◇陳 敏
在第三屆中荷現(xiàn)實數(shù)學(xué)教育高峰論壇暨第八屆中國小學(xué)數(shù)學(xué)教育峰會上, 荷蘭專家米歇爾·維爾德休斯(Michiel Veldhuis)博士現(xiàn)場教學(xué)了一節(jié)三年級的代數(shù)啟蒙課,以具體、直觀的方式解讀了現(xiàn)實數(shù)學(xué)教育(RME)的相關(guān)理念,且使參會者深切感受到中荷數(shù)學(xué)課堂教學(xué)的差異。
這節(jié)課是由荷蘭資深現(xiàn)實數(shù)學(xué)教育專家馬爾嘉(Marja Vanden Heuvel-Panhuizen)教授領(lǐng)銜的研究團隊(米歇爾博士是其中的主要研究人員)開發(fā)的早期代數(shù)系列課之一。據(jù)介紹,這一系列的代數(shù)課共有6 節(jié),教學(xué)的重點是有關(guān)線性方程的代數(shù)推理,此為第一節(jié)課,經(jīng)過逐步形式化,至第6 節(jié)課達到能求解簡單二元一次方程組的目標(biāo)。
一上課,米歇爾博士先邀請孩子們觀察課桌上的新學(xué)具——“掛擺(hanging-mobile)”。(如圖1)
圖1
師:你們一定看見了這里有一些奇怪的東西夾在桌子上,你們知道這是干什么用的嗎?
生1:這是上課要用的吧?
師:對,非常準(zhǔn)確的回答。那你們覺得這節(jié)課會做什么呢?
生1:我感覺要教數(shù)量相等這樣的內(nèi)容。
生2:我覺得像一個秤。
生3:我覺得不是秤,因為秤上面都標(biāo)有數(shù)字 1、2、3、4、5……這個上面沒有標(biāo)任何數(shù)字。
師:你們說得都很有道理。這是一個比較奇怪的秤,確實沒有標(biāo)刻度。現(xiàn)在我來告訴大家,我們叫它掛擺:它上面是可以掛東西的,搖搖擺擺的外形很像小寶寶床頭懸掛的玩具,這就是為什么我們叫它掛擺。
然后,圍繞“掛擺”, 米歇爾博士先后布置了3 個學(xué)習(xí)任務(wù)。
?小組任務(wù)1:只看不動,想象如何操作能夠保證掛擺保持水平,畫在海報紙上。
(注:每個小組的掛擺均呈水平狀態(tài),其所掛小球卻不盡相同,比如組1 的情況是1 紅+1 黃=1 黃+2 白,如圖 2;組 2 的情況是 1 紅+1 黑=1 黑+3 藍(lán), 如圖3……不同顏色的球大小相仿,質(zhì)量不同,但小球上沒有表示質(zhì)量的數(shù)字符號)
圖2
圖3
?小組任務(wù)2:動手操作,嘗試進行哪些操作可以使掛擺保持水平。 然后修改并豐富小組海報。
?小組任務(wù)3:請從抽屜中取出更多小球,嘗試進行哪些操作可以使掛擺仍保持水平。然后畫在海報上。
最后,教師組織集體交流,小結(jié)保持掛擺平衡的主要方法(實質(zhì)為等式的有關(guān)性質(zhì))。
統(tǒng)計發(fā)現(xiàn),小組活動期間教師和個別小組之間的談話共計39 次,其中由學(xué)生發(fā)起的談話29次,內(nèi)容多為詢問活動規(guī)則或分享結(jié)論,如“我們可以用自己的筆來畫海報嗎”“如果寫錯了,可以重來嗎”“我們發(fā)現(xiàn)了1 個紅球等于2 個白球”等。由教師主動發(fā)起的談話10 次,內(nèi)容多為督促學(xué)生參與或了解學(xué)生想法,如“你試過操作掛擺了嗎?所有的方法都試了嗎”“我看見你們把小球都從鏈條上方取到了鏈條下方, 你們是怎么想的”等。
最后的集體交流過程中教師發(fā)言約19 次,屬于有意講授或提問某個知識點的僅3 次,例如:我可以把上面這個球拿下來放到下面嗎?(指掛擺同一側(cè)的球相互交換位置)我可以把兩邊交換位置嗎?掛擺還是平的嗎?其余多為對學(xué)生發(fā)言的肯定,對匯報活動的組織等,如:你們還記得我們要研究的問題是什么嗎?你可以上前來操作一下看看是不是真的還平衡。(如圖4)
圖4
顯然,在這節(jié)課上,學(xué)生的學(xué)習(xí)非常自主。他們不是根據(jù)教師的言語線索學(xué)習(xí),而是直接和情境對話——由“掛擺”系列情境問題引導(dǎo)他們感知“相等”的概念、體會等式的有關(guān)性質(zhì)。這也可以從三次小組活動期間學(xué)生主動發(fā)言的內(nèi)容指向上得到體現(xiàn):學(xué)生越來越少關(guān)注教師的意愿,而越來越多地投入任務(wù)本身。(如表1)
表1 學(xué)生主動發(fā)言內(nèi)容指向統(tǒng)計表
本課中, 米歇爾博士向我們展示了另外一種教學(xué)形態(tài),即教師對學(xué)生的引導(dǎo)作用更多體現(xiàn)在課前對教學(xué)情境的預(yù)想和設(shè)計中,而在課堂內(nèi)較少直接地講授和“小步子”提問。在課堂上,教師主要是觀察者與合作者——觀察和評估學(xué)生的表現(xiàn)水平,相應(yīng)地調(diào)整教學(xué)進度,并給予助力服務(wù)。馬爾嘉教授在她的專題報告《現(xiàn)實數(shù)學(xué)教育遇見中國數(shù)學(xué)教育》中提到,RME 的“R”即“Realistic(現(xiàn)實的、恰如其分的、逼真的)”,強調(diào)教師要提供給學(xué)生適切的問題情境(并非專指現(xiàn)實生活情境),通過情境去幫助學(xué)生產(chǎn)生與數(shù)學(xué)相關(guān)的、有意義的想法。
RME 認(rèn)為,學(xué)生對數(shù)學(xué)內(nèi)容的認(rèn)識和理解總是從他們自己日常的、非正式的推理開始的[1]。米歇爾博士在課前還作了主題為《在小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)高階思維》的專題報告,對培養(yǎng)高階思維的學(xué)習(xí)促進因素作了理論分析,其中特別提到“具身認(rèn)知理論(Embodied cognition)”和“表征重述理論(Representational redescription theory)”。前者強調(diào)活動性原則,即“學(xué)生的感覺運動系統(tǒng)在概念理解的發(fā)展中發(fā)揮著重要作用(Gallese &Lakoff,2005)”; 后者認(rèn)為人的認(rèn)識具有層次性,“那些初始的、隱含的、具體化的知識會進入使用語言或其他符號重述表征的下一階段,進而參與明確的語言-符號推理和明確的由假設(shè)指導(dǎo)下的實驗(Karmiloff-Smith,1992)”。
因此,這節(jié)課作為一節(jié)啟蒙課,學(xué)生的操作活動特別充分,不僅時間寬裕(全課用時約55 分鐘,其中學(xué)生操作時間約30 分鐘),而且自主支配空間也很大。 米歇爾除了提醒孩子們不要拉、拽掛擺,以免砸到自己,以及組員之間要相互傾聽、協(xié)作,鼓勵孩子們用各種方法去操控掛擺,觀察平衡的實現(xiàn)。 他有時會主動詢問:“你們在研究什么?”“這是真的嗎?你們可以操作給我看嗎?”但他沒有給出答案或者進行方法的指導(dǎo)。有時,學(xué)生偏離了活動主題,比如有一個小組興奮地告訴米歇爾,他們已經(jīng)測試出哪個球最重,正在找尋第二重的球,米歇爾也沒有阻止他們。筆者認(rèn)為,教師的行為可以被理解為:一方面,他對掛擺的情境足夠自信——自信掛擺會引導(dǎo)學(xué)生得出有益、有效的結(jié)論;另一方面,也可以看出這節(jié)課的教學(xué)目標(biāo)僅止于非正式地、預(yù)形式化地體會等式性質(zhì),所以只要是操作掛擺,體會掛擺的工作原理,都被教師認(rèn)可為必要的探索過程,都有耐心去分享和等待。
基于充分的活動, 最后師生總結(jié)出了保持掛擺平衡的常用方法,即,掛擺兩邊同時添上或取走相同數(shù)量的同色小球,掛擺兩邊同時添上或取走質(zhì)量相等的小球(如1 個紅球?qū)?yīng)2 個白球),掛擺兩邊分別反復(fù)添上或取走質(zhì)量相等的小球(如1 個紅球=2 個白球→2 個紅球=4 個白球),調(diào)整同側(cè)小球的高低位置;整體交換掛擺左右兩側(cè)的小球……涉及了等式性質(zhì)的方方面面。 隨著數(shù)學(xué)活動經(jīng)驗的累積,學(xué)生確實具備了進一步形式化和數(shù)學(xué)化的潛力。
現(xiàn)實數(shù)學(xué)教育提倡“教師應(yīng)當(dāng)與學(xué)生處在一種平等關(guān)系進行討論”“鼓勵學(xué)生積極地獨立思考、自主地作出發(fā)現(xiàn)”,但“表面上的平等實際賦予了教師更大的責(zé)任,對教師能力提出了更高的要求”[2]。當(dāng)教師要從臺前的主導(dǎo)轉(zhuǎn)換為幕后的設(shè)計時,其實需要付出更多的智力勞動;同時,課堂上的觀察與評估,特別是能基于觀察與評估及時作出教學(xué)上的調(diào)整也絕非易事。我們一線教師要有意識地去培養(yǎng)和鍛煉自己在這些方面的專業(yè)能力,真正成為課堂學(xué)習(xí)中的組織者、引導(dǎo)者與合作者。
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》提出:數(shù)學(xué)活動經(jīng)驗的積累是提高學(xué)生數(shù)學(xué)素養(yǎng)的重要標(biāo)志。廣大教師普遍認(rèn)同數(shù)學(xué)活動經(jīng)驗的重要性,但對小學(xué)階段有哪些重要的數(shù)學(xué)活動經(jīng)驗、怎樣的活動有助于積累數(shù)學(xué)活動經(jīng)驗、要積累到什么程度等都還沒有明確的認(rèn)識。特別是,我們?nèi)菀装呀?jīng)驗當(dāng)作手段而非目標(biāo)(以本課為例,國內(nèi)課堂可能以掛擺操作20 分鐘、等式探究20 分鐘這樣的結(jié)構(gòu)來教學(xué)),而且,由于直接經(jīng)驗的獲得需要做大量的準(zhǔn)備(包括教學(xué)具的設(shè)計和制作、場地的預(yù)定、學(xué)生的組織等),我們常常會用間接經(jīng)驗取代直接經(jīng)驗。這其中的教學(xué)效率和效益問題恐怕難以一概而論。