盧秀泉 朱曉輝 張劍楠 胡春玉
摘? ?要:隨著大型核/火電站裝機(jī)容量的大幅度增加,大功率液力偶合器作為電站系統(tǒng)主鍋爐給水泵調(diào)速的核心元件,其工作葉輪的強(qiáng)度成為影響電站系統(tǒng)安全穩(wěn)定運(yùn)行的重要因素.文章以某型液力偶合器葉輪裝配體為研究對(duì)象,采用單向流固耦合計(jì)算方法,建立全流道流固耦合分析模型,其中泵輪與渦輪套的端面定位采用接觸算法,用梁?jiǎn)卧M螺釘聯(lián)接效果,對(duì)典型工況下葉輪裝配體結(jié)構(gòu)強(qiáng)度計(jì)算分析.結(jié)果表明,裝配體整體變形和應(yīng)力隨著轉(zhuǎn)速比的增大呈增加趨勢(shì),且葉輪變形大小與對(duì)應(yīng)區(qū)域旋轉(zhuǎn)半徑長(zhǎng)度基本成正比,說(shuō)明離心載荷是影響葉輪裝配體強(qiáng)度的主要原因;由于螺釘預(yù)緊力效應(yīng),葉輪連接區(qū)域出現(xiàn)局部應(yīng)力集中現(xiàn)象;渦輪套內(nèi)緣是葉輪裝配體結(jié)構(gòu)強(qiáng)度的薄弱區(qū)域,此分析結(jié)果與文獻(xiàn)發(fā)表結(jié)果相吻合.此項(xiàng)研究工作為自主大功率液力偶合器葉輪結(jié)構(gòu)設(shè)計(jì)及優(yōu)化提供有效的應(yīng)用理論指導(dǎo).
關(guān)鍵詞:葉輪裝配體強(qiáng)度;液力偶合器;單向流固耦合;CFD
中圖分類(lèi)號(hào):TH137.33? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
Strength Analysis of Impeller Assembly Structure of
High Power Hydrodynamic Coupling under Typical Speed Regulation
LU Xiuquan?覮,ZHU Xiaohui,ZHANG Jiannan,HU Chunyu
(College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China)
Abstract: With the large increase of the capacity of large nuclear / thermal power stations, high power hydraulic coupling is the core component of the main boiler feed water pump, and the strength of working impeller has become an important factor affecting the safety and stability of the power station system. In this paper, the impeller assembly body of a certain hydraulic coupler was taken as the research object. A fluid solid coupling analysis model of the full flow passage was established by the one way fluid solid coupling calculation method. The contact algorithm was used in the end face location of the pump wheel and the turbine sleeve, and the beam element was used to simulate the screw connection effect, calculation and analysis of strength of impeller assembly structure under typical working conditions. The results show that the overall deformation and stress of the assembly increase with the increase of the rotational speed ratio, and the deformation size of the impeller is basically proportional to the length of the rotation radius in the corresponding region. It shows that the centrifugal load is the main reason that affects the strength of the assembly body of the impeller, and the local stress concentration in the connection area of the impeller appears due to the screw pretightening force effect. The inner edge of the turbine sleeve is the weak area of the impeller assembly structure strength, and the analysis results are consistent with the existing results. This research work provides an effective theoretical guidance for the structural design and optimization of the impeller of the autonomous high-power hydraulic coupling.
Key words: impeller assembly strength;hydrodynamic coupling;one-way fluid-structure interaction;Computational Fluid Dynamics(CFD)
大功率液力偶合器傳動(dòng)裝置是大型核電站和火電站主鍋爐給水泵匹配的重要調(diào)速節(jié)能裝備. 由于相關(guān)核心技術(shù)和設(shè)計(jì)理論的欠缺,制約了我國(guó)自主液力偶合器傳動(dòng)裝置產(chǎn)品的發(fā)展和升級(jí),無(wú)法適應(yīng)當(dāng)前功率和轉(zhuǎn)速大幅提升后的性能匹配要求. 泵輪、渦輪和渦輪套組成的工作葉輪裝配體是液力偶合器傳動(dòng)裝置傳遞動(dòng)力的關(guān)鍵元件,在調(diào)速工況中葉輪裝配體在離心載荷和與工作腔內(nèi)流體傳動(dòng)介質(zhì)的流固耦合雙重作用下,工作葉輪的受力狀態(tài)極其復(fù)雜,一旦葉輪結(jié)構(gòu)及其葉片發(fā)生破壞將直接導(dǎo)致動(dòng)力連接失效,嚴(yán)重威脅到大型電站系統(tǒng)工作的安全性和可靠性.因此保證液力偶合器葉輪強(qiáng)度是其結(jié)構(gòu)設(shè)計(jì)的關(guān)鍵問(wèn)題[1-3].
國(guó)內(nèi)外對(duì)液力傳動(dòng)元件的強(qiáng)度問(wèn)題已有了廣泛關(guān)注并展開(kāi)相關(guān)的研究工作. 文獻(xiàn)[4-10]中的國(guó)內(nèi)學(xué)者采用有限元分析方法對(duì)液力偶合器葉輪強(qiáng)度做了大量的研究工作,但在計(jì)算時(shí)均采用相似計(jì)算法或經(jīng)驗(yàn)公式對(duì)流體載荷做相應(yīng)的簡(jiǎn)化處理,由于欠缺不同工況條件下準(zhǔn)確的流體載荷信息,不能滿足葉輪強(qiáng)度分析的精度要求.為了提高葉輪強(qiáng)度的計(jì)算精度,文獻(xiàn)[11-15]從流場(chǎng)分析的CFD計(jì)算結(jié)果中提取流場(chǎng)壓力載荷信息施加到結(jié)構(gòu)有限元計(jì)算模型上,采用單向流固耦合方法實(shí)現(xiàn)了對(duì)液力變矩器葉片及葉輪較為準(zhǔn)確的強(qiáng)度計(jì)算. 文獻(xiàn)[16-19]采用雙向流固耦合的方法重點(diǎn)對(duì)葉片結(jié)構(gòu)在與流體動(dòng)態(tài)耦合過(guò)程中的應(yīng)力和變形展開(kāi)研究.以上研究的分析模型均是針對(duì)葉片或單個(gè)葉輪,無(wú)法體現(xiàn)實(shí)際葉輪裝配體結(jié)構(gòu)的受力特點(diǎn),文獻(xiàn)[20]采用有限元方法對(duì)調(diào)速型液力偶合器葉輪整體強(qiáng)度計(jì)算分析,但對(duì)計(jì)算模型做了大量的簡(jiǎn)化處理. 國(guó)外在關(guān)于液力傳動(dòng)元件葉輪強(qiáng)度方面發(fā)表的文獻(xiàn)較少,文獻(xiàn)[21]采用有限元方法對(duì)簡(jiǎn)化后的調(diào)速型液力偶合器葉輪模型整體強(qiáng)度進(jìn)行計(jì)算,指出了葉輪強(qiáng)度薄弱的區(qū)域. 文獻(xiàn)[22]采用單向流固耦合方法分別建立了液力變矩器葉片和葉輪整體計(jì)算分析模型,通過(guò)對(duì)兩套強(qiáng)度計(jì)算結(jié)果的對(duì)比分析,證明了葉片計(jì)算模型的強(qiáng)度計(jì)算結(jié)果不夠精確具有分析局限性.
上述研究表明流固耦合分析方法是計(jì)算葉輪結(jié)構(gòu)強(qiáng)度的有效手段,而目前對(duì)液力元件強(qiáng)度的研究主要針對(duì)單個(gè)葉輪模型,而實(shí)際工作中液力偶合器三個(gè)工作輪(泵輪、渦輪和渦輪套)在結(jié)構(gòu)和受力上彼此關(guān)聯(lián)和耦合實(shí)現(xiàn)動(dòng)力的傳遞.因此,本文采用單向流固耦合的方法重點(diǎn)研究大功率液力偶合器裝配體葉輪強(qiáng)度,建立的計(jì)算模型考慮接觸算法同時(shí)用梁?jiǎn)卧獙?duì)連接結(jié)構(gòu)進(jìn)行當(dāng)量的替代,以期獲得典型工況下較為準(zhǔn)確的葉輪裝配體強(qiáng)度狀態(tài).本文的工作對(duì)大功率液力偶合器葉輪結(jié)構(gòu)設(shè)計(jì)和優(yōu)化有一定的指導(dǎo)作用.
1? ?相關(guān)理論及方法
1.1? ?單向流固耦合方法
本文葉輪裝配體分析模型主要受到離心力和流體壓力兩種載荷.流體載荷通過(guò)流體-固體耦合面?zhèn)鬟f給結(jié)構(gòu)有限元模型,由于流體與結(jié)構(gòu)的網(wǎng)格模型在耦合面上的節(jié)點(diǎn)無(wú)法一一對(duì)應(yīng),流體載荷在節(jié)點(diǎn)上需進(jìn)行相應(yīng)的插值運(yùn)算.單向流固耦合強(qiáng)度計(jì)算流程,如圖1所示.
1.2? ?接觸算法
葉輪裝配體分析模型中的泵輪和渦輪套由一組螺釘按照一定的預(yù)緊力剛性連接,在兩者端面處形成接觸關(guān)系,交界面接觸屬于柔體-柔體的接觸問(wèn)題.因此,仿真計(jì)算時(shí)泵輪和渦輪套的接觸面構(gòu)成一個(gè)“接觸對(duì)”,程序通過(guò)一個(gè)共享的實(shí)常數(shù)來(lái)識(shí)別“接觸對(duì)”.
處理此類(lèi)彈性接觸問(wèn)題,需要求解基本平衡方程.兩彈性接觸體的初始間距為Z,在載荷Q的作用下,其彈性趨近量為δ,產(chǎn)生的接觸區(qū)域?yàn)锳C,此時(shí)接觸應(yīng)力應(yīng)滿足以下方程:
式中:Q為作用載荷;σ為接觸應(yīng)力;AC為接觸區(qū)域.
其次是變形協(xié)調(diào)方程:
式中:δ為接觸體之間的彈性趨近量;z為接觸表面之間的初始間距;E1、E2分別為兩彈性體的彈性模量;μ1、 μ2 分別為兩彈性體的泊松比.方程(2)和(3)是求解彈性接觸問(wèn)題的基礎(chǔ).本文研究對(duì)象葉輪材料為高強(qiáng)度合金鋼,密度為7 860 kg/m3,彈性模量為203 000 MPa,泊松比為0.3.
2? ?單向流固耦合計(jì)算
2.1? ?計(jì)算分析模型的建立
圖2為大功率液力偶合器的三維幾何模型.其工作葉輪由泵輪、渦輪和渦輪套組成,泵輪和渦輪套通過(guò)螺釘組件連接.泵輪和渦輪對(duì)立布置形成工作腔,泵輪和渦輪之間的軸向距離為5 mm,循環(huán)圓直徑為422 mm,泵輪和渦輪葉片的數(shù)量分別為47和48,直葉片沿徑向均勻分布. 圖2(e)所示為工作腔流道幾何模型.
圖3為液力偶合器網(wǎng)格模型.其中,圖3(a)為葉輪裝配體網(wǎng)格模型,采用BEAM188梁?jiǎn)卧M泵輪和渦輪套的螺釘連接部分如圖3(b),圖3(c)所示為泵輪網(wǎng)格細(xì)節(jié)圖.圖3(d)為對(duì)應(yīng)的流道網(wǎng)格模型,為了保證計(jì)算的收斂性和精度,采用六面體結(jié)構(gòu)化網(wǎng)格進(jìn)行劃分,并對(duì)壁面及無(wú)葉柵區(qū)域的邊界層網(wǎng)格進(jìn)行加密保證計(jì)算結(jié)果的準(zhǔn)確性,流道局部加密網(wǎng)格如圖3(e)所示.
2.2? ?計(jì)算設(shè)置及分析方案的確定
采用滑移網(wǎng)格算法實(shí)現(xiàn)對(duì)泵輪和渦輪計(jì)算域在交界面的信息交換,以避免網(wǎng)格更新能力與流場(chǎng)加速運(yùn)動(dòng)不匹配導(dǎo)致的計(jì)算不收斂問(wèn)題.本文所采用的SBES算法屬于混合RANS/LES方法,它綜合了RANS與LES的各自特點(diǎn),對(duì)整個(gè)流場(chǎng)采用分區(qū)處理的方法,在近壁區(qū)采用RANS方法求解湍流邊界層流動(dòng),遠(yuǎn)離壁面區(qū)域采用LES方法,相對(duì)其它湍流數(shù)值模型具有較高的計(jì)算精度.
調(diào)速型液力偶合器工作時(shí),輸入轉(zhuǎn)速不變,通過(guò)調(diào)節(jié)充液量實(shí)現(xiàn)負(fù)載的調(diào)速要求.本文計(jì)算時(shí)典型工況的選取參照調(diào)速曲線,分別選取了額定工況(i = 0.97,q = 100%)、牽引工況(i = 0.8,q = 60%)和效率損失最大的工況(i = 0.667,q = 45%),泵輪輸入轉(zhuǎn)速為6 300 r/min.
3? ?結(jié)果分析
圖4為額定工況葉輪裝配體結(jié)構(gòu)變形對(duì)比圖,圖4(a)為本文計(jì)算結(jié)果,圖4(b)為文獻(xiàn)[22]中同工況下的計(jì)算結(jié)果.通過(guò)對(duì)比分析,兩者裝配體整體變形分布趨勢(shì)一致且結(jié)構(gòu)總體變形量較小,最大變形均出現(xiàn)在渦輪套內(nèi)緣.
圖5是典型工況下裝配體變形對(duì)比圖,表1為對(duì)應(yīng)工況單個(gè)葉輪變形對(duì)比圖.結(jié)果表明隨著充液率、轉(zhuǎn)速比的升高,裝配體整體變形呈增大趨勢(shì).由于泵輪與渦輪套剛性連接,其受力狀態(tài)與懸臂梁結(jié)構(gòu)比較類(lèi)似,渦輪套相當(dāng)于懸臂梁的自由端,因此裝配體最大變形發(fā)生在渦輪套靠近轉(zhuǎn)軸的內(nèi)緣處.
圖6為泵輪葉片沿徑向提取的網(wǎng)格節(jié)點(diǎn)位置和典型工況下泵輪葉片對(duì)應(yīng)網(wǎng)格節(jié)點(diǎn)位置變形對(duì)比曲線. 結(jié)合表1可以看出,在泵輪輸入轉(zhuǎn)速一定的前提下,泵輪葉片變形隨著充液率和轉(zhuǎn)速比的增大而增大,由于泵輪輸入轉(zhuǎn)速不變,因此流體載荷對(duì)其泵輪葉片的變形起主導(dǎo)作用.隨著充液率、轉(zhuǎn)速比的升高,渦輪葉片受到變化的離心力和流體載荷的雙重作用,葉片變形呈增大趨勢(shì).
圖7為典型工況裝配體應(yīng)力對(duì)比圖,表2為對(duì)應(yīng)的典型工況工作葉輪應(yīng)力對(duì)比圖.隨著充液率、轉(zhuǎn)速比的增大,葉輪裝配體的應(yīng)力也隨之增大,增大到484 MPa左右達(dá)到峰值,小于材料的屈服極限800 MPa.裝配體局部最大應(yīng)力出現(xiàn)在梁?jiǎn)卧c其固連的網(wǎng)格節(jié)點(diǎn)區(qū)域,出現(xiàn)應(yīng)力集中現(xiàn)象,可以體現(xiàn)泵輪和渦輪套由螺釘組件連接區(qū)域的受力特點(diǎn).
圖8為沿泵輪葉片根部提取的網(wǎng)格節(jié)點(diǎn)位置和對(duì)應(yīng)節(jié)點(diǎn)位置的應(yīng)力對(duì)比曲線. 隨著充液率和轉(zhuǎn)速比的升高,葉片根部應(yīng)力的整體數(shù)值呈升高趨勢(shì),但由于流體對(duì)葉片沖擊作用,導(dǎo)致葉片根部應(yīng)力分布曲線出現(xiàn)不規(guī)律的情況.同時(shí)結(jié)合表2看出,泵輪、渦輪整體應(yīng)力分布趨勢(shì)較為平緩,葉片根部應(yīng)力相對(duì)比較大,這是由于在葉輪旋轉(zhuǎn)過(guò)程中,葉片受力類(lèi)似于懸臂梁結(jié)構(gòu),流體沖擊葉片表面葉片根部承受較大的彎矩作用,同時(shí)局部區(qū)域出現(xiàn)應(yīng)力集中現(xiàn)象.
4? ?結(jié)? ?論
本文采用單相流固耦合方法,建立考慮接觸的液力偶合器葉輪裝配體分析模型,實(shí)現(xiàn)了對(duì)典型工況下葉輪結(jié)構(gòu)強(qiáng)度的計(jì)算分析.計(jì)算結(jié)果表明,裝配體結(jié)構(gòu)的最大變形出現(xiàn)在渦輪套靠近轉(zhuǎn)動(dòng)中心的內(nèi)緣處,此分析結(jié)果與文獻(xiàn)[22]的計(jì)算結(jié)果相一致,結(jié)構(gòu)設(shè)計(jì)時(shí)需加強(qiáng)此處的結(jié)構(gòu)剛度;裝配體整體變形和應(yīng)力隨著轉(zhuǎn)速比的增大呈增加趨勢(shì),且與對(duì)應(yīng)區(qū)域旋轉(zhuǎn)半徑長(zhǎng)度基本成正比,說(shuō)明離心載荷是影響葉輪裝配體強(qiáng)度的主導(dǎo)因素;葉輪在螺釘連接區(qū)域出現(xiàn)應(yīng)力極值,易于出現(xiàn)應(yīng)力集中現(xiàn)象,裝配時(shí)需合理確定預(yù)緊力大小.本文的工作為自主大功率液力偶合器葉輪結(jié)構(gòu)設(shè)計(jì)及優(yōu)化提供有效的應(yīng)用理論指導(dǎo).
參考文獻(xiàn)
[1]? ? 劉應(yīng)誠(chéng).液力偶合器實(shí)用手冊(cè)[M]. 北京:化學(xué)工業(yè)出版社,2008.
LIU Y B. Hydraulic coupling practical manual[M]. Beijing: Chemical Industry Press,2008.(In Chinese)
[2]? ? 林斯燕.調(diào)速型液力偶合器在中國(guó)電力行業(yè)的應(yīng)用[J]. 流體傳動(dòng)與控制,2005(6):19—22.
LIN S Y. Application of variable speed fluid couplings in electric power industry[J]. Fluid Power Transmission & Control,2005(6):19—22. (In Chinese)
[3]? ? 趙亮,馮春平,林沖,等. 核電站電動(dòng)給水泵組液力偶合器選型探討[J]. 湖北電力,2011,35(4):71—73.
ZHAO L,F(xiàn)ENG C P,LIN C,et al. Exploration to select the hydraulic-coupling of motor driven feed water pump sets in nuclear power plant[J]. Hubei Electric Power,2011,35(4):71—73. (In Chinese)
[4]? ? 李婭娜,邵萬(wàn)珍,兆文忠. YOT_(CHP)465調(diào)速型液力偶合器葉輪強(qiáng)度的有限元分析[J]. 大連交通大學(xué)學(xué)報(bào),2007,28(2):30—33.
LI Y N,SHAO W Z,ZHAO W Z. Finite element analysis of impeller strength in speed? -regulation hydro-couplings with model? ? ?YOTCHP-465[J].Journal of Dalian Jiaotong University,2007,28(2):30—33. (In Chinese)
[5]? ? 龐潔. YO750液力偶合器葉輪強(qiáng)度有限元分析[J].內(nèi)燃機(jī)車(chē),2009(2):23—25,34,56.
PANG J. Finite element analysis of impeller strength of YO750 fluid coupling[J]. Diesel Locomotives,2009(2):23—25,34,56. (In Chinese)
[6]? ? 黃家良,邵萬(wàn)珍. YOCQ550調(diào)速型液力偶合器葉輪強(qiáng)度的有限元分析[J].機(jī)械工程師,2008(11):65—66.
HUANG J L,SHAO W Z. Finite element analysis of impeller strength of YOCQ550 model speed- regulation hydro-couplings[J].Mechanical Engineer,2008(11):65—66. (In Chinese)
[7]? ? 邵萬(wàn)珍,兆文忠,李婭娜,等. 調(diào)速型液力偶合器葉輪強(qiáng)度有限元分析[J].大連交通大學(xué)學(xué)報(bào),2010,31(4):105—108.
SHAO W Z,ZHAO W Z,LI Y N,et al. Finite element analysis of impeller strength for speed-regulation hydro-couplings[J].Journal of Dalian Jiaotong University ,2010,31(4):105—108. (In Chinese)
[8]? ? 趙美,聶文科,郭忠. 雙腔液力偶合器葉輪的有限元分析[J].煤礦機(jī)電,2011(1):45—47.
ZHAO M,NIE W K,GUO Z. Finite element analysis of blade wheel in dual-chamber hydraulic coupling[J]. Colliery Mechanical & Electrical Technology,2011(1):45—47. (In Chinese)
[9]? ? 李岳峰,謝夢(mèng)書(shū),李松山,等. 液力偶合器葉輪強(qiáng)度分析及試驗(yàn)驗(yàn)證[J].機(jī)械設(shè)計(jì)與制造工程,2014,43(9):23—26.
LI Y F,XIE M S,LI S S,et al. The Strength analysis and experimental verification for the impeller of fluid coupling[J]. Machine Design and Manufacturing Engineering,2014,43(9):23—26. (In Chinese)
[10]? 段鵬飛,姜文震,吳岳,等. SVTL調(diào)速型液力偶合器葉輪強(qiáng)度有限元分析[J].科技與創(chuàng)新,2015(1):15—16.
DUAN P F,JIANG W Z,WU Y,et al. SVTL impeller speed hydraulic coupling strength finite element analysis[J]. Science and Technology & Innovation,2015(1):15—16. (In Chinese)
[11]? 魏巍,閆清東,朱顏. 液力變矩器葉片流固耦合強(qiáng)度分析[J].兵工學(xué)報(bào),2008,29(10):1158—1162.
WEI W,YAN Q D,ZHU Y. Strength analysis of fluid solid interaction field of hydrodynamic torque converter vanes[J]. Acta Armamentarii, 2008,29(10):1158—1162. (In Chinese)
[12]? 閆清東,劉樹(shù)成,姚壽文,等. 大功率液力變矩器葉輪強(qiáng)度有限元分析[J].兵工學(xué)報(bào),2011,32(2):141—146.
YAN Q D,LIU S C,YAO S W,et al. Finite element analysis of blade wheel strength of a high-powered torque converter's[J]. Acta Armamentarii,2011,32(2):141—146. (In Chinese)
[13]? 劉樹(shù)成,閆清東,魏巍,等. 基于穩(wěn)定工作點(diǎn)的變矩器葉輪強(qiáng)度有限元分析[J].中國(guó)機(jī)械工程,2013,24(14):1922—1926.
LIU S C,YAN Q D,WEI W,et al. A finite element analysis of blade-wheel′s strength on torque converters based on steady operating conditions[J]. China Machinery Engineering,2013,24(14):1922—1926. (In Chinese)
[14]? 呂倩,尹明德,王發(fā)穩(wěn).基于流固耦合的液力變矩器的泵輪葉片強(qiáng)度分析[J].機(jī)械工程與自動(dòng)化,2014(3):23—25.
L?譈 Q,YIN M D,WANG F W. Hydrodynamic torque converter pump vane strength analysis based on fluid-solid interaction[J].Mechanical Engineering and Automation,2014(3):23—25. (In Chinese)
[15]? 蔣勇,侯天強(qiáng),劉光隆.基于流固耦合的液力變矩器泵輪葉片結(jié)構(gòu)強(qiáng)度分析研究[J].機(jī)械工程師,2016(3):173—175.
JIANG Y,HOU T Q,LIU G L. Structural strength analysis of hydraulic torque converter impeller based on fluid solid coupling[J].Mechanical Engineer,2016(3):173—175. (In Chinese)
[16]? 陸忠東,吳光強(qiáng),殷學(xué)仙,等. 液力變矩器流固耦合研究[J]. 汽車(chē)技術(shù),2009(2):37—41,57.
LU Z D,WU G Q,YIN X X,et al. Study on fluid-solid interaction of torque converter[J].Automobile Technology,2009(2):37—41,57. (In Chinese)
[17]? 閆清東,劉博深,魏巍. 基于動(dòng)網(wǎng)格的沖焊型液力變矩器流固耦合分析[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(12):37—41.
YAN Q D,LIU B S,WEI W. Fluid structure interaction simulation on torque converter with dynamic mesh[J].Huazhong Univ of Sci &Tech (Natural Science),2015,43(12):37—41. (In Chinese)
[18]? 饒銀,李長(zhǎng)友,黃俊剛. 液力緩速器雙向流固耦合研究[J].機(jī)床與液壓,2015,43(1):116—122.
RAO Y,LI C Y,HUANG J G. Study on two-way FSI of hydraulic retarder[J]. Machine Tool & Hydraulics,2015,43(1):116—122. (In Chinese)
[19]? 王安麟,劉偉國(guó),龍廣成. 基于液力變矩器流固耦合的葉片厚度設(shè)計(jì)方法[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(4):599—604.
WANG A L,LIU W G,LONG G C. Design method of blade thickness based on fluid-structure interaction of hydrodynamic torque converter[J].Journal of Tongji University (Natural Science),2015,43(4):599—604. (In Chinese)
[20]? 張志宏,王振,李紀(jì)強(qiáng),等. 齒輪調(diào)速裝置偶合器受力分析及強(qiáng)度計(jì)算[J].機(jī)械傳動(dòng),2012,36(12):56—59.
ZHANG Z H,WANG Z,LI J Q,et al. Force analysis and strength calculation of gear variable speed coupling[J]. Mechanical Drive,2012,36(12):56—59. (In Chinese)
[21]? KIMURA K. Variable speed fluid coupling with built-in high speed step up gear for 1000 MW TEPCO power plant[J]. Ebara Engineering Review,1987(138):51—54.
[22]? YAMAGUCHI T,OKUMURA A. Torque converter stress analysis by transient FSI technique[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference,AJK2011. Japan,ASME,2011:2205—2210.
湖南大學(xué)學(xué)報(bào)·自然科學(xué)版2019年8期