王文潔 趙電波 李可 李宜圃 白艷紅
摘 要:即食肉制品在生產(chǎn)和消費環(huán)節(jié)極易受到微生物污染,嚴(yán)重影響其品質(zhì)和安全。傳統(tǒng)熱殺菌技術(shù)雖然能有效滅活微生物,但會對即食肉制品的營養(yǎng)和感官品質(zhì)產(chǎn)生不良影響。近年來,非熱殺菌技術(shù)逐漸受到關(guān)注,該技術(shù)處理溫度低,對食品的風(fēng)味、色澤和營養(yǎng)成分影響較小,避免了傳統(tǒng)熱殺菌技術(shù)造成的食品品質(zhì)劣變問題。目前,在即食肉制品中應(yīng)用較為廣泛的非熱殺菌技術(shù)主要有超高壓、輻照、紫外照射、脈沖光照射和冷等離子體。本文綜述上述5 種非熱殺菌技術(shù)對即食肉制品的殺菌作用及對其品質(zhì)的影響,以期為非熱殺菌技術(shù)在即食肉制品加工中的應(yīng)用提供參考。
關(guān)鍵詞:即食肉制品;非熱殺菌技術(shù);食品品質(zhì)
Abstract: Ready-to-eat meat products are susceptible to microbial contamination during both production and consumption, which has an adverse impact on food quality and safety. The application of traditional thermal sterilization technologies to inactivate microorganisms in ready-to-eat meat products can cause losses of nutritional and sensory qualities. In recent years, non-thermal sterilization technologies have been receiving increasing attention. These technologies are used to inactivate foodborne pathogens at lower processing temperatures without destroying the nutritional and sensory qualities that are usually affected during heat treatment. At present, non-thermal sterilization technologies including ultra-high pressure, irradiation, ultraviolet, pulsed light, and cold plasma are widely used for the processing of ready-to-eat meat products. Therefore, the effects of these five non-thermal sterilization technologies on microbial inactivation in ready-to-eat meat products and their quality are reviewed in this paper, in order to provide useful information for the application of non-thermal sterilization technologies in the processing of ready-to-eat meat products.
Keywords: ready-to-eat meat products; non-thermal sterilization technologies; food quality
即食肉制品包括高熱處理和低熱處理的非腌制和腌制肉制品[1],因其營養(yǎng)、方便、快捷、符合人們快節(jié)奏的生活,使得其需求量不斷增加。但是在制作和銷售過程中,由于受外界因素的影響,即食肉制品易被食源性致病菌污染,是人類食源性疾病的常見載體[2]。為提高食品安全性,通常采用熱處理滅活微生物。傳統(tǒng)的熱殺菌技術(shù)雖然能有效滅活微生物,但是高溫會對即食肉制品的營養(yǎng)和感官品質(zhì)產(chǎn)生不良影響。近幾年,隨著生活水平的提高,消費者對食品品質(zhì)的需求進(jìn)一步提高。為避免傳統(tǒng)熱殺菌技術(shù)的局限,非熱殺菌技術(shù)越來越受到行業(yè)重視,如超高壓、紫外照射、輻照、脈沖光照射和冷等離子體等技術(shù)。這些技術(shù)不僅能有效控制即食肉制品中微生物的生長,而且能最大限度地保留食品的營養(yǎng)物質(zhì)和自然風(fēng)味,顯示出良好的應(yīng)用前景。
本文主要探討超高壓處理、輻照、紫外照射、脈沖光照射和冷等離子體等非熱殺菌技術(shù)在即食肉制品殺菌中的應(yīng)用及其對即食肉制品品質(zhì)的影響,為上述技術(shù)在即食肉制品中的應(yīng)用提供參考。
1 即食肉制品微生物污染現(xiàn)狀
微生物污染不僅降低了食品的營養(yǎng)價值與衛(wèi)生質(zhì)量,造成經(jīng)濟(jì)損失,而且極易引起急性或慢性食物中毒,危害人體健康。根據(jù)食源性疾病爆發(fā)監(jiān)控系統(tǒng)的數(shù)據(jù),2009—2015年美國共爆發(fā)5 760 例食源性疾病,導(dǎo)致100 939 人患病,5 699 人住院,145 人死亡[3]。
在切割、切片和重新包裝過程中,即食肉制品可能被微生物二次污染。即食肉制品中常見的致病菌主要包括單增李斯特菌(Lister monocytogenes)、大腸桿菌(Escherichia coli)O157:H7、沙門氏菌(Salmonella)和金黃色葡萄球菌(Staphylococcus aureus)等,其中,L. monocytogenes普遍存在,在4 ℃條件下也能生長,且耐受高濃度鹽和亞硝酸鈉,是污染即食肉制品最主要的食源性致病菌,其在歐洲市場切片干香腸中的檢出率為10%~20%[4-5]。
國內(nèi)外即食肉制品相關(guān)微生物污染重大事件如表1所示。
2 非熱殺菌技術(shù)應(yīng)用現(xiàn)狀
非熱殺菌技術(shù)是食品工業(yè)新型加工技術(shù),殺菌條件易于控制,受外界環(huán)境影響較小。在處理過程中,由于處理溫度較低,有利于保持食品的營養(yǎng)和感官品質(zhì),可以滿足消費者對高品質(zhì)食品的需求,受到消費者和企業(yè)的歡迎。即食肉制品經(jīng)烹飪或包裝后,可利用非熱殺菌技術(shù)延長貨架期,提高安全性。目前,在即食肉制品中應(yīng)用較為廣泛的非熱殺菌技術(shù)主要包括超高壓、輻照、紫外照射、脈沖光照射和冷等離子體技術(shù)。
2.1 超高壓技術(shù)
超高壓技術(shù)是將100~1 000 MPa的靜態(tài)液體壓力施加于液態(tài)或固態(tài)食品、生物制品等物料并保持一定時間,從而起到殺菌、破壞酶及改善物料結(jié)構(gòu)和特性的作用[15]。在超高壓處理過程中,壓力快速、均勻地傳遞到整個食品,處理溫度遠(yuǎn)低于熱處理溫度,不僅可以防止食品中熱敏性成分遭到破壞、抑制褐變反應(yīng)的發(fā)生,還可以延長食品貨架期,較大程度地保持食品的原有風(fēng)味、色澤和營養(yǎng)價值。但是,超高壓設(shè)備的耐壓性要求較高,價格昂貴,生產(chǎn)成本偏高,限制了該技術(shù)在實際生產(chǎn)中的廣泛應(yīng)用。
2.1.1 超高壓技術(shù)在即食肉制品殺菌中的應(yīng)用
超高壓處理對細(xì)菌、霉菌和酵母均有滅活作用。在即食肉制品中,超高壓處理能有效殺滅污染火腿、熏牛肉的致病菌,如L. monocytogenes、S. aureus、E. coli和Salmonella spp.等,從而保證即食肉制品的安全并延長貨架期。當(dāng)微生物處于高壓條件下時,微生物的細(xì)胞膜受到損傷,蛋白質(zhì)構(gòu)象改變、酶失活、細(xì)胞內(nèi)pH值降低,從而導(dǎo)致微生物死亡[16]。影響超高壓殺菌效果的因素主要有壓力、加壓時間、溫度、微生物種類和即食肉制品種類等(表2)。
2.1.2 超高壓處理對即食肉制品品質(zhì)的影響
超高壓處理只對生物大分子立體結(jié)構(gòu)中的非共價鍵,如氫鍵、二硫鍵和離子鍵產(chǎn)生影響,對食品成分中的共價鍵影響很小。此外,由于超高壓處理溫度較低,能防止食品中熱敏性成分被破壞,在低溫下使酶失活,從而抑制食品的褐變反應(yīng),因此能最大限度地保持其原有風(fēng)味、色澤和營養(yǎng)價值。Hugas等[19]對真空包裝切片熟制火腿進(jìn)行600 MPa、6 min的超高壓處理,發(fā)現(xiàn)致腐微生物的生長顯著受到抑制,火腿感官品質(zhì)在60 d內(nèi)可保持不變。Mor-Mur等[25]發(fā)現(xiàn),500 MPa、65 ℃作用5、15 min能使香腸質(zhì)地和口感更好,多汁、不堅硬,而且色澤無顯著變化。Rubio等[26-27]研究表明,500 MPa、5 min處理條件下,真空包裝干腌牛肉和西班牙香腸中的腸球菌、腸桿菌生長受到抑制,產(chǎn)品貯藏期明顯延長,同時理化及感官品質(zhì)未發(fā)生顯著變化。韓衍青等[28]采用12 ℃、600 MPa高壓處理煙熏切片火腿10 min,在4 ℃貯藏條件下,保質(zhì)期能延長10 周,而且肉制品的脂肪氧化、顏色、水分活度及理化指標(biāo)和感官指標(biāo)變化較小。由此可知,在一定的壓力范圍內(nèi),采用超高壓處理即食肉制品,在發(fā)揮殺菌作用的同時又能較好地保持食品品質(zhì),延長貯藏期。
2.2 輻照技術(shù)
輻照是利用一定劑量波長極短的電離射線(如γ射線、電子束射線和X射線)照射,從而殺死微生物達(dá)到保藏、保鮮目的的殺菌技術(shù)。輻照具有綠色、環(huán)保、經(jīng)濟(jì)、應(yīng)用范圍廣、能較完整地保留食品中的營養(yǎng)成分和風(fēng)味物質(zhì)等優(yōu)點。輻照穿透力強,對食品表面和內(nèi)部的微生物均有明顯的殺菌效果。然而,由于了解不全面,目前對食品輻照持爭議的態(tài)度,使得這項技術(shù)的發(fā)展受到限制。
2.2.1 輻照技術(shù)在即食肉制品殺菌中的應(yīng)用
輻照在完整肉制品及各種包裝肉制品的內(nèi)部殺菌中應(yīng)用廣泛。研究表明,一定劑量的輻照可顯著降低火腿、香腸等即食肉制品中的L. monocytogenes和產(chǎn)氣莢膜梭菌(Clostridium perfringens)數(shù)量,延長產(chǎn)品貨架期。輻照的殺菌機(jī)理一般有2 種:一方面,電離輻射破壞目標(biāo)微生物的DNA,并通過抑制DNA合成防止細(xì)胞分裂;另一方面,輻射與水分子相互作用產(chǎn)生活性分子,活性分子再與細(xì)胞內(nèi)其他物質(zhì)作用,最終導(dǎo)致細(xì)胞死亡[29-30]。影響輻照殺菌的因素主要包括輻射源類型、輻照劑量、微生物種類和食品介質(zhì)等(表3)。
2.2.2 輻照對即食肉制品品質(zhì)的影響
輻照能夠有效殺滅微生物,但是會對即食肉制品的氣味、色澤、風(fēng)味產(chǎn)生一定影響。Zhu等[37]研究發(fā)現(xiàn),經(jīng)0~2 kGy輻照后,即食火雞腸的顏色和硫代巴比妥酸反應(yīng)物(thiobarbituric acid reactive substance,TBARs)值變化很小,隨著輻照劑量的增加,硫磺氣味增加。
Galán等[38]用2~4 kGy輻照添加葉酸的即食香腸,結(jié)果表明,當(dāng)輻照劑量在3 kGy以下時,香腸的色澤、質(zhì)構(gòu)和感官特性均在可接受范圍內(nèi),但異味可接受度隨輻照劑量的升高而降低。姚鋼等[39]發(fā)現(xiàn),輻照處理未添加防腐劑的香腸有效延長了香腸的保質(zhì)期;但是,輻照對脂肪有一定的降解作用,脂肪含量隨著輻照劑量的增加而降低,水分、蛋白質(zhì)的變化不穩(wěn)定,同時香腸的顏色及揮發(fā)性氣味也明顯增強。與此相反,Cabeza等[40]研究表明,
使用≤2 kGy的劑量輻照處理干發(fā)酵香腸,香腸的外觀、氣味和味道變化不顯著。因此,在國家規(guī)定范圍內(nèi),控制食品輻照劑量很重要,劑量低不能達(dá)到保鮮殺菌的效果,劑量高會影響食品的感官品質(zhì),選擇合適的輻照劑量是在即食肉制品中使用輻照技術(shù)的關(guān)鍵點。
2.3 紫外照射和脈沖光照射技術(shù)
紫外光(ultraviolet light,UV)是波長100~400 nm的電磁波譜[41],UV光譜分為4 個區(qū)域:UV-A(315~400 nm)、UV-B(280~315 nm)、UV-C(200~280 nm)和真空UV(100~200 nm)[42]。紫外殺菌操作簡單、效率高、環(huán)境友好、污染小,與熱處理相比,紫外照射不需要熱量,對食品營養(yǎng)和感官質(zhì)量的影響較小。此外,紫外設(shè)備的安裝成本和加工費用較低,而且不會在產(chǎn)品中留下任何殘留物。但是,紫外照射穿透力低,只對食品表面的微生物起到殺菌作用。此外,紫外設(shè)備需要相對昂貴的電源和弧光燈,照射強度存在不穩(wěn)定現(xiàn)象,導(dǎo)致樣品照射不均勻,這些因素限制了紫外照射技術(shù)的應(yīng)用。
脈沖光照射是指采用持續(xù)時間短、光照強度高的寬譜“白”光脈沖照射物質(zhì),以達(dá)到殺菌的目的。脈沖光譜包括從紫外到近紅外區(qū)域的波長范圍[43]。脈沖光峰值能量極高,脈沖持續(xù)時間極短,且不含汞和高壓氣體等污染成分,具有穿透力強、作用溫度低、能效高、適配性高、安全和易控制的優(yōu)點。但是,由于遮光效應(yīng)以及光的反射、折射和散射等現(xiàn)象的存在,使得脈沖光對深顏色的液體或凹凸不平的表面殺菌效果較差,且殺菌只停留在食品表面。
2.3.1 紫外照射和脈沖光照射在即食肉制品中的應(yīng)用
研究證實,紫外照射和脈沖光照射均能有效殺滅香腸、火腿等即食肉制品中的L. monocytogenes、S. typhimurium和E. coli O157:H7等,從而延長即食肉制品的保質(zhì)期。當(dāng)微生物處在紫外線中時,紫外區(qū)域中的光子能量通常足以引發(fā)生物分子中的光化學(xué)反應(yīng)。紫外照射導(dǎo)致微生物的DNA形成胸腺嘧啶二聚體,使微生物失活[42]。紫外照射殺菌效果主要受到照射強度、處理時間、微生物和食品種類等的影響。
脈沖光照射殺菌機(jī)制主要取決于3 種作用方式,分別為光化學(xué)作用、光熱作用和光物理作用。光化學(xué)作用指微生物經(jīng)脈沖光照射后,其DNA會吸收紫外波段的能量(200~280 nm)而裂解,結(jié)構(gòu)發(fā)生改變,形成胸腺嘧啶二聚體,阻礙DNA的復(fù)制和細(xì)胞分裂,擾亂微生物自身的新陳代謝和遺傳,導(dǎo)致細(xì)胞死亡及孢子鈍化。光熱作用是指材料受光照射后,光子能量與晶格相互作用,振動加劇,溫度升高。脈沖光是一種廣譜光,其中的近紅外光能輻射能量,可使細(xì)胞表面局部升溫至50~150 ℃,破壞細(xì)菌細(xì)胞壁,使細(xì)胞液蒸發(fā),破壞細(xì)胞結(jié)構(gòu),導(dǎo)致細(xì)菌死亡。光物理作用指脈沖光的穿透性和瞬時沖擊能力能夠破壞細(xì)胞壁和其他細(xì)胞成分,導(dǎo)致細(xì)胞死亡[44]。影響脈沖光照射殺菌的因素主要有樣品形態(tài)、初始菌落數(shù)、輸入電壓、脈沖寬度、脈沖頻率、脈沖次數(shù)和脈沖距離等(表4)。
2.3.2 紫外照射和脈沖光照射對即食肉制品品質(zhì)的影響
目前,關(guān)于紫外線照射和脈沖光照射對即食肉制品品質(zhì)的影響說法尚不統(tǒng)一。Wambura等[51]研究表明,隨著脈沖紫外線照射處理時間的延長,切片火腿氧化穩(wěn)定性降低程度更高,處理時間和距離對樣品顏色和質(zhì)地產(chǎn)生不良影響。Ganan等[5]發(fā)現(xiàn),用11.9 J/cm2脈沖光照射處理即食干腌肉制品Salchichón后,貯藏30 d未發(fā)現(xiàn)感官變化,將同樣的處理作用于即食干腌肉制品Loin,發(fā)現(xiàn)處理后Loin的感官品質(zhì)發(fā)生變化,但是這些變化在貯藏期間消失。采用0.7、2.1、4.2、8.4 J/cm2的脈沖光處理真空包裝熟火腿時,火腿TBARs值非常低,色澤在熟肉制品正常范圍內(nèi),8.4 J/cm2的脈沖光處理不影響火腿的感官品質(zhì)[52]。與僅采用真空包裝相比,脈沖光和真空包裝協(xié)同作用將火腿的保質(zhì)期延長30 d,但是脈沖光未能延長真空包裝博洛尼亞切片香腸的保質(zhì)期,而且劑量高于2.1 J/cm2的脈沖光處理對產(chǎn)品感官特性產(chǎn)生負(fù)面影響[47]。綜上可知,即食肉制品的感官品質(zhì)與即食肉制品的種類、照射劑量和處理時間有關(guān)。此外,將紫外和脈沖光照射與其他傳統(tǒng)技術(shù)(如冷藏、加熱、真空包裝等)結(jié)合,可以延長即食肉制品的貨架期。
2.4 冷等離子體技術(shù)
等離子體是一種準(zhǔn)中性氣體,被稱為物質(zhì)的第4種狀態(tài),一般由氣體放電產(chǎn)生[52-53],其含有各種活性粒子,如電子、離子、自由基、亞穩(wěn)態(tài)激發(fā)物質(zhì)和真空紫外線輻射[54]。作為一種新興的綠色滅菌技術(shù),冷等離子體具有高效、溫度低、耗時短、效率高和無污染等優(yōu)點??墒牵捎谑軜悠沸螤畹挠绊?,等離子體技術(shù)存在處理不均勻的問題。
2.4.1 冷等離子體技術(shù)在即食肉制品中的應(yīng)用
冷等離子體能夠有效殺滅牛肉干、火腿等即食肉制品中的致病菌,如L. monocytogenes、S. typhimurium和E. coli O157:H7等,延長即食肉制品貨架期。在冷等離子體作用下,微生物受到臭氧和活性物質(zhì)的氧化,以及自由基和帶電粒子的攻擊,細(xì)胞或DNA遭到破壞后死亡[55-56]。
影響冷等離子體殺菌的因素主要包括工藝參數(shù)(如等離子體產(chǎn)生方式、載氣類型、頻率、輸入電壓和接觸距離)、環(huán)境因素(如相對濕度、pH值、樣品性質(zhì))和微生物種類(表5)。
2.4.2 冷等離子體對即食肉制品品質(zhì)的影響
冷等離子體雖然能有效殺滅即食肉制品中的微生物,但對品質(zhì)的影響并不一致。Kim等[59]利用射頻大氣壓等離子體處理牛肉干5 min,結(jié)果表明,牛肉干中脂肪酸含量無顯著變化,處理時間0~10 min時,牛肉干色澤(亮度值(L*)、紅度值(a*)、黃度值(b*)、ΔE)和剪切力均無顯著變化。隨著DBD等離子體處理功率和處理時間的增加,牛肉干TBARs值顯著高于對照組樣品,但是增加量僅為0.1~0.4 mg/kg,未檢測到異味[57]。也有研究表明,采用大氣壓等離子體處理培根,培根L*減小[62]。Yong等[63]將等離子體處理后的溶液作為腰肉火腿中亞硝酸鹽的替代物,發(fā)現(xiàn)與亞硝酸鈉水溶液相比,等離子體活化水處理組火腿a*增加,b*、L*和脂質(zhì)氧化情況沒有明顯差異。綜上可知,冷等離子體處理對即食肉制品的色澤影響不一致,這可能與等離子體的產(chǎn)生方式和即食肉制品種類有關(guān)。因此,在今后的研究中需進(jìn)一步優(yōu)化放電功率、載氣、處理時間等參數(shù),有效控制冷等離子體處理對即食肉制品品質(zhì)造成的不良影響。
3 結(jié) 語
超高壓處理、輻照、紫外照射、脈沖光照射和冷等離子體技術(shù)對即食肉制品有良好的殺菌效果,但是對其營養(yǎng)和感官品質(zhì)的影響因即食肉制品種類、形態(tài)和處理工藝條件等的不同而存在差異。此外,非熱殺菌技術(shù)也存在設(shè)備價格昂貴和技術(shù)參數(shù)不完善等問題,目前多集中于實驗室研究。因此,在今后的工作中,首先需要進(jìn)行基礎(chǔ)研究,理解設(shè)備作用機(jī)理;其次,研發(fā)新設(shè)備,加快工業(yè)化應(yīng)用;最后,將非熱殺菌技術(shù)與其他技術(shù)(溫?zé)?、冷藏、抗菌劑等)協(xié)同使用,改善非熱殺菌技術(shù)自身的缺點,取長補短,從而推動非熱殺菌技術(shù)在即食肉制品加工中的應(yīng)用。
參考文獻(xiàn):
[1] RAY B, BHUNIA A. Fundamental food microbiology[M]. Boca Raton: CRC Press, 2013: 194-197. DOI:10.1201/b16078.
[2] KUKLECI E, SMULDERS F J M, HAMIDI A, et al. Prevalence of foodborne pathogenic bacteria, microbial levels of hygiene indicator bacteria, and concentrations of biogenic amines in ready-to-eat meat products at retail in the Republic of Kosovo[J]. Journal of Food Protection, 2019, 82(7): 1135-1140. DOI:10.4315/0362-028X.JFP-19-060.
[3] DEWEY-MATTIA D, MANIKONDA K, HALL A J, et al. Surveillance for foodborne disease outbreaks: United States, 2009—2015[J]. MMWR Surveillance Summaries, 2018, 67(10): 1-11. DOI:10.15585/mmwr.ss6710a1.
[4] SOFOS J N, GEORNARAS I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat product[J]. Meat Science, 2010, 86(1): 151-156. DOI:10.1016/j.meatsci.2010.04.015.
[5] GANAN M, HIERRO E, HOSPITAL X F, et al. Use of pulsed light to increase the safety of ready-to-eat cured meat products[J]. Food Control, 2013, 32(2): 512-517. DOI:10.1016/j.foodcont.2013.01.022.
[6] Centers for Disease Control and Prevention (CDC). Escherichia coli O157: H7 outbreak linked to commercially distributed dry-cured salami: Washington and California, 1994[J]. MMWR Morbidity and Mortality Weekly Report, 1995, 44(9): 157-160. DOI:10.1001/jama.1995.03520370023012.
[7] CONEDERA G, MATTIAZZI E, RUSSO F, et al. A family outbreak of Escherichia coli O157 haemorrhagic colitis caused by pork meat salami[J]. Epidemiology and Infection, 2007, 135(2): 311-314. DOI:10.1017/S0950268806006807.
[8] Centers for Disease Control and Prevention (CDC). Update: multistate outbreak of listeriosis: United States, 1998—1999[J]. MMWR Morbidity and Mortality Weekly Report, 1999, 47(51/52): 1117-1118. DOI:10.1001/jama.281.4.317-jwr0127-3-1.
[9] Centers for Disease Control and Prevention (CDC). Outbreak of Listeriosis: Northeastern United States, 2002[J]. MMWR Morbidity and Mortality Weekly Report, 2002, 51(42): 950-951. DOI:10.1001/jama.288.18.2260.
[10] AYCICEK H, CAKIROGLU S, STEVENSON T H. Incidence of Staphylococcus aureus in ready-to-eat meals from military cafeterias in Ankara, Turkey[J]. Food Control, 2005, 16(6): 531-534. DOI:10.1016/j.foodcont.2004.04.005.
[11] Centers for Disease Control and Prevention (CDC). Outbreak of salmonellosis associated with beef jerky: New Mexico[J]. MMWR Morbidity and Mortality Weekly Report, 1995, 44(42): 785-788. DOI:10.1001/jama.1995.03530210023010.
[12] BENKERROUM N. Traditional fermented foods of North African countries: technology and food safety challenges with regard to microbiological risks[J]. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(1): 54-89. DOI:10.1111/j.1541-4337.2012.00215.x.
[13] YONG H I, LEE H, PARK S, et al. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meats physicochemical properties[J]. Meat Science, 2017, 123: 151-156. DOI:10.1016/j.meatsci.2016.09.016.
[14] 李土榮, 金建潮, 袁丹茅, 等. 2014—2016年龍巖市即食散裝熟肉制品風(fēng)險監(jiān)測分析[J]. 河南預(yù)防醫(yī)學(xué)雜志, 2017, 28(12): 952-953. DOI:10.13515/j.cnki.hnjpm.1006-8414.2017.12.024.
[15] 趙永強, 張紅杰, 李來好, 等. 水產(chǎn)品非熱殺菌技術(shù)研究進(jìn)展[J]. 食品工業(yè)科技, 2015, 36(11): 394-399. DOI:10.13386/j.issn1002-0306.2015.11.071.
[16] 劉勤華, 馬漢軍. 超高壓殺菌技術(shù)在低溫肉制品保鮮中的應(yīng)用[J]. 肉類工業(yè), 2013(3): 52-56. DOI:10.3969/j.issn.1008-5467.2013.03.017.
[17] AYMERICH T, JOFR? A, GARRIGA M, et al. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham[J]. Journal of Food Protection, 2005, 68(1): 173-177. DOI:10.4315/0362-028X-68.1.173.
[18] CAMPUS M. High pressure processing of meat, meat products and seafood[J]. Food Engineering Reviews, 2010, 2(4): 256-273. DOI:10.1007/s12393-010-9028-y.
[19] HUGAS M, GARRIGA M, MONFORT J M. New mild technologies in meat processing: high pressure as a model technology[J]. Meat Science, 2002, 62(3): 359-371. DOI:10.1016/S0309-1740(02)00122-5.
[20] GARRIGA M, AYMERICH M T, COSTA S, et al. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage[J]. Food Microbiology, 2002, 19(5): 509-518. DOI:10.1006/fmic.2002.0498.
[21] RUBIO B, MART?NEZ B, GARCIA-CACHAN M D, et al. Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”[J]. Innovative Food Science and Emerging Technologies, 2007, 8(1): 102-110. DOI:10.1016/j.ifset.2006.08.004.
[22] PORTO A. Evaluation of fermentation, drying, and/or high pressure processing on viability of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp. and Trichinella spiralis in raw pork and Genoa salami[J]. International Journal of Food Microbiology, 2010, 140(1): 61-75. DOI:10.1016/j.ijfoodmicro.2010.02.008.
[23] OLMO A D, CALZADA J, NU?EZ M. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat “l(fā)acón”, a cured-cooked pork meat product[J]. Innovative Food Science and Emerging Technologies, 2014, 26: 134-142. DOI:10.1016/j.ifset.2014.03.003.
[24] HAYMAN M M, BAXTER I, ORIORDAN P J, et al. Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats[J]. Journal of Food Protection, 2004, 67(8): 1709-1718. DOI:10.4315/0362-028X-67.8.1709.
[25] MOR-MUR M, YUSTE J. High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis[J]. Meat Science, 2003, 65(3): 1187-1191. DOI:10.1016/S0309-1740(03)00013-5.
[26] RUBIO B, MART?NEZ B, GARC?A-CACH?N M D, et al. Effect of high pressure preservation on the quality of dry cured beef Cecina de Leo[J]. Innovative Food Science Emerging Technologies, 2007, 8(1): 102-110. DOI:10.1016/j.ifset.2006.08.004.
[27] RUBIO B, MART?NEZ B, GARC?A-CACH?N M D, et al. The effects of high pressure treatment and of storage periods on the quality of vacuum-packed “salchichón” made of raw material enriched in monounsaturated and polyunsaturated fatty acids[J]. Innovative Food Science Emerging Technologies, 2007, 8(2): 180-187. DOI:10.1016/j.ifset.2006.09.005.
[28] 韓衍青, 張秋勤, 徐幸蓮, 等. 超高壓處理對煙熏切片火腿保質(zhì)期的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2009, 25(8): 305-311. DOI:10.3969/j.issn.1002-6819.2009.08.054.
[29] 李斌, 楊秦, 肖洪, 等. 輻照對食品品質(zhì)的影響及輻照食品的研究進(jìn)展[J]. 糧食與油脂, 2019, 32(4): 4-6. DOI:10.3969/j.issn.1008-9578.2019.04.002.
[30] TAHERGORABI R, MATAK K E, JACZYNSKI J. Application of electron beam to inactivate Salmonella in food: recent developments[J]. Food Research International, 2012, 45(2): 685-694. DOI:10.4315/0362-028X-67.8.1709.
[31] FOONG S C, GONZALEZ G L, DICKSON J S. Reduction and survival of Listeria monocytogenes in ready-to-eat meats after irradiation[J]. Journal of Food Protection, 2004, 67(1): 77-82. DOI:10.4315/0362-028X-67.1.77.
[32] SOMMERS C H, THAYER D W. Survival of surface-inoculated Listeria monocytogenes on commercially available frankfurters following gamma irradiation[J]. Journal of Food Safety, 2000, 20(2): 127-137. DOI:10.1111/j.1745-4565.2000.tb00293.x.
[33] ZHU M J, MENDONCA A, ISMAIL H A, et al. Fate of Listeria monocytogenes in ready-to-eat turkey breast rolls formulated with antimicrobials following electron-beam irradiation[J]. Poultry Science, 2009, 88(1): 205-213. DOI:10.3382/ps.2007-00386.
[34] ZHU M J, MENDONCA A, ISMAIL H A, et al. Impact of antimicrobial ingredients and irradiation on the survival of Listeria monocytogenes and the quality of ready-to-eat Turkey ham[J]. Poultry Science, 2005, 84(4): 613-620. DOI:10.1093/ps/84.4.613.
[35] FU A N H, SEBRANEK J G, MURANO E A. Survival of Listeria monocytogenes and Salmonella typhimurium and quality attributes of cooked pork chops and cured ham after irradiation[J]. Journal of Food Science, 1995, 60(5): 1001-1005. DOI:10.1111/j.1365-2621.1995.tb06279.x.
[36] PARRYHANSON A, HALL A, MINNAAR A, et al. Use of γ-irradiation to reduce Clostridium perfringens on ready-to-eat bovine tripe[J]. Meat Science, 2008, 78(3): 194-201. DOI:10.1016/j.meatsci.2007.06.010.
[37] ZHU M J, LEE E J, MENDONCA A, et al. Effect of irradiation on the quality of Turkey ham during storage[J]. Meat Science, 2004, 66(1): 63-68. DOI:10.1016/S0309-1740(03)00014-7.
[38] GAL?N I, GARC?A M L, SELGAS M D. Irradiation is useful for manufacturing ready-to-eat cooked meat products enriched with folic acid[J]. Meat Science, 2011, 87(4): 330-335. DOI:10.1016/j.meatsci.2010.11.007.
[39] 姚鋼, 蔣繼成, 衛(wèi)光, 等. 60Co-γ射線輻照保鮮無防腐劑香腸機(jī)理與理化指標(biāo)預(yù)測[J]. 自動化技術(shù)與應(yīng)用, 2018, 37(8): 139-141. DOI:10.3969/j.issn.1003-7241.2018.08.033.
[40] CABEZA M C, DE LA HOZ L, VELASCO R, et al. Safety and quality of ready-to-eat dry fermented sausages subjected to E-beam radiation[J]. Meat Science, 2009, 83(2): 320-327. DOI:10.1016/j.meatsci.2009.05.019.
[41] KOUTCHMA T. Challenges of UV light processing of low UVT foods and beverages[C]// Conference on Laser Beam Shaping XI. San Diego, CA, International Society for Optics and Photonics, 2010: 77890H. DOI:10.1117/12.860259.
[42] KEKLIK N M, KRISHNAMURTHY K, DEMIRCI A. Microbial decontamination in the food industry[M]. Woodhead Publishing, 2012: 344-369. DOI:10.1533/9780857095756.2.344.
[43] LI X, FARID M. A review on recent development in non-conventional food sterilization technologies[J]. Journal of Food Engineering, 2016, 182: 33-45. DOI:10.1016/j.jfoodeng.2016.02.026.
[44] 杜艷, 陳復(fù)生. 脈沖光在食品工業(yè)中的應(yīng)用[J]. 食品與機(jī)械, 2018, 34(8): 177-182. DOI:10.13652/j.issn.1003-5788.2018.08.035.
[45] RAJKOVIC A, TOMASEVIC I, MEULENAER B D, et al. The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and staphylococcal enterotoxin A on sliced fermented salami and its chemical quality[J]. Food Control, 2017, 73: 829-837. DOI:10.1016/j.foodcont.2016.09.029.
[46] CHUN H, KIM J, CHUNG K, et al. Inactivation kinetics of Listeria monocytogenes, Salmonella enterica serovar typhimurium, and Campylobacter jejuni in ready-to-eat sliced ham using UV-C irradiation[J]. Meat Science, 2009, 83: 599-603. DOI:10.1016/j.meatsci.2009.07.007.
[47] HIERRO E, BARROSO E, LD L H, et al. Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products[J]. Innovative Food Science and Emerging Technologies, 2011, 12(3): 275-281. DOI:10.1016/j.ifset.2011.04.006.
[48] HA J W, KANG D H. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action[J]. Applied and Environmental Microbiology, 2015, 81(1): 2-8. DOI:10.1128/AEM.01862-14.
[49] KEKLIK N M, DEMIRCI A, PURI V M. Inactivation of Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsed UV-light[J]. Journal of Food Science, 2009, 74(8): M431-M439. DOI:10.1111/j.1750-3841.2009.01319.x.
[50] UESUGI A R, MORARU C I. Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin[J]. Journal of Food Protection, 2009, 72(2): 347-353. DOI:10.4315/0362-028X-72.2.347.
[51] WAMBURA P, VERGHESE M. Effect of pulsed ultraviolet light on quality of sliced ham[J]. LWT-Food Science and Technology, 2011, 44(10): 2173-2179. DOI:10.1016/j.lwt.2011.05.016.
[52] TSENG S, ABRAMZON N, JACKSON J O, et al. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2563-2570. DOI:10.1007/s00253-011-3661-0.
[53] MIR S A, SHAH M A, MIR M M. Understanding the role of plasma technology in food industry[J]. Food and Bioprocess Technology, 2016, 9(5): 1-17. DOI:10.1007/s11947-016-1699-9.
[54] ?EN Y, BA?CI U, G?LE? H A, et al. Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface[J]. Food and Bioprocess Technology, 2012, 5(1): 166-175. DOI:10.1007/s11947-009-0248-1.
[55] BRANDENBURG R, LANGE H, WOEDTKE T V, et al. Antimicrobial effects of UV and VUV radiation of nonthermal plasma jets[J]. IEEE Transactions on Plasma Science, 2009, 37(6): 877-883. DOI:10.1109/TPS.2009.2019657.
[56] LAROUSSI M, LEIPOLD F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure[J]. International Journal of Mass Spectrometry, 2004, 233(1): 81-86. DOI:10.1016/j.ijms.2003.11.016.
[57] R?D S K, HANSEN F, LEIPOLD F, et al. Cold atmospheric pressure plasma treatment of ready-to-eat meat: inactivation of Listeria innocua and changes in product quality[J]. Food Microbiology, 2012, 30(1): 233-238. DOI:10.1016/j.fm.2011.12.018.
[58] LEE H J, JUNG H, CHOE W, et al. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets[J]. Food Microbiology, 2011, 28(8): 1468-1471. DOI:10.1016/j.fm.2011.08.002.
[59] KIM J S, LEE E J, CHOI E H, et al. Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment[J]. Innovative Food Science and Emerging Technologies, 2014, 22(4): 124-130. DOI:10.1016/j.ifset.2013.12.012.
[60] SONG H P, KIM B, CHOE J H, et al. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes[J]. Food Microbiology, 2009, 26(4): 432-436. DOI:10.1016/j.fm.2009.02.010.
[61] LIS K A, BOULAABA A, BINDER S, et al. Inactivation of Salmonella typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma[J]. PLoS One, 2018, 13(5): e0197773. DOI:10.1371/journal.pone.0197773.
[62] KIM B, YUN H, JUNG S, et al. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions[J]. Food Microbiology, 2011, 28(1): 9-13. DOI:10.1016/j.fm.2010.07.022.
[63] YONG H I, PARK J, KIM H J, et al. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety[J]. Plasma Processes and Polymers, 2017, 15(2): 1700050. DOI:10.1002/ppap.201700050.