国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

毛蕊異黃酮抑制肺腺癌細(xì)胞增殖和遷移的miR—21/PTEN信號(hào)通路機(jī)制研究

2019-10-20 05:25周立霞關(guān)洪全王淳馬賢德王丹
中國(guó)藥房 2019年12期
關(guān)鍵詞:腺癌空白對(duì)照批號(hào)

周立霞 關(guān)洪全 王淳 馬賢德 王丹

摘 要 目的:探討毛蕊異黃酮(CA)通過(guò)調(diào)控微RNA-21(miR-21)/人類第10號(hào)染色體缺失的磷酸酶及張力蛋白同源物(PTEN)信號(hào)通路對(duì)肺腺癌細(xì)胞增殖和遷移的抑制作用機(jī)制。方法:以人肺腺癌SPC-A1細(xì)胞為對(duì)象,采用MTT法檢測(cè)不同劑量CA(5、15、25、50、75、100 μg/mL)作用12、24、48、72 h后的細(xì)胞增殖情況,并計(jì)算細(xì)胞存活率、30%細(xì)胞生長(zhǎng)抑制濃度(IC30)和半數(shù)抑制濃度(IC50);采用Transwell遷移試驗(yàn)檢測(cè)低、中、高劑量CA(50、75、100 μg/mL)作用24 h后的細(xì)胞遷移情況,記錄染色細(xì)胞數(shù)并計(jì)算細(xì)胞遷移抑制率;采用蛋白質(zhì)印跡法和實(shí)時(shí)聚合酶鏈反應(yīng)法檢測(cè)低、中、高劑量CA(50、75、100 μg/mL)作用24 h后細(xì)胞miR-21以及PTEN、血管內(nèi)皮生長(zhǎng)因子(VEGF)、基質(zhì)金屬蛋白酶9(MMP-9)蛋白及其mRNA的表達(dá)情況;檢測(cè)細(xì)胞在分別轉(zhuǎn)染miR-21模擬物(mimic)和抑制物(inhibitor)后,CA(75 μg/mL)對(duì)其miR-21及PETN、VEGF、MMP-9蛋白表達(dá)的影響。結(jié)果:經(jīng)50、75、100 μg/mL CA作用12、24、48 h,25、50、75、100 μg/mL CA作用72 h后,細(xì)胞存活率均顯著降低(P<0.05或P<0.01);12~72 h各時(shí)間點(diǎn)CA的IC30值分別為82.24、50.45、46.34、31.81 μg/mL,IC50值分別為108.06、73.35、70.08、49.89 μg/mL。與正常對(duì)照組比較,CA各劑量組染色細(xì)胞數(shù),低劑量組細(xì)胞中VEGF蛋白以及中、高劑量組細(xì)胞中miR-21,VEGF、MMP-9蛋白及其mRNA的相對(duì)表達(dá)量均顯著減少或降低,且中、高劑量組顯著少于或低于低劑量組,高劑量組顯著少于或低于中劑量組(P<0.05或P<0.01);CA各劑量組細(xì)胞遷移率以及中、高劑量組細(xì)胞中PTEN蛋白及其mRNA的相對(duì)表達(dá)量均顯著升高,且中、高劑量組顯著高于低劑量組,高劑量組顯著高于中劑量組(P<0.05或P<0.01)。轉(zhuǎn)染miR-21 mimic后,miR-21 mimic組細(xì)胞miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均較正常對(duì)照組顯著升高,PTEN蛋白的相對(duì)表達(dá)量顯著降低(P<0.01);加入CA干預(yù)后,細(xì)胞中miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均較miR-21 mimic組顯著降低,PTEN蛋白的相對(duì)表達(dá)量均顯著升高(P<0.05或P<0.01)。轉(zhuǎn)染miR-21 inhibitor后,miR-21 inhibitor組細(xì)胞中miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均較正常對(duì)照組顯著降低,PTEN蛋白的相對(duì)表達(dá)量顯著升高(P<0.05或P<0.01);加入CA干預(yù)后,細(xì)胞中miR-21及上述蛋白的表達(dá)較miR-21 inhibitor組均未見(jiàn)明顯變化(P>0.05)。結(jié)論:CA可劑量依賴性地抑制肺腺癌SPC-A1細(xì)胞的增殖和遷移,且這種作用可能與調(diào)控miR-21/PTEN信號(hào)通路有關(guān)。

關(guān)鍵詞 毛蕊異黃酮;微RNA-21/人類第10號(hào)染色體缺失的磷酸酶及張力蛋白同源物信號(hào)通路;肺腺癌;SPC-A1細(xì)胞;增殖;遷移;抑制作用;機(jī)制

Study on the miR-21/PTEN Signaling Pathway Mechanisms of Calycosin Inhibiting the Proliferation and Migration of Lung Adenocarcinoma Cells

ZHOU Lixia1,GUAN Hongquan1,WANG Chun1,MA Xiande1,WANG Dan2(1. College of Basic Medicine, Liaoning University of TCM, Shenyang 110032, China; 2. Graduate School, Jinzhou Medical University, Liaoning Jinzhou 121001, China)

ABSTRACT OBJECTIVE: To investigate the mechanism of calycosin (CA) inhibiting the proliferation and migration of lung adenocarcinoma cells by regulating miR-21/PTEN signaling pathway. METHODS: Using lung adenocarcinoma SPC-A1 cells as objects, cell proliferation was detected by MTT method after treated with different doses of CA (5, 15, 25, 50, 75, 100 μg/mL) for 12, 24, 48, 72 h. Cell survival rate, 30% cell growth inhibition concentration (IC30) and half inhibition concentration (IC50) were calculated. Transwell migration test was used to detect the migration of cells after treated with low-dose, medium-dose and high-dose of CA (50, 75, 100 μg/mL) for 24 h. The number of stained cells was recorded and inhibition rate of cell migration were calculated. Western blotting assay and real-time PCR were used to detect the expression of miR-21 as well as the proteins and their mRNAs expression of PTEN, VEGF, MMP-9 after treated with low-dose, medium-dose and high-dose of CA (50, 75, 100 μg/mL) for 24 h. After transfected with miR-21 mimics and miR-21 inhibitor, the effects of CA (75 μg/mL) on the expression of miR-21 and the protein expression of PETN, VEGF and MMP-9 were detected. RESULTS: After treated with 50, 75, 100 μg/mL CA for 12, 24, 48 h, 25, 50, 75, 100 μg/mL CA for 72 h, cell survival rate was decreased significantly (P<0.05 or P<0.01). IC30 of CA were 82.24, 50.45, 46.34, 31.81 μg/mL ; IC50 of CA were 108.06, 73.35, 70.08, 49.89 μg/mL during 12-72 h. Compared with normal control group, the number of stained cells in CA groups, protein expression of VEGF in CA low-dose group, expression of miR-21 as well as proteins and their mRNAs expression of VEGF, MMP-9 in CA medium-dose and high-dose groups were decreased significantly; the medium-dose and high-dose groups were significantly less or lower than low-dose group; the high-dose group was significantly less or lower than medium-dose group (P<0.05 or P<0.01). Cell migration rate of CA groups as well as protein and its mRNA expression of PTEN in CA medium-dose and high-dose groups were increased significantly; the medium-dose and high-dose groups were significantly higher than the low-dose group; the high-dose group was significantly higher than the medium-dose groups (P<0.05 or P<0.01). After transfected with miR-21 mimics, expression of miR-21 as well as protein expression of VEGF and MMP-9 were increased significantly in miR-21 mimic group, compared with normal control group; protein expression of PTEN was decreased significantly (P<0.01). After intervened by CA, expression of miR-21 as well as protein expression of VEGF and MMP-9 in cells were decreased significantly, compared with miR-21 mimic group; protein expression of PTEN was increased significantly (P<0.05 or P<0.01). After transfected with miR-21 inhibitor, expression of miR-21 as well as protein expression of VEGF and MMP-9 were decreased significantly in miR-21 inhibitor group, compared with normal control group; protein expression of PTEN was increased significantly (P<0.05 or P<0.01). After intervened by CA, the expression of miR-21 and above protein had no significant change in cells, compared with miR-21 inhibitor group (P>0.05). CONCLUSIONS: CA can inhibit the proliferation and migration of lung adenocarcinoma SPC-A1 cells in a dose-dependent manner, which may be associated with the regulation of miR-21/PTEN signaling pathway.

KEYWORDS Calycosin; miR-21/PTEN signaling pathway; Lung adenocarcinoma; SPC-A1 cells; Proliferation; Migration; Inhibitory effect; Mechanism

盡管目前肺癌的診斷和治療方法取得了顯著進(jìn)展,其近期發(fā)病率和病死率均有所下降,但肺癌仍然是呼吸系統(tǒng)最常見(jiàn)的惡性腫瘤之一[1]。肺癌診斷方法的發(fā)展雖給患者的生存帶來(lái)了一定益處,但由于對(duì)肺癌發(fā)病機(jī)制的認(rèn)知有限,加之其尚缺乏典型的早期癥狀,故大部分患者確診時(shí)已處于晚期,錯(cuò)失了手術(shù)機(jī)會(huì),最終導(dǎo)致臨床干預(yù)效果欠佳[2-3]。肺腺癌作為最為常見(jiàn)的非小細(xì)胞肺癌,具有腺體/導(dǎo)管形成、大量黏液產(chǎn)生等病理特征,其發(fā)病機(jī)制復(fù)雜,患者預(yù)后較差[4-5]。因此,闡明肺腺癌發(fā)生發(fā)展的分子調(diào)節(jié)機(jī)制、確定新的早期篩選分子靶點(diǎn)和研發(fā)新的治療藥物具有重要意義。

微RNA(microRNAs)是一類廣泛存在于真核生物體內(nèi)、長(zhǎng)度約為21~25個(gè)核苷酸的內(nèi)源性非編碼蛋白質(zhì)的進(jìn)化保守的單鏈小分子RNA,在確定細(xì)胞身份、調(diào)控基因表達(dá)的過(guò)程中發(fā)揮著關(guān)鍵作用[6]。同時(shí)相關(guān)研究證實(shí),microRNAs幾乎與所有類型惡性腫瘤的發(fā)生、發(fā)展密切相關(guān)[7]。microRNA-21(miR-21)作為一種參與并促進(jìn)腫瘤發(fā)展的microRNA,被證實(shí)可參與調(diào)節(jié)人類第10號(hào)染色體缺失的磷酸酶及張力蛋白同源物(PTEN)基因的表達(dá)[8-9]。PTEN是新近發(fā)現(xiàn)的抑癌基因,其編碼蛋白PTEN具有脂質(zhì)磷酸酶活性;此外,該基因缺失可上調(diào)下游血管內(nèi)皮生長(zhǎng)因子(VEGF)和基質(zhì)金屬蛋白酶9(MMP-9)編碼基因的表達(dá),從而誘導(dǎo)肺癌等多種惡性腫瘤的發(fā)展[10-11]。

毛蕊異黃酮(CA)是一種異黃酮類化合物,是中藥黃芪的主要活性成分之一,具有低毒、多作用靶點(diǎn)等優(yōu)點(diǎn)[12]。近年來(lái)研究顯示,CA具有抗腫瘤活性,可通過(guò)抑制絲裂原活化蛋白激酶(MAPR)、蛋白激酶B(Akt)、Janus激酶/信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子(JAK/STAT)等信號(hào)通路抑制乳腺癌等多種腫瘤細(xì)胞的增殖[13-14],但其對(duì)肺腺癌細(xì)胞影響的研究較少。為此,本研究擬考察CA對(duì)肺腺癌細(xì)胞增殖和遷移的體外抑制作用,并從調(diào)控miR-21靶向基因PTEN的分子角度初步探討CA的抗腫瘤機(jī)制,以期為明確其干預(yù)肺腺癌發(fā)展的分子機(jī)制、完善肺腺癌的臨床治療方法提供參考。

1 材料

1.1 儀器

ELx 800型酶標(biāo)儀(美國(guó)BioTek公司)、2800-00 Odyssey型雙色紅外激光成像系統(tǒng)(美國(guó)LICOR公司);PROTEAN Ⅱ xi型垂直電泳系統(tǒng)、170-3940型半干法轉(zhuǎn)膜儀、170-4152型濕法轉(zhuǎn)膜儀、LAS 4000 mini型化學(xué)發(fā)光成像儀、ABI 7500型熒光定量聚合酶鏈反應(yīng)(PCR)儀(美國(guó)Bio-Rad公司);T100型PCR儀、Nano Drop 2000型紫外分光光度計(jì)(美國(guó)Thermo Fisher Scientific公司);CKX53型倒置顯微鏡、BX31型熒光顯微鏡(日本Olympus公司);5810R低溫高速離心機(jī)(德國(guó)Eppendorf公司)。

1.2 藥品與試劑

CA對(duì)照品(批號(hào):B9938,純度:>98%)、MTT試劑(批號(hào):M2128)均購(gòu)自美國(guó)Sigma公司;磷酸鹽緩沖液(PBS,pH 7.4,批號(hào):P6504)、蛋白上樣緩沖液(批號(hào):P196382-1)、RIPA裂解液(批號(hào):C500005)、免疫印跡化學(xué)發(fā)光液(ECL)(批號(hào):C510043)均購(gòu)自生工生物工程(上海)股份有限公司;胰酶(批號(hào):25300054)、青霉素-鏈霉素雙抗(批號(hào):15140163)、胎牛血清(FBS,批號(hào):10100-147)、RPMI 1640培養(yǎng)基(批號(hào):61870044)、Opti-MEM培養(yǎng)基(批號(hào):11058021)均購(gòu)自美國(guó)Gibco公司;TE緩沖液(pH 7.5,上海哈靈生物科技有限公司,批號(hào):HL12441);Transwell小室(批號(hào):3428)、Matrigel基質(zhì)膠(批號(hào):356234)均購(gòu)自美國(guó)Corning公司;二喹啉甲酸(BCA)蛋白定量試劑盒(美國(guó)Thermo Fisher Scientific公司,批號(hào):A53225);Trizol試劑(批號(hào):87902)、實(shí)時(shí)聚合酶鏈反應(yīng)(Real-time PCR)試劑盒(批號(hào):00182806)均購(gòu)自美國(guó)Invitrogen公司;miR-21模擬物(mimic)及其抑制物(inhibitor)的miRNA(批號(hào)分別為A0018071、A0028071)均購(gòu)自蘇州吉瑪基因股份有限公司;Lipofectamine 2000轉(zhuǎn)染試劑(美國(guó)Invitrogen公司,批號(hào):11668019);逆轉(zhuǎn)錄試劑盒(日本Takara公司,批號(hào):D6110A);小鼠抗人β-肌動(dòng)蛋白(β-actin)抗體(碧云天生物技術(shù)有限公司,批號(hào):AA128);小鼠抗人PTEN抗體(美國(guó)Abcam公司,批號(hào):ab170941);辣根過(guò)氧化物(HRP)標(biāo)記的羊抗小鼠IgG二抗(北京中杉金橋生物技術(shù)有限公司,批號(hào):ab150077);miR-21、U6引物均由美國(guó)GeneCopoeia公司合成;PTEN、MMP-9、VEGF、β-actin引物均由美國(guó)Invitrogen公司設(shè)計(jì)、合成;二甲基亞砜(DMSO)等試劑均為分析純,水為蒸餾水。

1.3 細(xì)胞

人肺腺癌細(xì)胞株SPC-A1購(gòu)自美國(guó)ATCC公司。

2 方法

2.1 藥液配制

取CA對(duì)照品適量,用DMSO溶解,制成質(zhì)量濃度為100 μg/mL的貯備液,于4 ℃保存,備用。臨用前,用PBS將上述貯備液稀釋至所需質(zhì)量濃度,即得。

2.2 細(xì)胞培養(yǎng)

取人肺腺癌細(xì)胞株SPC-A1適量,用含10%FBS的RPMI 1640培養(yǎng)基(以下簡(jiǎn)稱“完全培養(yǎng)基”)于37 ℃ 、5%CO2培養(yǎng)箱(下同)中培養(yǎng),每36 h更換1次培養(yǎng)基。待細(xì)胞融合至80%~90%時(shí),用0.25%胰酶消化傳代,選取對(duì)數(shù)生長(zhǎng)期的細(xì)胞進(jìn)行后續(xù)試驗(yàn)。

2.3 CA對(duì)SPC-A1細(xì)胞存活率的影響

采用MTT法檢測(cè)。取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以1×105個(gè)/mL的密度按100 μL/孔接種于96孔板中,培養(yǎng)過(guò)夜。將細(xì)胞隨機(jī)分為正常對(duì)照組(加細(xì)胞,不加藥物)和CA不同劑量組(5、15、25、50、75、100 μg/mL,劑量設(shè)置參考前期預(yù)試驗(yàn)結(jié)果),同時(shí)設(shè)置不加細(xì)胞和藥物的空白對(duì)照組,每組設(shè)3個(gè)復(fù)孔。棄去培養(yǎng)基,空白對(duì)照組和正常對(duì)照組加入完全培養(yǎng)基100 μL,各給藥組加入含相應(yīng)藥物的完全培養(yǎng)基100 μL,分別于培養(yǎng)12、24、48、72 h時(shí)棄去培養(yǎng)基;每孔加入MTT試劑10 μL,培養(yǎng)4 h后,棄去上清液;每孔加入DMSO 100 μL,置搖床中于室溫下振搖15 min。使用酶標(biāo)儀于562 nm波長(zhǎng)處檢測(cè)各孔的光密度(OD)。以空白對(duì)照組為基準(zhǔn),計(jì)算各組的細(xì)胞存活率[細(xì)胞存活率(%)=(試驗(yàn)組平均OD值-空白對(duì)照組平均OD值)/(正常對(duì)照組平均OD值-空白對(duì)照組平均OD值)×100%]以及30%細(xì)胞生長(zhǎng)抑制濃度(IC30)和半數(shù)抑制濃度(IC50)。上述試驗(yàn)重復(fù)3次。

2.4 CA對(duì)SPC-A1細(xì)胞遷移能力的影響

采用Transwell遷移試驗(yàn)檢測(cè)。取對(duì)數(shù)生長(zhǎng)期細(xì)胞,用完全培養(yǎng)基重懸細(xì)胞至1×105個(gè)/mL,取上述細(xì)胞懸液100 ?L置于Transwell小室上層,下層加入完全培養(yǎng)基500 ?L,培養(yǎng)24 h。將細(xì)胞隨機(jī)分為正常對(duì)照組(加細(xì)胞,不加藥物)和CA低、中、高劑量組(50、75、100 μg/mL,劑量設(shè)置參考“2.3”項(xiàng)下測(cè)得IC30、IC50值),同時(shí)設(shè)置不加細(xì)胞和藥物的空白對(duì)照組(為排除其他因素的干擾,下同),每組設(shè)3個(gè)復(fù)孔。棄去培養(yǎng)基,空白對(duì)照組和正常對(duì)照組于小室上層加入RPMI 1640培養(yǎng)基100 ?L,各給藥組于小室上層加入含相應(yīng)藥物的RPMI 1640培養(yǎng)基100 ?L,各組小室下層均加入含20%FBS的RPMI 1640培養(yǎng)基500 ?L,培養(yǎng)24 h;棄去上、下層培養(yǎng)基,用棉簽擦拭上層底部未穿過(guò)聚碳酸酯膜的細(xì)胞,用PBS清洗2次,以甲醇固定30 min,風(fēng)干15 min;以0.1%結(jié)晶紫-甲醛溶液染色20 min,用PBS清洗3次,風(fēng)干。使用倒置顯微鏡觀察,每孔隨機(jī)選取6個(gè)視野,拍照并記錄染色細(xì)胞數(shù)(即發(fā)生遷移細(xì)胞的數(shù)量),同時(shí)計(jì)算細(xì)胞遷移抑制率(%)[細(xì)胞遷移抑制率=(正常對(duì)照組遷移細(xì)胞數(shù)-試驗(yàn)組遷移細(xì)胞數(shù))/正常對(duì)照組遷移細(xì)胞數(shù)×100%]。上述試驗(yàn)重復(fù)3次。

2.5 CA對(duì)SPC-A1細(xì)胞中PTEN、VEGF、MMP-9蛋白表達(dá)的影響

采用蛋白質(zhì)印跡法檢測(cè)。取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以1×105個(gè)/mL的密度按500 ?L/瓶接種于培養(yǎng)瓶中,培養(yǎng)24 h。按“2.4”項(xiàng)下方法分組,每組設(shè)3個(gè)復(fù)孔。棄去培養(yǎng)基,空白對(duì)照組和正常對(duì)照組加入完全培養(yǎng)基200 ?L,各給藥組加入含相應(yīng)藥物的完全培養(yǎng)基200 ?L,培養(yǎng)24 h;棄去培養(yǎng)基,用4 ℃的PBS清洗2次,加入RIPA裂解液80 ?L,于冰上裂解30 min;在4 ℃下以20 000 r/min離心15 min,收集上清液,采用BCA法測(cè)定蛋白濃度,嚴(yán)格按相應(yīng)試劑盒說(shuō)明書方法操作。蛋白經(jīng)5×蛋白上樣緩沖液以體積比1 ∶ 4稀釋,在沸水浴中變性10 min后,于-80 ℃保存,備用。每組取上述蛋白30 μg,進(jìn)行SDS-PAGE電泳,電泳結(jié)束后轉(zhuǎn)移至PVDF膜上,以5%脫脂奶粉室溫封閉1 h,加入相應(yīng)一抗[β-actin(內(nèi)參,1 ∶ 1 000)、PETN(1 ∶ 500)、VEGF(1 ∶ 1 000)、MMP-9(1 ∶ 1 000)],4 ℃孵育過(guò)夜,用PBS清洗3次,每次5 min;加入二抗(1 ∶ 5 000),室溫孵育1 h,用PBS清洗3次,每次10 min,于37 ℃搖床中繼續(xù)孵育1 h;經(jīng)ECL顯色后,置于雙色紅外激光成像系統(tǒng)上成像,采用Image Lab 3.0軟件分析,以目標(biāo)蛋白與內(nèi)參蛋白條帶灰度值的比值表示目標(biāo)蛋白的相對(duì)表達(dá)量。上述試驗(yàn)重復(fù)3次。

2.6 CA對(duì)SPC-A1細(xì)胞中miR-21及PTEN、VEGF、MMP-9 mRNA表達(dá)的影響

采用Real-time PCR法檢測(cè)。取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以1×105個(gè)/mL的密度按100 ?L/瓶接種于培養(yǎng)瓶中,培養(yǎng)24 h。按“2.5”項(xiàng)下方法分組、給藥。培養(yǎng)24 h后,棄去培養(yǎng)基,采用Trizol法提取細(xì)胞總RNA,嚴(yán)格按相應(yīng)試劑說(shuō)明書操作。將總RNA用焦碳酸二乙酯(DEPC)水20 ?L復(fù)溶,取1 ?L,用TE緩沖液以1 ∶ 100的體積比稀釋,使用紫外分光光度計(jì)分別于260、280 nm波長(zhǎng)處檢測(cè)各孔的吸光度,以考察RNA的純度和濃度。參照逆轉(zhuǎn)錄試劑盒說(shuō)明書方法將總RNA中的mRNA逆轉(zhuǎn)錄成cDNA。以上述cDNA為模板,按Real- time PCR試劑盒說(shuō)明書進(jìn)行擴(kuò)增,反應(yīng)體系(共20 ?L):SYBR Green Mix 10 ?L,上、下游引物(引物序列見(jiàn)表1)各1 ?L,模板cDNA 2 ?L,ddH2O 6 ?L。反應(yīng)條件:95 ℃預(yù)變性20 s,95 ℃變性10 s,62℃退火30 s,70℃延伸30 s,共40個(gè)循環(huán)。分別以β-actin(針對(duì)PTEN、VEGF、MMP-9)和U6(針對(duì)miR-21)為內(nèi)參,采用2-ΔΔCt法以ABI Prism? SDS 2.0.3軟件計(jì)算各目標(biāo)mRNA的相對(duì)表達(dá)量(Ct表示每個(gè)反應(yīng)管內(nèi)熒光信號(hào)強(qiáng)度達(dá)到設(shè)定閾值時(shí)所經(jīng)歷的循環(huán)數(shù))。上述試驗(yàn)重復(fù)3次。

2.7 CA對(duì)轉(zhuǎn)染SPC-A1細(xì)胞中miR-21及PTEN、VEGF、

MMP-9蛋白表達(dá)的影響取對(duì)數(shù)生長(zhǎng)期細(xì)胞,用0.25%胰酶消化后,以1 000 r/min離心5 min,收集細(xì)胞,用完全培養(yǎng)基重懸至2×105個(gè)/mL,按100 μL/孔接種于6孔板中,待細(xì)胞融合至80%,換無(wú)血清的RPMI 1640培養(yǎng)基繼續(xù)培養(yǎng)16 h。將細(xì)胞隨機(jī)分為正常對(duì)照組(不含藥物,不轉(zhuǎn)染,細(xì)胞正常生長(zhǎng))、miR-21 mimic組(不含藥物,轉(zhuǎn)染miR-21 mi- mic)、miR-21 mimic+CA組[CA 75 μg/mL(劑量設(shè)置參考“2.3”項(xiàng)下測(cè)得IC50值,下同),轉(zhuǎn)染miR-21 mimic]、miR-21 inhibitor組(不含藥物,轉(zhuǎn)染miR-21 inhibitor)和miR-21 inhibitor+CA組(CA 75 μg/mL,轉(zhuǎn)染miR-21 inhibitor),同時(shí)設(shè)置不加細(xì)胞和藥物的空白對(duì)照組,每組設(shè)3個(gè)復(fù)孔。在轉(zhuǎn)染前,取Lipofectamine 2000轉(zhuǎn)染試劑5 μL,用Opti-MEM培養(yǎng)基250 ?L稀釋至100 nmol/L,輕輕混勻,室溫孵育5 min;將miR-21 mimic或inhibitor用不含血清的Opti-MEM培養(yǎng)基250 ?L稀釋至50 nmol/L,輕輕混勻,室溫孵育5 min。將上述兩種混合液輕輕混勻,室溫孵育20 min,即得轉(zhuǎn)染復(fù)合物。除空白對(duì)照組和正常對(duì)照組加入RPMI 1640培養(yǎng)基100 μL外,其余各組均加入含或不含CA的轉(zhuǎn)染復(fù)合物100 μL進(jìn)行轉(zhuǎn)染。轉(zhuǎn)染培養(yǎng)24 h后,按“2.5”“2.6”項(xiàng)下方法檢測(cè)各組細(xì)胞中PTEN、MMP-9、VEGF蛋白及miR-21的相對(duì)表達(dá)量。上述試驗(yàn)重復(fù)3次。

2.8 統(tǒng)計(jì)學(xué)方法

采用Graphpad Prism 5軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料以x±s表示,組間比較采用t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

3 結(jié)果

3.1 CA對(duì)SPC-A1細(xì)胞存活率影響的檢測(cè)結(jié)果

3.2 CA對(duì)SPC-A1細(xì)胞遷移能力影響的檢測(cè)結(jié)果

與正常對(duì)照組比較,CA各劑量組染色細(xì)胞數(shù)均顯著減少,且中、高劑量組顯著少于低劑量組,高劑量組顯著少于中劑量組;各劑量組細(xì)胞遷移抑制率均顯著升高,且中、高劑量組顯著高于低劑量組,高劑量組顯著高于中劑量組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01),詳見(jiàn)圖1、表3。

3.3 CA對(duì)SPC-A1細(xì)胞中PTEN、VEGF、MMP-9蛋白表達(dá)影響的檢測(cè)結(jié)果

與正常對(duì)照組比較,CA中、高劑量組細(xì)胞中PETN蛋白的相對(duì)表達(dá)量均顯著升高,且中、高劑量組顯著高于低劑量組,高劑量組顯著高于中劑量組;低劑量組細(xì)胞中VEGF蛋白以及中、高劑量組細(xì)胞中VEGF、MMP-9蛋白的相對(duì)表達(dá)量均顯著降低,且中、高劑量組顯著低于低劑量組,高劑量組顯著低于中劑量組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01),詳見(jiàn)圖2、表4。

3.4 CA對(duì)SPC-A1細(xì)胞中miR-21及PTEN、VEGF、MMP-9 mRNA表達(dá)影響的檢測(cè)結(jié)果

與正常對(duì)照組比較,CA中、高劑量組細(xì)胞中PTEN mRNA的相對(duì)表達(dá)量均顯著升高,且中、高劑量組顯著高于低劑量組,高劑量組顯著高于中劑量組;CA中、高劑量組細(xì)胞中miR-21及VEGF、MMP-9 mRNA的相對(duì)表達(dá)量均顯著下降,且中、高劑量組顯著低于低劑量組,高劑量組顯著低于中劑量組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01),詳見(jiàn)表5。

與正常對(duì)照組比較,轉(zhuǎn)染miR-21 inhibitor后,miR- 21 inhibitor組細(xì)胞中miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均顯著降低,PTEN蛋白的相對(duì)表達(dá)量顯著升高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01);與miR- 21 inhibitor組比較,miR-21 inhibitor+CA組細(xì)胞中miR-21及上述蛋白的相對(duì)表達(dá)量均無(wú)明顯變化,組間比較差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),詳見(jiàn)圖4、表7。

4 討論

肺癌為呼吸系統(tǒng)常見(jiàn)的惡性腫瘤之一,肺腺癌作為一種非小細(xì)胞肺癌,其發(fā)病率在逐年上升,對(duì)肺腺癌的診斷和治療是目前臨床亟待解決的重要課題[1,15]。大多數(shù)研究者認(rèn)為,抑制肺腺癌細(xì)胞的增殖和轉(zhuǎn)移是臨床干預(yù)治療的重要策略[16]。我國(guó)中草藥的應(yīng)用歷史悠久,已有研究證實(shí)許多中藥活性成分具有抗腫瘤作用,且具有毒副作用小、不易耐藥等優(yōu)點(diǎn)[17]。CA是中藥黃芪的主要活性成分之一,近年來(lái)大量研究表明,其對(duì)結(jié)腸癌、乳腺癌、卵巢癌等均具有一定的抑制作用[18-20],但其對(duì)肺癌細(xì)胞的體內(nèi)外抑制作用的相關(guān)研究較少。目前,肺癌的發(fā)病率和病死率位居各類腫瘤之首,且臨床干預(yù)效果欠佳[2-3,21]。因此,深入研究CA對(duì)肺癌的抑制作用具有十分重要的意義。

已有研究表明,CA能夠抑制肺腺癌A549細(xì)胞的增殖和侵襲,其抑制遷移和侵襲的作用機(jī)制可能與抑制蛋白激酶C-α(PKC-α)途徑,下調(diào)MMP-2、MMP-9和整合素β的表達(dá)有關(guān)[22]。本研究參照前期預(yù)試驗(yàn)結(jié)果,采用MTT法考察了不同劑量(5、15、25、50、75、100 μg/mL)CA對(duì)肺腺癌SPC-A1細(xì)胞增殖的影響。結(jié)果顯示,經(jīng)50、75、100 μg/mL CA作用12、24、48 h,25、50、75、100 μg/mL CA作用72 h后,細(xì)胞存活率均較正常對(duì)照組顯著降低,差異均有統(tǒng)計(jì)學(xué)意義。這提示當(dāng)CA達(dá)到一定劑量時(shí),其可有效抑制SPC-A1細(xì)胞的增殖。此外本研究結(jié)果還顯示,CA作用12、24、48、72 h時(shí)的IC30值分別為82.24、50.45、46.34、31.81 μg/mL,IC50值分別為108.06、73.35、70.08、49.89 μg/mL。綜合考慮上述結(jié)果,最終將Transwell遷移、蛋白質(zhì)印跡、Real-time PCR試驗(yàn)的CA低、中、高劑量均分別設(shè)置為50、75、100 μg/mL,將細(xì)胞轉(zhuǎn)染試驗(yàn)的CA劑量設(shè)置為75 μg/mL,藥物的作用時(shí)間均確定為24 h。

Transwell遷移試驗(yàn)結(jié)果顯示,CA各劑量組染色細(xì)胞數(shù)均較正常對(duì)照組顯著減少,且中、高劑量組顯著少于低劑量組,高劑量組顯著少于中劑量組;細(xì)胞遷移抑制率均較正常對(duì)照組顯著升高,且中、高劑量組顯著高于低劑量組,高劑量組顯著高于中劑量組。這提示CA能有效抑制SPC-A1細(xì)胞的遷移,且呈劑量依耐性。

腫瘤細(xì)胞增殖和遷移相關(guān)的生物學(xué)機(jī)制主要包括生長(zhǎng)調(diào)控機(jī)制異常、細(xì)胞凋亡異常、細(xì)胞運(yùn)動(dòng)機(jī)制異常和細(xì)胞降解機(jī)制異常等[23]。PTEN是近年來(lái)發(fā)現(xiàn)的一種具有雙特異性磷酸水解酶功能的抑癌基因,對(duì)細(xì)胞內(nèi)多條信號(hào)通路具有負(fù)性調(diào)節(jié)作用,與肺癌等多種惡性腫瘤的發(fā)展密切相關(guān)[24]。VEGF是重要的促血管生長(zhǎng)因子,可誘導(dǎo)新生血管形成,從而促進(jìn)腫瘤細(xì)胞的增殖、遷移[25]。MMP(尤其是MMP-9)也被證實(shí)在肺癌細(xì)胞的遷移和侵襲過(guò)程中發(fā)揮了重要的作用[26]。有研究指出,肺癌細(xì)胞中VEGF、MMP-9蛋白的表達(dá)水平是評(píng)價(jià)肺癌惡性程度的重要指標(biāo),也是PTEN參與調(diào)控的下游靶點(diǎn)[27]。miRNAs是廣泛存在于真核生物體內(nèi)的內(nèi)源性干擾RNA,其可通過(guò)與靶基因mRNA的3′端結(jié)合來(lái)發(fā)揮抑制靶基因表達(dá)的作用,從而參與多種疾病的發(fā)生發(fā)展過(guò)程[28]。其中,miR-21與癌癥發(fā)生有關(guān),且在多種人類腫瘤細(xì)胞中呈過(guò)表達(dá)[29];miR-21表達(dá)的上調(diào)可造成抑癌基因PTEN的表達(dá)受到抑制,從而加速腫瘤的病理進(jìn)展;此外,miR-21也被認(rèn)為是評(píng)價(jià)肺癌惡性程度的重要指標(biāo)之一,可用于患者的腫瘤惡性程度及其預(yù)后的評(píng)估[30-31]?;谝陨侠碚?,本研究初步探討了CA通過(guò)調(diào)控miR-21/PTEN信號(hào)通路抑制肺腺癌細(xì)胞侵襲和轉(zhuǎn)移的分子機(jī)制。結(jié)果顯示,CA中、高劑量組細(xì)胞中PTEN蛋白及其mRNA的相對(duì)表達(dá)量均較正常對(duì)照組顯著升高,且中、高劑量組顯著高于低劑量,高劑量組顯著高于中劑量組;CA低劑量組細(xì)胞中VEGF蛋白以及中、高劑量組細(xì)胞中VEGF、MMP-9蛋白及其mRNA的相對(duì)表達(dá)量均較正常對(duì)照組顯著降低,且中、高劑量組顯著低于低劑量組,高劑量組顯著低于低劑量組。這提示不同劑量的CA均可不同程度地上調(diào)PTEN蛋白及其mRNA的表達(dá),下調(diào)VEGF、MMP-9蛋白及其mRNA的表達(dá),且呈劑量依賴性。

為進(jìn)一步驗(yàn)證miR-21對(duì)PTEN表達(dá)的影響,本研究分別對(duì)SPC-A1細(xì)胞進(jìn)行了miR-21 mimic、miR-21 inhibitor轉(zhuǎn)染,并考察了轉(zhuǎn)染后細(xì)胞中miR-21及PTEN、VEGF、MMP-9蛋白的表達(dá)情況。結(jié)果顯示,轉(zhuǎn)染miR- 21 mimic后,miR-21 mimic組細(xì)胞中miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均顯著升高,PTEN的相對(duì)表達(dá)量顯著降低;加入CA干預(yù)后,細(xì)胞中miR-21及VEGF、MMP-9蛋白的相對(duì)表達(dá)量均較miR-21 mimics組顯著降低,PTEN的相對(duì)表達(dá)量顯著升高。轉(zhuǎn)染miR-21 inhibitor后,miR-21 inhibitor組細(xì)胞中miR-21及VEGF、MMP- 9蛋白的相對(duì)表達(dá)量均顯著降低,PTEN蛋白的相對(duì)表達(dá)量顯著升高;加入CA干預(yù)后,細(xì)胞中miR-21及上述蛋白的相對(duì)表達(dá)量較miR-21 inhibitor組均未發(fā)生顯著變化。這提示在miR-21過(guò)表達(dá)的SPC-A1細(xì)胞中,CA能明顯逆轉(zhuǎn)miR-21誘導(dǎo)的PTEN下調(diào);而在miR-21低表達(dá)的SPC-A1細(xì)胞中,CA對(duì)PTEN表達(dá)無(wú)明顯調(diào)控作用,表明CA對(duì)肺腺癌SPC-A1細(xì)胞增殖、遷移的抑制作用可能是通過(guò)抑制miR-21表達(dá)、促進(jìn)PTEN表達(dá)來(lái)實(shí)現(xiàn)的。

綜上所述,CA能抑制肺腺癌SPC-A1細(xì)胞的增殖和遷移,這種作用可能與調(diào)控miR-21/PTEN信號(hào)通路有關(guān)。本研究可為肺腺癌防治研究提供新的思路,但CA通過(guò)PTEN調(diào)控VEGF、MMP-9表達(dá)的具體機(jī)制仍有待于后續(xù)研究進(jìn)一步確證。

參考文獻(xiàn)

[ 1 ] Global Burden of Disease Cancer,F(xiàn)ITZMAURICE C,AKINYEMIJU TF,et al. Global,regional,and national cancer incidence,mortality,years of life lost,years lived with disability,and disability-adjusted life-years for 29 cancer groups,1990 to 2016:a systematic analysis for the global burden of disease study[J]. JAMA Oncol,2018,4(11):1553-1568.

[ 2 ] BROWN NA,AISNER DL,OXNARD GR. Precision medicine in non-small cell lung cancer:current standards in pathology and biomarker interpretation[J]. Am Soc Clin Oncol Educ Book,2018. DOI:10.1200/EDBK_209089.

[ 3 ] KUMARAKULASINGHE NB,VAN ZANWIJK N,SOO RA. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer:NSCLC[J]. Respirology,2015,20(3):370-378.

[ 4 ] ZAMAY TN,ZAMAY GS,KOLOVSKAYA OS,et al. Current and prospective protein biomarkers of lung cancer[J]. Cancers:Basel,2017. DOI:10.3390/cancers9110155.

[ 5 ] NAKAMURA H,NISHIMURA T. History,molecular features,and clinical importance of conventional serum biomarkers in lung cancer[J]. Surg Today,2017,47(9):1037-1059.

[ 6 ] ZHENG Y,XIE J,JIANG F,et al. Inhibition of miR 21 promotes cell apoptosis in oral squamous cell carcinoma by upregulating PTEN[J]. Oncol Rep,2018,40(5):2798-2805.

[ 7 ] HUANG Y,HU Q,DENG Z,et al. MicroRNAs in body fluids as biomarkers for non-small cell lung cancer:a systematic review[J]. Technol Cancer Res Treat,2014,13(3):277-287.

[ 8 ] LONG ZW,WU JH,CAI H,et al. miR-374b promotes proliferation and inhibits apoptosis of human GIST cells by inhibiting PTEN through activation of the PI3K/Akt pathway[J]. Mol Cells,2018,41(6):532-544.

[ 9 ] YUAN Y,XU XY,ZHENG HG,et al. Elevated miR-21 is associated with poor prognosis in non-small cell lung cancer:a systematic review and meta-analysis[J]. Eur Rev Med Pharmacol Sci,2018,22(13):4166-4180.

[10] LIU C,YANG Z,DENG Z,et al. Downregulated miR- 144-3p contributes to progression of lung adenocarcinoma through elevating the expression of EZH2[J]. Cancer Med,2018,7(11):5554-5566.

[11] TSAI CC,WU HH,CHANG CP,et al. Calycosin-7-O-beta-D-glucoside reduces myocardial injury in heat stroke rats[J]. J Formos Med Assoc,2019,118(3):730-738.

[12] YANG J,JIA M,ZHANG X,et al. Calycosin attenuates MPTP-induced Parkinsons disease by suppressing the activation of TLR/NF-κB and MAPK pathways[J]. Phytother Res,2018,33(2):309-318.

[13] SUN H,YIN M,QIAN W,et al. Calycosin,a Phytoestrogen isoflavone,induces apoptosis of estrogen receptor-positive MG-63 osteosarcoma cells via the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin(mTOR) pathway[J]. Med Sci Monit,2018. DOI:10.12659/MSM.910201.

[14] DEY P,GHOSH RK. Fine-needle aspiration cytology of non-small cell lung carcinoma:a paradigm shift[J]. Diagn Cytopathol,2019,47(4):351-358.

[15] HAJIASGHARZADEH K,SOMI MH,SHANEHBANDI D,et al. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma[J]. J Cell Physiol,2019,234(4):3263-3276.

[16] LI M,AN W,XU L,et al. The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells[J]. J Exp Clin Cancer Res,2019. DOI:10.1186/s13046- 019-1064-8.

[17] LI YL,ZHANG XY,LENG Y,et al. Global protein expression analysis of molecular markers of DS-1-47,a component of implantation-promoting traditional chinese medicine[J]. J Huazhong Univ Sci Technolog Med Sci,2016,36(6):910-915.

[18] ZHOU Y,LIU QH,LIU CL,et al. Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins[J]. Tumor Biol,2015,36(7):5333-5339.

[19] CHEN J,HOU R,ZHANG X,et al. Calycosin suppresses breastcancer cell growth via ERβ -dependent regulation of IGF-1R,p38 MAPK and PI3K/Akt pathways[J]. PLoS One,2014. DOI:10.1371/journal.pone.0091245.

[20] CHEN J,ZHAO X,LI X,et al. Calycosin induces apoptosis by the regulation of ERβ/miR-17 signaling pathway in human colorectal cancer cells[J]. Food Funct,2015,6(9):3091-3097.

[21] QIU R,MA G,LI X,et al. Clinical case report of patients with osteosarcoma and anticancer benefit of calycosin against human osteosarcoma cells[J]. J Cell Biochem,2018,120(6):10697-10706.

[22] CHENG XD,GU JF,YUAN JR,et al. Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKC-α/ERK1/2 pathway:an in vitro investigation[J]. Mol Med Rep,2015,12(6):7992-8002.

[23] FOUAD H,SALEM H,ELLAKWA DE,et al. MMP-2 and MMP-9 as prognostic markers for the early detection of urinary bladder cancer[J]. J Biochem Mol Toxicol,2018. DOI:10.1002/jbt.22275.

[24] YU T,LIU L,LI J,et al. miRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN[J]. Oncotarget,2015,6(30):30239-30250.

[25] ZOGRAFOS L. Intravitreal anti-VEGF for the treatment of irradiation induced optic neuropathy and maculopathy[J]. Acta Ophthalmologica,2018. DOI:10.1111/aos.13972_

534.

[26] HAMILTON A J,SEID J,VERDECCHIA K,et al. Abscopal effect after radiosurgery for solitary brain metastasis from non-small cell lung cancer[J]. Cureus,2018. DOI:10.7759/cureus.3777.

[27] PERUMAL E,SO YK,SUN S,et al. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells[J]. Lung Cancer,2019. DOI:10.1016/j.lungcan.2019.01.013.

[28] WU Y,SONG Y,XIONG Y,et al. microRNA-21(miR- 21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer[J]. Cell Physiol Biochem,2017,43(3):945-958.

[29] GAO W,LU X,LIU L,et al. miRNA-21:a biomarker predictive for platinum-based adjuvant chemotherapy response in pantents with non-small cell lung cancer[J]. Cancer Biol Ther,2012,13(5):330-340.

[30] HE Y,HUANG C,LI L. miR-21 is a critical therapeutic target for renal fibrosis[J]. Cell Biochem Biophys,2014,68(3):635-636.

[31] YANG M,SHEN H,QIU C,et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer[J]. Eur J Cancer,2013,49(3):604-615.

(收稿日期:2018-12-13 修回日期:2019-04-05)

(編輯:張?jiān)拢?/p>

猜你喜歡
腺癌空白對(duì)照批號(hào)
培美曲塞聯(lián)合順鉑一線化療在老年晚期肺腺癌治療中的效果探究
我國(guó)科學(xué)家揭示肺腺癌分子全景
例析陰性對(duì)照與陽(yáng)性對(duì)照在高中生物實(shí)驗(yàn)教學(xué)中的應(yīng)用
表現(xiàn)為單純磨玻璃密度結(jié)節(jié)的肺浸潤(rùn)性腺癌的影像學(xué)特征分析
Galectin—9蛋白過(guò)表達(dá)對(duì)卵巢癌細(xì)胞增殖、遷移及凋亡的影響
鏡像治療截肢后幻肢痛的隨機(jī)對(duì)照試驗(yàn)
蘭州72批次中藥材及飲片抽檢不合格
氣相色譜法測(cè)定速效心痛滴丸主要成分的研究