張廣雨 褚德朋 劉元德 牛紀(jì)軍 陳芊如 NailaIlyas 韋建玉 李義強(qiáng)
摘? 要:為研究不同用量生物炭及海藻肥對(duì)煙草生長(zhǎng)及青枯病的影響,以煙草NC102為試驗(yàn)材料,在常年青枯病發(fā)生較嚴(yán)重的地塊采用完全隨機(jī)設(shè)計(jì),在常規(guī)施肥基礎(chǔ)上,設(shè)置處理CK(空白對(duì)照)、BC1(9000 kg/hm2生物炭)、BC2(15 000 kg/hm2生物炭)、BC3(22 500 kg/hm2生物炭)、SW(2250 kg/hm2海藻肥)、BC2+SW(15 000 kg/hm2生物炭+2250 kg/hm2海藻肥)。結(jié)果發(fā)現(xiàn),海藻肥和生物炭單一或混合施用均能促進(jìn)煙草生長(zhǎng),最大量生物炭的處理雖然抑制烤煙團(tuán)棵期生長(zhǎng),但可以促進(jìn)烤煙旺長(zhǎng)期的生長(zhǎng)。生物炭和海藻肥單一或混合施用均顯著提高了土壤pH及部分土壤養(yǎng)分含量,降低了煙草青枯病發(fā)病率及病情指數(shù),有利于提高烤煙產(chǎn)量和中上等煙比例,協(xié)調(diào)煙葉化學(xué)成分,提升烤后煙葉內(nèi)在品質(zhì)。利用Pearson相關(guān)系數(shù)分析了不同處理土壤理化性質(zhì)與煙草青枯病病情指數(shù)之間的關(guān)系,結(jié)果發(fā)現(xiàn),適當(dāng)提高土壤酸堿度可作為酸性土壤主產(chǎn)區(qū)防控?zé)煵萸嗫莶?、提高烤煙產(chǎn)質(zhì)量的重要策略。
關(guān)鍵詞:生物炭;海藻肥;青枯病;pH;烤煙
中圖分類號(hào):S572.06?? ???????文章編號(hào):1007-5119(2019)05-0015-08????? DOI:10.13496/j.issn.1007-5119.2019.05.003
Abstract:To investigate the effects of different amounts of biochar and seaweed fertilizers on tobacco growth and resistance to bacterial wilt, field experiment was conducted with complete random design using tobacco NC102 as material in the tobacco bacterial wilt disease-prone areas. On the basis of conventional fertilization, six treatments were set including CK (control), BC1 (9000 kg/ha biochar), BC2 (15 000 kg/ha biochar), BC3 (22 500 kg/ha biochar), SW (2250 kg/ha seaweed fertilizer) and BC2 + SW (15 000 kg/ha biochar+2250 kg/ha seaweed fertilizer) .The results showed that single or combined application of seaweed fertilizer and biochar whether promoted the growth of tobacco. Although excessive application of biochar inhibited tobacco growth at rosette stage, it promoted growth at vigorous growing stage. Furthermore, the application of biochar and seaweed fertilizer significantly increased soil pH and soil nutrient content, reduced the incidence of tobacco bacterial wilt and its disease index, increased the yield of flue-cured tobacco and the proportion of middle and superior tobacco leaves, improved the intrinsic quality of tobacco leaves by coordinating the chemical composition. The Pearson correlation coefficient was used to reflect the relationship between the physical and chemical properties of soil and the indicators of tobacco bacterial wilt of different treatments. The results showed that appropriately improving soil pH can be an important strategy to prevent and control tobacco bacterial wilt and improve the quality of flue-cured tobacco in the main acid producing areas.
Keywords:biochar; seaweed fertilizer; bacterial wilt; pH; flue-cured tobacco
近年來(lái),生物炭與海藻肥作為土壤改良劑在農(nóng)業(yè)生產(chǎn)上的研究及應(yīng)用越來(lái)越多。生物炭是指生物質(zhì)在無(wú)氧或限氧條件下經(jīng)熱解得到的一種碳質(zhì)能源材料,具有比表面積大、多孔、吸附能力強(qiáng)、穩(wěn)定性強(qiáng)等特點(diǎn)[1]。研究表明,施用生物炭可以調(diào)節(jié)土壤pH[2],提高土壤保水保肥能力[3],改善作物根系生長(zhǎng)環(huán)境[4],從而促進(jìn)煙草、玉米、水稻等作物生長(zhǎng),提高其品質(zhì)[5-7],并在煙草黑脛病、煙草青枯病等土傳病害防治方面表現(xiàn)出較大的潛力[8-9]。煙草青枯病是一種典型的土傳病害,也是危害煙草的重要病害,發(fā)病后植株會(huì)慢慢枯萎直至死亡,對(duì)煙草的產(chǎn)量及品質(zhì)造成重大影響[10],生物炭在促進(jìn)煙草生長(zhǎng)及防控?zé)煵萸嗫莶》矫姹憩F(xiàn)出較大潛力,但其影響青枯病抗性機(jī)制方面尚缺乏系統(tǒng)研究。海藻肥能提高玉米、棉花等作物的產(chǎn)質(zhì)量,并對(duì)棉花黃萎病[11]、向日葵菌核病[12]等具有一定的防治效果,但海藻肥與生物炭耦合輸入在影響煙草生長(zhǎng)及煙草青枯病發(fā)生危害方面的研究尚屬空白。本文通過(guò)比較不同用量生物炭及與海藻肥混施對(duì)煙草生長(zhǎng)、土壤性狀及青枯病發(fā)生的影響,篩選出利于防控?zé)煵萸嗫莶〖盁煵萆L(zhǎng)的高效配方,并分析其相關(guān)性,為建立基于生物炭的綠色、高效煙田土壤保育模式提供理論基礎(chǔ)和實(shí)踐借鑒。
1? 材料與方法
1.1 ?試驗(yàn)材料
試驗(yàn)于2018年4—9月在山東省臨沂市沂水現(xiàn)代煙草科技園(35°50'53" N, 118°37'48" E)進(jìn)行,供試煙草品種為NC102,土壤類型為褐土。按照當(dāng)?shù)厣a(chǎn)技術(shù)方案和煙草肥料需求,施用撒可富復(fù)合肥750 kg/hm2,豆餅450 kg/hm2,硫酸鉀130 kg/hm2,氮磷鉀比例為m(N)∶m(P2O5)∶m(K2O)=1∶0.8∶2.3。供試生物炭由玉米秸稈粉碎后在400~500 ℃厭氧條件下制備而成,由沂水現(xiàn)代煙草科技園提供,其理化性質(zhì)為pH 10.13,總氮1.79%,全磷0.43%,全鉀3.63%。海藻肥由青島海大生物集團(tuán)有限公司提供,其理化性質(zhì)為pH 8.16,總氮0.29%,全磷0.15%,全鉀0.43%,有機(jī)質(zhì)含量45.5%,海藻多糖0.052%,海藻酸含量0.12%。
1.2 ?試驗(yàn)設(shè)計(jì)
根據(jù)往年青枯病發(fā)生情況和土壤營(yíng)養(yǎng)狀況,進(jìn)行小區(qū)試驗(yàn),設(shè)置6個(gè)處理(表1),每小區(qū)30株,行株距為110 cm × 50 cm,重復(fù)3次,所有小區(qū)隨機(jī)排列。供試生物炭于起壟前在地表均勻撒施,氮磷鉀復(fù)合肥條施后起壟,正常移栽。供試海藻肥與氮磷鉀肥混合條施后起壟,正常移栽。
1.3? 測(cè)定指標(biāo)及方法
1.3.1? 調(diào)查烤煙農(nóng)藝性狀? 分別在團(tuán)棵期(移栽后30 d)、旺長(zhǎng)期(移栽后60 d)每小區(qū)定點(diǎn)10株測(cè)量主要農(nóng)藝性狀,其中葉面積=葉片長(zhǎng)×葉片寬×0.6345[5]。
1.3.2? 統(tǒng)計(jì)青枯病害? 在旺長(zhǎng)期(移栽后60 d)和中部煙葉采收期(移栽后90 d)調(diào)查各小區(qū)青枯病發(fā)病株數(shù),并進(jìn)行病害嚴(yán)重度分級(jí)。分級(jí)標(biāo)準(zhǔn)參照GB/T 23222—2008 煙草病蟲(chóng)害分級(jí)及調(diào)查方法。
發(fā)病率= (發(fā)病株數(shù)/調(diào)查總株數(shù)) ×100%;
病害指數(shù)=[∑(各級(jí)病株×該病級(jí)值)/(調(diào)查總株數(shù)×最高級(jí)值)]×100。
1.3.3? 土壤理化性質(zhì)測(cè)定? 移栽后60 d,隨機(jī)在不同處理區(qū)取土壤樣品并充分混勻,風(fēng)干后過(guò)篩,參照土壤農(nóng)化分析標(biāo)準(zhǔn)檢測(cè)方法測(cè)量其理化性質(zhì):土壤pH用水浸提法[m(水)∶m(土)=2.5∶1];土壤有機(jī)質(zhì)用重鉻酸鉀法;速效氮用堿解擴(kuò)散法;速效磷用碳酸氫鈉浸提鉬銻抗比色法;速效鉀用醋酸銨浸提-火焰光度法[13]。
1.3.4? 烤后煙葉產(chǎn)量與品質(zhì)? 烘烤后選取C3F煙葉測(cè)定其化學(xué)成分。總糖、還原糖、煙堿、總氮、氯含量、鉀含量采用Skalar連續(xù)流動(dòng)分析儀測(cè)定[5]。統(tǒng)計(jì)烤后煙葉上中等煙比例、均價(jià)、產(chǎn)量和產(chǎn)值。
1.4? 數(shù)據(jù)處理
采用Excel對(duì)數(shù)據(jù)進(jìn)行整理,R.3.5.2進(jìn)行主成分分析,采用SPSS 17.0進(jìn)行方差分析和Pearson相關(guān)分析,多重比較采用Duncan法。
2? 結(jié)? 果
2.1? 不同處理對(duì)烤煙農(nóng)藝性狀的影響
從表2可以看出,在團(tuán)棵期BC2、BC2+SW處理株高顯著高于CK,BC3處理株高低于CK。BC1和BC2處理有效葉數(shù)顯著高于CK,BC3處理低于對(duì)照。BC1最大葉長(zhǎng)顯著高于對(duì)照,BC3處理最大葉長(zhǎng)和最大葉面積顯著低于BC1和BC2處理。BC2處理最大葉寬較CK提高了31.84%,顯著高于其他處理。旺長(zhǎng)期各處理株高的差異逐漸減小,僅BC2處理顯著高于其他處理。有效葉數(shù)BC2、BC1、SW處理顯著高于對(duì)照。最大葉長(zhǎng)、葉寬和葉面積,BC2和BC3處理顯著高于對(duì)照。
團(tuán)棵期,低量和中量生物炭對(duì)烤煙生長(zhǎng)的促進(jìn)作用隨著生物炭用量增加而增加,但最大用量生物炭對(duì)煙草生長(zhǎng)表現(xiàn)出一定的抑制作用;而在旺長(zhǎng)期,最大用量生物炭(BC3)對(duì)煙草生長(zhǎng)的抑制作用轉(zhuǎn)變?yōu)榇龠M(jìn)作用。施用海藻肥處理在煙草旺長(zhǎng)期以前優(yōu)于其與生物炭混施處理,而海藻肥與生物炭混施對(duì)煙草生長(zhǎng)促進(jìn)作用在旺長(zhǎng)期以后優(yōu)于施用海藻肥處理。綜合比較,施用15 000 kg/hm2生物炭(BC2)對(duì)促進(jìn)煙草生長(zhǎng)效果最好。
2.2? 不同處理對(duì)青枯病害的影響
旺長(zhǎng)期和中部煙葉采收時(shí)調(diào)查結(jié)果(表3)發(fā)現(xiàn),施用生物炭和海藻肥降低了青枯病發(fā)病率,其中BC2+SW混合處理對(duì)青枯病的防控效果最好,單一處理旺長(zhǎng)期發(fā)病率在3.33%~6.06%,明顯好于對(duì)照(發(fā)病率31.70%),抑制青枯病的效果明顯。中部煙葉采收期,青枯病發(fā)病呈現(xiàn)明顯上升趨勢(shì),不同處理青枯病發(fā)病率為13.60%~66.73%。相應(yīng)地,在病情指數(shù)方面,旺長(zhǎng)期調(diào)查,BC2+SW混合處理病情指數(shù)為0,單一處理病情指數(shù)在0.38~2.59之間,遠(yuǎn)小于對(duì)照25.70,中部葉采收期,病情指數(shù)明顯上升,但仍明顯低于對(duì)照。這說(shuō)明施用生物炭和海藻肥均能減輕青枯病發(fā)生危害程度。
2.3? 不同處理對(duì)土壤理化性質(zhì)的影響
從表4可以看出,與對(duì)照相比,添加海藻肥和生物炭顯著提高了土壤pH,其中施用海藻肥處理pH最高。不同施肥處理均顯著提高了土壤有機(jī)質(zhì)含量,其中施用生物炭處理有機(jī)質(zhì)含量隨著生物炭的施用量增加而增加,BC2+SW處理土壤有機(jī)質(zhì)含量顯著高于SW處理,但與BC2處理差異未達(dá)顯著水平。不同處理均顯著提高了堿解氮含量,生物炭處理對(duì)堿解氮含量提升效果更明顯。BC3處理堿解 氮含量最高,BC1與BC2處理無(wú)顯著差異,BC2+SW處理堿解氮含量顯著高于SW處理。BC1處理速效磷含量與SW處理差異不顯著,其余處理間差異均達(dá)顯著水平。BC1處理速效鉀含量與CK差異未達(dá)顯著水平,其余處理均差異顯著,較CK提高31.69%~92.38%。
4? 結(jié)? 論
生物炭和海藻肥能提高土壤pH、有機(jī)質(zhì)、堿解氮、速效磷和速效鉀含量,且隨著生物炭用量增加而增加;通過(guò)改善土壤環(huán)境促進(jìn)了烤煙生長(zhǎng)發(fā)育、提高了產(chǎn)量產(chǎn)值、協(xié)調(diào)了煙葉化學(xué)成分,進(jìn)而提高了烤后煙葉內(nèi)在品質(zhì);海藻肥和生物炭對(duì)土壤pH的提升和優(yōu)化,是降低煙草青枯病發(fā)病率和病情指數(shù)的最顯著相關(guān)效應(yīng);因此,適當(dāng)提高土壤酸堿度可作為酸性土壤產(chǎn)區(qū)防控?zé)煵萸嗫莶 ⑻岣呖緹煯a(chǎn)質(zhì)量的重要策略,生物炭和海藻肥對(duì)煙草青枯病抗性機(jī)理還有待進(jìn)一步研究。
參考文獻(xiàn)
WANG Y H, ZHAO Y F, KONG F Y, et al. Effects of pH on growth characteristics of Ralstonia solanacearum in tobacco[J]. Tobacco Science & Technology, 2018, 51(9): 27-32.
2018,52(6):863-867,902.
JI G F, WANG Z P, ZHANG S W, et al. Effects of biochar on C/N value of cinnamon soil in tobacco growing areas and the root growth of flue-cured tobacco[J]. Journal of Henan Agricultural University, 2018, 52(6): 863-867, 902.
GONG S Y, ZHONG S R, ZHANG S C, et al. Effects of biochar on growth, yield and quality of flue-cured tobacco[J]. Crops, 2018(2): 154-160.
LU J J, GAO C H, LI J H, et al. Effect of biochar on soil nutrients and corn growth in farmland of loess area[J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 92-99.
YU Y L, WANG R M, HOU P F, et al. Effects of returning nitrogen by biochar loading on paddy growth, root morphology, and nitrogen use efficiency[J]. Environmental Science, 2018, 39(11): 5170-5179.
LIU H, ZHANG L M, ZHOU Q M, et al. Effects of continuous application of biochar under flue-cured tobacco continuous cropping on black shank, dry matter and yield and quality of flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1435-1441.
AO R Y, WANG J, JI C L, et al. Field identification and agricultural preventive measures for tobacco bacterial wilt[J]. Plant Doctor, 2018, 31(10): 39-41.
YANG Z D, ZUO R G. Test on the control of cotton blight and verticillium wilt by seaweed fertilizer[J]. Rural Science & Technology, 2006(1): 25.
YI G H. "Haizhuangyuan 818" bacterial fertilizer control for sunflower sclerotinia[J]. Xinjiang Farm Research of Science and Technology, 2007(6): 48-49.
BAO S D. Soil agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
ZHENG J Y, ZHANG Z F, CHENG S, et al. Effect of rice husk biochar on soil nutrients of tobacco field, yield and quality of tobacco leaves in land consolidation areas[J]. Chinese Tobacco Science, 2016, 37(4): 6-12.
WANG Y, SONG W J, WU Y H, et al. Effects of returning wheat straw to soil on leaf development, yield and quality of tobacco[J]. Chinese Tobacco Science, 2018, 39(2): 32-38.
GAO F, YANG F J, WU X, et al. Effects of biochar application on organic matter content and enzyme activity in rhizosphere soil of chinese cabbage[J]. Chinese Journal of Soil Science, 2019, 50(1): 103-108.
CHEN S, LONG S P, CUI X W, et al. Affect of rice husk biochar to soil nutrient and tobacco growth[J]. Crop Research, 2016, 30(2): 142-148.
SUN Y G, YAN H F, SHI Y, et al. Effects of ocean soil conditioner on soil physicochemical properties and flue-cured tobacco growth and yield[J]. Journal of Agricultural Science and Technology, 2017, 19(3): 82-89.
ZHAO D F, XU J, LUO X, et al. Effect of biochar on soil nutrients, growth and chemical composition of tobacco[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(3): 85-92.
PAN J H, ZHUANG S Y, SHI X Z, et al. Effects of soil amendments on yield and quality of tobacco and soil properties of slope upland in south Anhui[J]. Soil, 2016, 48(5): 978-983.
YE X F, LI Z P, YU X N, et al. Effect of biochar application rate on quality of flue-cured tobacco leaves and carbon pool in tobacco growing soil[J]. Acta Tabacaria Sinica, 2015, 21(5): 33-41.
MAO J, HE X B, XU Y Q, et al. Effect of biochar fertilizer on yield and quality of flue-cured tobacco in central Henan[J]. Journal of Henan Agricultural Sciences, 2019, 48(2): 48-53.
YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2016.