven that it has a great potential of water saving in arid and semi-arid areas, but information on different irrigation regimes on water consumption pattern under APRI receives limited attention, especially for seed maize. To better use and development of APRI in arid area, we carried out a field experiment to investigate the effect of different irrigation regimes on water consumption pattern and grain yield of seed maize (Zay mays, Gold northwestern 22) under APRI at Wuwei, northwest China in 2014 using ridge planting-furrow irrigation technology. The irrigation regimes included only moderate water deficit at seeding stage (T1), only severe water deficit at seeding stage (T2), only moderate water deficit at heading stage (T3), only severe water deficit at heading stage (T4), only moderate water deficit at flowering and kernel stage (T5), only severe water deficit at flowering and kernel stage (T6) and full irrigation during whole growth period of seed maize (CK). Weather data during the seed maize growth season, water consumption amount of the different growth stages (planting to jointing, jointing to bell, bell to tasseling, tasseling to silking, silking to filling, filling to milk and milk to maturity) and grain yield at the maturity of seed maize were determined. The intensity of water consumption and crop coefficient at the different growth stages, water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated. The results showed that, the CK resulted in the greatest water consumption amount and the average crop coefficientduring the whole growth period of seed maize as well as the grain yield, and the corresponding values were 494 mm, 0.86 and 6478 kg/hm2, respectively. Compared to CK, the average intensity of water consumption during the seed maize grown season were decreased in any water deficit treatment, and the average intensity of water consumption in the T6 treatment was significantly smaller than that in the T5 treatment. The crop coefficient in any water deficit period of seed maize was also decreased by all the water deficit treatments. Compared to CK, the T2, T3, T4, T5 and T6 treatments significantly decreased grain yield of seed maize by 13.29%,15.48%, 28.13%, 14.06% and19.87% (<0.05), respectively. However, the grain yield of the T1 treatment was comparable to that of the CK. At the same time, the T1 treatment significantly decreased the water consumption during the whole growth period of seed maize by 20.44% if compared to CK. As a result, the T1 treatment achieved the greatest WUE (1.55 kg/hm2) and IWUE (2.54 kg/hm2). These results suggested alternate partial root zone irrigation with the irrigation regime of moderate water deficit at the seeding stage and full irrigation at the other growth stages could maintain the grain yield and obviously reduce the water consumption amount during the whole growth period of seed maize, and thereby improving water use efficiency. The results could provide guidance to irrigation management in the field for seed maize in the Hexi Corridor area of northwest China. irrigation; deficit; evapotranspiration; water consumption; crop coefficient; grain yield; water use efficiency; seed maize 2018-11-17 2019-05-10 國家自然科學(xué)基金項目(51809006、51079124);國家“十二五”863 計劃項目(2011AA100504) 漆棟良,博士,主要從事農(nóng)業(yè)水土環(huán)境調(diào)控及水肥資源高效利用研究。Email:qdl198799@126.com 胡田田,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源高效利用研究。Email:hutiant@nwsuaf.edu.cn 10.11975/j.issn.1002-6819.2019.14.008 S275.9 A 1002-6819(2019)-14-0064-07 漆棟良,胡田田,宋 雪. 交替隔溝灌溉制度對制種玉米耗水規(guī)律和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(14):64-70. doi:10.11975/j.issn.1002-6819.2019.14.008 http://www.tcsae.org Qi Dongliang, Hu Tiantian, Song Xue. Effect of irrigation regime on water consumption pattern and grain yield of seed maize under partial root zone irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 64-70. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.008 http://www.tcsae.org2.3 灌溉制度對制種玉米作物系數(shù)Kc的影響
2.4 灌溉制度對制種玉米的產(chǎn)量和水分利用效率的影響
3 討 論
4 結(jié) 論