沈海鷗,肖培青,李洪麗,牟廷森,賀云鋒
黑土坡面不同粒級泥沙流失特征分析
沈海鷗1,肖培青2※,李洪麗1,牟廷森1,賀云鋒1
(1. 吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,長春 130118;2. 黃河水利科學(xué)研究院水利部黃土高原水土流失過程與控制重點實驗室,鄭州 450003)
不同粒級泥沙流失特征研究可揭示坡面侵蝕機(jī)理,表征土壤養(yǎng)分流失狀況;而現(xiàn)有研究缺少對不同粒級泥沙流失速率及流失比例的過程性研究。為此,該研究基于連續(xù)匯流沖刷試驗,研究匯流沖刷次數(shù)和坡度對黑土坡面不同粒級泥沙流失特征的影響。試驗處理包括6次連續(xù)匯流沖刷(1 L/min,每次歷時60 min)和2個黑土區(qū)典型坡度(5°和10°)。結(jié)果表明,匯流沖刷次數(shù)對不同粒級泥沙流失速率及比例的影響較坡度的影響明顯。試驗條件下,<0.25 mm泥沙流失比例最大,其次為1~2、2~5、0.5~1、0.25~0.5、>5 mm泥沙流失比例。隨著匯流沖刷次數(shù)的增加,<0.25 mm泥沙的平均流失速率由1 965.7~6 698.4 g/(m2·h)顯著減小為59.5~80.0 g/(m2·h),該粒級泥沙流失比例亦總體呈現(xiàn)減小的趨勢,而1~2 mm泥沙流失比例總體呈現(xiàn)增加的趨勢,二者作為侵蝕泥沙的主體,其變化具有明顯規(guī)律性。因此,<0.25 mm和1~2 mm泥沙流失特征應(yīng)作為黑土區(qū)土壤侵蝕研究的重要部分,進(jìn)而指導(dǎo)防治措施的布設(shè);同時,建議采用適宜的覆蓋措施防治黑土坡面細(xì)小顆粒泥沙的流失。
土壤;徑流;侵蝕;泥沙粒級;匯流沖刷
坡耕地是東北黑土區(qū)土壤侵蝕最嚴(yán)重的區(qū)域之一,寶貴的黑土資源流失、土地生產(chǎn)力降低,已經(jīng)嚴(yán)重制約黑土區(qū)農(nóng)業(yè)生產(chǎn)和經(jīng)濟(jì)發(fā)展,威脅著中國的糧食安全[1-3]。春季融雪或降雨形成的地表徑流可攜帶搬運(yùn)大量泥沙,這些侵蝕泥沙通常由團(tuán)聚體和土壤顆粒組成,與原地土壤物質(zhì)的顆粒組成明顯不同[4-5]。由于徑流優(yōu)先搬運(yùn)含有大量養(yǎng)分的細(xì)顆粒,且搬運(yùn)距離較遠(yuǎn)[6-7],導(dǎo)致坡面土壤顆粒粗化,其對土壤造成的危害難以進(jìn)行人為修復(fù)[8]。因此,侵蝕泥沙顆粒組成的變化可作為衡量土壤粗化程度的重要指標(biāo)[9]。泥沙粒徑分布決定孔隙的數(shù)量搭配、形態(tài)特征及對外營力的敏感性,進(jìn)而影響徑流在坡面的運(yùn)移方式和途徑,反過來又影響土壤侵蝕[10-11]??梢?,研究不同粒級泥沙流失特征具有重要意義。已有研究表明,匯流沖刷及坡度是影響黑土坡面土壤侵蝕的主要因素[12-13],但是二者對侵蝕泥沙顆粒流失特征的影響研究較少,尤其缺少過程性研究成果。此外,黑土坡面土壤侵蝕過程中,<0.25 mm泥沙流失比例最高,不同研究中,其流失比例分別為45.7%~74.2%[14]、82.5%~98.3%[15]、47.7%~99.6%[16],同時,0.25~0.5、0.5~1、1~2、2~3、>5 mm粒級的泥沙流失比例也呈現(xiàn)一定的變化特征。在紫色土研究中,侵蝕泥沙中<1 mm的泥沙變化明顯,流失量較大[17];在棕壤土研究中,>1 mm的泥沙流失量最少[18];在紅壤研究中,<2 mm的泥沙流失量最大[10]??梢?,目前對于侵蝕泥沙粒級的劃分還存在一定爭議,針對不同土壤的研究結(jié)果也有一定差異。鑒于此,本文基于連續(xù)匯流沖刷試驗方法,應(yīng)用徑流小區(qū),研究匯流沖刷次數(shù)和坡度對黑土坡面不同粒級泥沙流失速率和流失比例變化特征的影響,以期深化坡面土壤侵蝕過程研究,為東北黑土區(qū)坡耕地土壤侵蝕防治提供理論指導(dǎo)。
試驗于2018年4月在吉林農(nóng)業(yè)大學(xué)水土保持科研基地(125°21′ E,43°52′ N)試驗徑流小區(qū)內(nèi)進(jìn)行。研究區(qū)屬于溫帶大陸性季風(fēng)氣候,具有干濕適中、四季分明的氣候特征;年均氣溫4.8 ℃,年均降水量617 mm[19]。試驗地位于典型黑土區(qū),土壤為黑土,砂粒(當(dāng)量粒徑大于50m)質(zhì)量分?jǐn)?shù)為10.2%,粉粒(當(dāng)量粒徑2~50m)質(zhì)量分?jǐn)?shù)為9.6%,黏粒(當(dāng)量粒徑小于2m)質(zhì)量分?jǐn)?shù)為80.2%,有機(jī)質(zhì)(重鉻酸鉀氧化—外加熱法)質(zhì)量分?jǐn)?shù)25.6 g/kg[20]。
試驗徑流小區(qū)依據(jù)我國標(biāo)準(zhǔn)徑流小區(qū)規(guī)格進(jìn)行設(shè)計,即20 m(水平投影長)×5 m(寬);為模擬休耕期坡面,其坡面設(shè)計為裸露處理,耕作層平均土壤容重為1.20 g/cm3;坡度依據(jù)東北黑土區(qū)坡耕地地形特征設(shè)計為5°和10°[12]。徑流小區(qū)底部設(shè)集流裝置,用于收集試驗過程中的徑流泥沙樣品;徑流小區(qū)上部設(shè)穩(wěn)流裝置,穩(wěn)流箱規(guī)格為0.5 m(長)×5 m(寬)×0.5 m(深),穩(wěn)流箱中設(shè)置穩(wěn)流板,以提供穩(wěn)定徑流均勻流向黑土坡面(圖1)。
圖1 試驗裝置
根據(jù)長春國家基準(zhǔn)氣候站1983—2012年的暴雨資料顯示,20年一遇的每小時降雨量接近60 mm[21],將其換算為徑流率即為本研究設(shè)計的匯流沖刷率1 L/min。為了詳細(xì)觀測黑土坡面水土流失特征,本研究采用連續(xù)匯流沖刷研究方法,至坡面侵蝕速率明顯減小為200 g/(m2·h)左右時停止沖刷,沖刷次數(shù)為6次,每次沖刷試驗歷時60 min,沖刷間隔為24 h[22],后一次沖刷是在前一次沖刷坡面的基礎(chǔ)上進(jìn)行,二者既有繼承性又有獨(dú)立性。每個試驗處理重復(fù)兩次。
為了確保匯流沖刷試驗的準(zhǔn)確性,試驗開始前對沖刷率進(jìn)行率定,實測沖刷率與目標(biāo)沖刷率的差值小于5%時方可進(jìn)行正式模擬試驗。坡面開始產(chǎn)流后即接取徑流泥沙樣品,取樣間隔為1 min或2 min,取樣個數(shù)為29~37個;從中,按照試驗歷時均勻取出10~12個徑流泥沙樣品直接通過5、2、1、0.5和0.25 mm的套篩進(jìn)行篩分處理,并轉(zhuǎn)移至鋁盒中。匯流沖刷試驗停止后,稱取徑流泥沙的總質(zhì)量,靜置后倒掉其上清液,轉(zhuǎn)移至鋁盒中,與篩分后的各粒級泥沙一并進(jìn)行烘干稱取質(zhì)量[23]。
應(yīng)用Excel 2016、SPSS 19.0進(jìn)行數(shù)據(jù)處理與分析:采用Excel 2016繪制連續(xù)沖刷處理下不同粒級泥沙流失比例隨時間的變化趨勢圖;采用SPSS 19.0中單因素方差分析(One-way ANOVA)、雙因素方差分析(Two-way ANOVAS)和多重比較(LSD),進(jìn)行顯著性水平檢驗(<0.05)。
通過對比6次連續(xù)匯流沖刷處理不同粒級泥沙的平均流失速率(表1),發(fā)現(xiàn)隨著匯流沖刷次數(shù)的增加,<0.25 mm泥沙流失速率在坡度為5°時由1 965.7 g/(m2·h)顯著減小為80.0 g/(m2·h),第1次沖刷處理的該粒級泥沙流失速率是第2次沖刷處理的1.8倍,以此類推,這一倍數(shù)變化范圍為1.6~2.4倍;在坡度為10°時由6 698.4 g/(m2·h)顯著減小為59.5 g/(m2·h),第1次沖刷處理的該粒級泥沙流失速率是第2次沖刷處理的3.5倍,以此類推,這一倍數(shù)變化范圍為1.5~3.5倍。當(dāng)坡度由5°增加為10°,第1~3次沖刷處理的<0.25 mm泥沙流失速率顯著增加1.5~3.4倍,而第4~6次沖刷處理的該粒級泥沙流失速率無顯著差異。
表1 連續(xù)匯流沖刷處理下5°和10°坡面不同粒級泥沙的平均流失速率
注:相同坡度及相同泥沙粒級條件下數(shù)據(jù)后不同小寫字母表示不同沖刷處理間差異顯著,相同沖刷次數(shù)及相同泥沙粒級條件下數(shù)據(jù)后不同大寫字母表示5°和10°坡面處理間差異顯著(< 0.05)。
Note: Different lowercase letters for the same sediment gradation at the same slope gradient indicate a difference of significance at the< 0.05 between successive inflow scour treatments. Different capital letters for the same sediment gradation at the same inflow scour event indicate a difference of significance at the< 0.05 between 5° and 10° treatments.
粒級0.25~0.5 mm和0.5~1 mm泥沙的平均流失速率隨著匯流沖刷次數(shù)的增加而顯著降低,至第5次沖刷減小到相對穩(wěn)定,其后無顯著性差異(表1)。對于5°坡面,第1次沖刷處理的0.25~0.5 mm和0.5~1 mm粒級泥沙流失速率分別是第2次沖刷處理的1.1倍和1.4倍,以此類推,這一倍數(shù)分別變化于1.1~2.7倍和1.3~2.5倍;對于10°坡面,這一倍數(shù)變化范圍均為1.4~2.4倍。隨著坡度由5°增加到10°,0.25~0.5 mm泥沙流失速率僅在第1次沖刷處理下顯著增加,在其后的沖刷處理中未表現(xiàn)出顯著性差異;0.5~1 mm泥沙流失速率在第1~3次沖刷處理下顯著增加1.5~1.6倍,在其后的沖刷處理中未表現(xiàn)出顯著性差異。
對于5°坡面,1~2 mm泥沙的平均流失速率隨著匯流沖刷次數(shù)的增加而顯著降低;第1次沖刷處理的該粒級泥沙流失速率是第2次沖刷處理的1.2倍,以此類推,這一倍數(shù)變化范圍為1.2~3.0倍(表1)。對于10°坡面,第2次沖刷處理下1~2 mm泥沙流失速率較第1次沖刷處理增加了38.6%,其后隨著匯流沖刷次數(shù)的繼續(xù)增加而顯著降低;第2次沖刷處理的該粒級泥沙流失速率是第3次沖刷處理的1.7倍,以此類推,這一倍數(shù)變化范圍為1.7~2.4倍。通過對比5°和10°條件下1~2 mm泥沙流失速率發(fā)現(xiàn),除第1次和第2次沖刷處理外,其余處理未呈現(xiàn)出顯著性差異,且第1次和第2次沖刷處理下1~2 mm泥沙流失速率未表現(xiàn)出一定規(guī)律。
粒級2~5 mm泥沙的平均流失速率隨著匯流沖刷次數(shù)的增加總體呈先增加后減小的變化(表1)。對于5°和10°坡面,第2次沖刷處理下2~5 mm泥沙流失速率分別較第1次沖刷處理增加了10.8%和26.1%,其后隨著匯流沖刷次數(shù)的繼續(xù)增加而顯著降低;第2次沖刷處理的該粒級泥沙流失速率均是第3次沖刷處理的2.0倍,以此類推,5°和10°坡面這一倍數(shù)變化范圍分別為1.8~2.7倍和1.3~2.7倍。隨著坡度由5°增加為10°,第1~3次沖刷處理的2~5 mm泥沙流失速率顯著增加1.1~1.2倍,而第4~6次沖刷處理的泥沙流失速率無顯著差異。
對于5°坡面,>5 mm泥沙的平均流失速率相對較小,第1~2次沖刷處理間未呈現(xiàn)顯著差異,從第3次處理開始逐漸減小,其后無顯著性差異(表1)。對于10°坡面,隨著匯流沖刷次數(shù)的增加,>5 mm泥沙流失速率總體呈現(xiàn)減小趨勢。通過對比5°和10°條件下>5 mm泥沙流失速率發(fā)現(xiàn),除第6次沖刷處理外,其余處理均隨坡度的增加而顯著增加。
通過對比6次連續(xù)沖刷處理下不同粒級泥沙流失比例隨時間的變化(圖2),發(fā)現(xiàn)<0.25 mm泥沙流失比例最高,5°和10°條件下,6次沖刷試驗該粒級泥沙的平均流失比例分別為43.0%和47.0%;隨時間呈現(xiàn)較大幅度的波動變化,未表現(xiàn)出明顯的增加或減小趨勢,5°和10°條件下,波動幅度分別為15.8%~39.7%和20.7%~39.0%。隨著匯流沖刷次數(shù)的增加,該粒級泥沙流失比例總體呈現(xiàn)減小的趨勢。對比兩個坡度下<0.25 mm泥沙流失比例發(fā)現(xiàn),隨著坡度的增加,第1次沖刷處理的流失比例增加,第6次沖刷處理流失比例減小,第2~5次沖刷處理的流失比例無明顯變化。
粒級0.25~0.5 mm和0.5~1 mm泥沙流失比例相對較小,5°坡面,6次沖刷試驗?zāi)嗌称骄魇П壤謩e為9.0%和9.7%,10°坡面,其平均流失比例分別為8.4%和9.6%;隨時間呈現(xiàn)小幅度波動變化,未表現(xiàn)出明顯的增加或減小趨勢,波動幅度分別為4.8%~12.1%和4.6%~13.9%(圖2)。隨著匯流沖刷次數(shù)的增加,兩個粒級泥沙流失比例總體呈現(xiàn)為逐漸增加的趨勢。坡度對0.25~0.5 mm和0.5~1 mm泥沙流失比例隨時間的變化未呈現(xiàn)明顯影響。
圖2 連續(xù)沖刷處理下5°和10°坡面不同粒級泥沙流失比例隨時間的變化
粒級1~2 mm泥沙流失比例相對較大,5°和10°條件下,6次沖刷試驗該粒級泥沙的平均流失比例分別為21.6%和16.8%(圖2)。1~2 mm泥沙流失比例隨時間未表現(xiàn)出明顯的增加或減小趨勢,總體呈現(xiàn)波動變化;5°和10°條件下,其波動幅度分別變化于12.5%~25.9%和9.1%~34.1%。隨著匯流沖刷次數(shù)的增加,該粒級泥沙流失比例總體呈現(xiàn)為增加的趨勢,其中增加幅度比較大的處理是從第3次沖刷開始。當(dāng)坡度由5°增加為10°時,1~2 mm泥沙流失比例平均減小了22.0%,其中第1~4次沖刷處理表現(xiàn)更加明顯。
5°和10°條件下,6次沖刷試驗2~5 mm泥沙的平均流失比例分別為15.6%和14.4%,流失比例隨時間呈現(xiàn)波動變化,未表現(xiàn)出明顯的增加或減小趨勢,其波動幅度分別為9.4%~21.1%和9.7%~22.2%(圖2)。隨著匯流沖刷次數(shù)的增加,2~5 mm泥沙流失比例總體呈現(xiàn)為先增加后減小的趨勢,轉(zhuǎn)折點從第4次沖刷開始。當(dāng)坡度由5°增加為10°時,第1~2次沖刷處理的2~5 mm泥沙流失比例平均減小了39.7%,第3~4次沖刷處理無明顯差異,第5~6次沖刷處理平均增加1.29倍。
粒級>5 mm泥沙流失比例最小,5°和10°條件下,6次沖刷試驗該粒級泥沙的平均流失比例分別為1.1%和3.9%,隨時間呈現(xiàn)波動變化,未表現(xiàn)出明顯的增加或減小趨勢,其波動幅度分別為0~3.6%和3.5%~14.1%(圖2)。第1~4次沖刷處理的>5 mm泥沙流失比例比較相近,第5~6次沖刷處理的>5 mm泥沙流失比例顯著減小,甚至為0。
隨著匯流沖刷試驗的持續(xù)進(jìn)行,坡面可供侵蝕的泥沙顆粒逐漸減少[24],特別是細(xì)小土壤顆粒及微團(tuán)聚體[5,17],由于徑流的選擇性搬運(yùn)特征[6],使其在前期試驗中流失明顯,后期流失逐漸減小。此外,坡度越大,坡面物質(zhì)穩(wěn)定性越低,徑流平均流速越大[25-26],導(dǎo)致試驗前期的<0.25 mm泥沙流失速率和比例均隨坡度的增大而明顯增加;隨著沖刷次數(shù)的增加,其流失速率逐漸減小,坡度越大,其變化趨勢越明顯,導(dǎo)致第4~6次沖刷中5°和10°坡面該粒級泥沙流失速率達(dá)到比較接近的狀態(tài),未呈現(xiàn)顯著性差異。研究表明,<0.25 mm泥沙是黑土坡面侵蝕的主體部分[27],且該粒級泥沙攜帶大量土壤養(yǎng)分[7],防治前期階段的細(xì)顆粒泥沙流失,可有效保護(hù)黑土土壤,減輕土壤養(yǎng)分流失;而坡度對<0.25 mm泥沙流失比例的影響受坡面可供侵蝕物質(zhì)多少的影響。
匯流沖刷次數(shù)對0.25~0.5 mm和0.5~1 mm泥沙流失具有明顯的影響;而坡度對該粒級泥沙流失的影響在前期比較明顯,在后期無顯著影響。盡管0.25~0.5 mm和0.5~1 mm泥沙流失比例隨著匯流沖刷次數(shù)的增加而逐漸增加,但是由于其總體流失比例較小,表明在全部粒級泥沙中,0.25~1 mm泥沙不屬于流失敏感部分,即不是侵蝕泥沙的主體。而1~2 mm泥沙在侵蝕泥沙中占有較大比例,其流失比例亦隨匯流沖刷次數(shù)的增加而逐漸增加;坡度對該粒級泥沙流失速率的影響相對較小,但是對其流失比例的影響表現(xiàn)為隨坡度的增加而減小。因此,建議在開展黑土區(qū)土壤侵蝕與土壤養(yǎng)分研究中增加對1~2 mm泥沙流失特征的關(guān)注。
作為粒徑較大的2~5 mm泥沙,與5°坡面相比,10°坡面上的泥沙更容易被搬運(yùn)[26],但是由于第1~2次沖刷處理的坡面可供侵蝕的物質(zhì)比較充足,徑流優(yōu)先搬運(yùn)其他粒級泥沙,使其流失所占比例反而低于5°坡面;在第3~4次沖刷中5°和10°處理達(dá)到比較接近的狀態(tài);在第5~6次沖刷中,由于可被搬運(yùn)的坡面物質(zhì)明顯減少,10°坡面較大的徑流沖刷能力[23]開始起到主要作用,導(dǎo)致2~5 mm泥沙流失比例高于5°坡面。結(jié)果表明,2~5 mm泥沙在侵蝕泥沙中占有中等大小比例,其流失速率和比例隨著匯流沖刷次數(shù)的增加總體呈現(xiàn)為先增加后減小的變化;坡度對該粒級泥沙流失的影響受坡面可供侵蝕物質(zhì)多少的影響。
即使相對較大的顆粒(>5 mm)難以被優(yōu)先選擇搬運(yùn)[10,15],但是在坡度較大(~10°)條件下,依然會被搬運(yùn)并流失;匯流沖刷次數(shù)對>5 mm泥沙流失的影響與坡度有關(guān),在坡度較小時,其影響相對較??;在坡度較大時,其影響相對較大。隨著匯流沖刷次數(shù)的增加,坡面可被侵蝕物質(zhì)嚴(yán)重不足,坡面物質(zhì)呈現(xiàn)土壤顆粒粗化現(xiàn)象[8],大粒級泥沙形成相對穩(wěn)定的結(jié)構(gòu),更加難以搬運(yùn)。結(jié)果表明,>5 mm泥沙在侵蝕泥沙中占有比例最小,其流失比例隨著匯流沖刷次數(shù)的增加總體呈現(xiàn)為減小的變化;隨坡度的增加,該粒級泥沙流失比例平均增大3.5倍??梢?,黑土裸露坡面在承受5次左右1 L/min的匯流沖刷后,其坡面粗骨化嚴(yán)重,土壤對環(huán)境變化的緩沖能力及土地生產(chǎn)力嚴(yán)重降低。因此,建議采用適宜的覆蓋措施[28]保護(hù)黑土坡面,可有效防治東北黑土區(qū)休耕期坡面土壤侵蝕[29]。
綜上可見,匯流沖刷次數(shù)和坡度對不同粒級泥沙的流失速率和比例具有一定影響,對比顯著性分析結(jié)果發(fā)現(xiàn)前者的影響較后者明顯。試驗條件下,各粒級泥沙流失比例從大到小的順序為<0.25、1~2、2~5、0.5~1、0.25~0.5、>5 mm。各粒級泥沙流失比例隨時間呈現(xiàn)波動變化,多數(shù)情況下未呈現(xiàn)明顯的增加或減小趨勢。坡度對不同粒級泥沙流失比例的影響比較復(fù)雜[30]。此外,在以往研究中,多關(guān)注<0.25 mm泥沙流失特征[14],但是本研究中的5°坡面,粒級<2 mm泥沙流失速率均隨著匯流沖刷次數(shù)的增加而減?。欢?0°坡面粒級<1 mm泥沙流失速率均隨著匯流沖刷次數(shù)的增加而減小。因此,<0.25 mm和1~2 mm泥沙流失特征應(yīng)作為黑土坡面土壤侵蝕研究的重要部分,進(jìn)而指導(dǎo)適宜防治措施的布設(shè)。
通過連續(xù)匯流沖刷試驗,研究匯流沖刷次數(shù)和坡度對黑土坡面不同粒級泥沙流失特征的影響,得到如下研究結(jié)論:
1)匯流沖刷次數(shù)及坡度對不同粒級泥沙的流失速率及比例具有一定影響,其中前者的影響較后者明顯。
2)隨著匯流沖刷次數(shù)的增加,<0.25 mm泥沙平均流失速率在坡度為5°時由1 965.7 g/(m2·h)顯著減小為80.0 g/(m2·h),在坡度為10°時由6 698.4 g/(m2·h)顯著減小為59.5 g/(m2·h)。因此,防治前期階段的細(xì)顆粒泥沙流失,可有效保護(hù)富含養(yǎng)分的表層黑土。
3)本研究中各粒級泥沙流失比例從大到小的順序為<0.25、1~2、2~5、0.5~1、0.25~0.5、>5 mm。5°和10°條件下,6次沖刷試驗<0.25 mm泥沙流失的平均比例分別為43.0%和47.0%,1~2 mm泥沙流失的平均比例分別為21.6%和16.8%。隨著匯流沖刷次數(shù)的增加,<0.25 mm泥沙流失比例總體呈現(xiàn)減小的趨勢,而1~2 mm泥沙流失比例總體呈現(xiàn)為增加的趨勢,二者變化具有互補(bǔ)特征。因此,在開展黑土區(qū)土壤侵蝕研究中,<0.25 mm和1~2 mm泥沙均應(yīng)作為重要研究對象。
[1] 劉寶元,閻百興,沈波,等. 東北黑土區(qū)農(nóng)地水土流失現(xiàn)狀與綜合治理對策[J]. 中國水土保持科學(xué),2008,6(1):1-8.
Liu Baoyuan, Yan Baixing, Shen Bo, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the northeastern black soil area of China[J]. Science of Soil and Water Conservation, 2008, 6(1): 1-8. (in Chinese with English abstract)
[2] 吳昱,劉慧,楊愛崢,等. 黑土區(qū)坡耕地施加生物炭對水土流失的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2018,49(5):287-294.
Wu Yu, Liu Hui, Yang Aizheng, et al. Influences of biochar supply on water and soil erosion in sloping farm-land of black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 287-294. (in Chinese with English abstract)
[3] Yao Q, Liu J J, Yu Z H, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology & Biochemistry, 2017, 110: 56-67.
[4] Lin J S, Zhu G L, Wei J, et al. Mulching effects on erosion from steep slopes and sediment particle size distributions of gully colluvial deposits[J]. Catena, 2018, 160: 57-67.
[5] 張興昌,劉國彬,劉文兆. 不同土壤顆粒組成在水蝕過程中的流失規(guī)律[J]. 西北農(nóng)業(yè)學(xué)報,2000,9(3):55-58.
Zhang Xingchang, Liu Guobin, Liu Wenzhao. Soil particles loss by water erosion[J]. Acta Agriculturae Boreali- occidentalis Sinica, 2000, 9(3): 55-58. (in Chinese with English abstract)
[6] Koiter A J, Owens P N, Petticrew E L, et al. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes[J]. Catena, 2017, 153: 194-206.
[7] 胡宏祥,洪天求,馬友華,等. 土壤及泥沙顆粒組成與養(yǎng)分流失的研究[J]. 水土保持學(xué)報,2007,21(1):26-29.
Hu Hongxiang, Hong Tianqiu, Ma Youhua, et al. Study on soil and sediment particle size distribution and nutrient loss[J]. Journal of Soil and Water Conservation, 2007, 21(1): 26-29. (in Chinese with English abstract)
[8] 張燕,彭補(bǔ)拙,高翔,等. 侵蝕引起的蘇南坡地土壤退化[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2005,24(1):113-117.
Zhang Yan, Peng Buzhuo, Gao Xiang, et al. Soil degradation by erosion in sloping land in Southern Jiangsu Province, China[J]. Journal of Agro-Environment Science, 2005, 24(1): 113-117. (in Chinese with English abstract)
[9] 錢婧,張麗萍,王文艷. 紅壤坡面土壤團(tuán)聚體特性與侵蝕泥沙的相關(guān)性[J]. 生態(tài)學(xué)報,2018,38(5):1590-1599.
Qian Jing, Zhang Liping, Wang Wenyan. The relationship between soil aggregates and eroded sediments from sloping vegetated red soils of South China[J]. Acta Ecologica Sinica, 2018, 38(5): 1590-1599. (in Chinese with English abstract)
[10] 郭偉,史志華,陳利頂,等. 紅壤表土團(tuán)聚體粒徑對坡面侵蝕過程的影響[J]. 生態(tài)學(xué)報,2007,27(6):2516-2522.
Guo Wei, Shi Zhihua, Chen Liding, et al. Effects of topsoil aggregate size on runoff and erosion at hillslope in red soils[J]. Acta Ecologica Sinica, 2007, 27(6): 2516-2522. (in Chinese with English abstract)
[11] 耿韌,張光輝,洪大林,等. 黃土高原農(nóng)地草地林地土壤團(tuán)聚體穩(wěn)定性沿降水梯度的變化特征[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):141-148.
Geng Ren, Zhang Guanghui, Hong Dalin, et al. Variation characteristics of aggregate stability of cropland, grassland and woodland along precipitation gradient in Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 141-148. (in Chinese with English abstract)
[12] Wen L L, Zheng F L, Shen H O, et al. Rainfall intensity and inflow rate effects on hillslope soil erosion in the mollisol region of Northeast China[J]. Natural Hazards, 2015, 79: 381-395.
[13] Lu J, Zheng F L, Li G F, et al. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the mollisol region of Northeast China[J]. Soil & Tillage Research, 2016, 161: 79-85.
[14] 姜義亮,鄭粉莉,王彬,等. 東北黑土區(qū)片蝕和溝蝕對土壤團(tuán)聚體流失的影響[J]. 生態(tài)學(xué)報,2013,33(24):7774-7781.
Jiang Yiliang, Zheng Fenli, Wang Bin, et al. The impact of sheet and gully erosion on soil aggregate losses in the black soil region of Northeast China[J]. Acta Ecologica Sinica, 2013, 33(24): 7774-7781. (in Chinese with English abstract)
[15] 安娟,盧嘉,鄭粉莉,等. 不同地表條件下黑土區(qū)坡耕地侵蝕過程中土壤團(tuán)聚體遷移[J]. 水土保持學(xué)報,2011,25(6):100-104.
An Juan, Lu Jia, Zheng Fenli, et al. Soil aggregate transport during soil erosion process under different soil surface conditions on black soil slope farmland[J]. Journal of Soil and Water Conservation, 2011, 25(6): 100-104. (in Chinese with English abstract)
[16] Shen H O, Wen L L, He Y F, et al. Rainfall and inflow effects on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese mollisol region[J]. Journal of Mountain Science, 2018, 15(10): 2182-2191.
[17] 郭進(jìn),文安邦,嚴(yán)冬春,等. 三峽庫區(qū)紫色土坡地土壤顆粒流失特征[J]. 水土保持學(xué)報,2012,26(3):18-21.
Guo Jin, Wen Anbang, Yan Dongchun, et al. Particle characteristics of eroded purple soil from slope land in the Three Gorges Reservoir region[J]. Journal of Soil and Water Conservation, 2012, 26(3): 18-21. (in Chinese with English abstract)
[18] 邱野,王瑄,李德利,等. 不同耕作模式下坡耕地次降雨徑流量及徑流泥沙顆粒機(jī)械組成規(guī)律[J]. 水土保持學(xué)報,2012,26(2):62-65.
Qiu Ye, Wang Xuan, Li Deli, et al. Slope cultivated land rainfall runoff and sediment mechanical composition in different tillage patterns[J]. Journal of Soil and Water Conservation, 2012, 26(2): 62-65. (in Chinese with English abstract)
[19] 朱姝,竇森,陳麗珍. 秸稈深還對土壤團(tuán)聚體中胡敏酸結(jié)構(gòu)特征的影響[J]. 土壤學(xué)報,2015,52(4):747-758.
Zhu Shu, Dou Sen, Chen Lizhen. Effect of deep application of straw on composition of humic acid in soil aggregates[J]. Acta Pedologica Sinica, 2015, 52(4): 747-758. (in Chinese with English abstract)
[20] Shen H O, He Y F, Hu W, et al. The temporal evolution of soil erosion for corn and fallow hillslopes in the typical mollisol region of Northeast China[J]. Soil & Tillage Research, 2019, 186: 200-205.
[21] 劉志生,張莉,楊志東,等. 長春市新一代暴雨強(qiáng)度公式的推求研究[J]. 中國給水排水,2014,30(9):147-150.
Liu Zhisheng, Zhang Li, Yang Zhidong, et al. Derivation of a new generation of stormwater intensity formula for Changchun[J]. China Water Wastewater, 2014, 30(9): 147-150. (in Chinese with English abstract)
[22] 李毅,邵明安. 間歇降雨和多場次降雨條件下黃土坡面土壤水分入滲特性[J]. 應(yīng)用生態(tài)學(xué)報,2008,19(7):1511-1516.
Li Yi, Shao Mingan. Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1511-1516. (in Chinese with English abstract)
[23] 沈海鷗,鄭粉莉,溫磊磊,等. 降雨強(qiáng)度和坡度對細(xì)溝形態(tài)特征的綜合影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015,46(7):162-170.
Shen Haiou, Zheng Fenli, Wen Leilei, et al. Effect of rainfall intensity and slope gradient on rill morphological characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 162-170. (in Chinese with English abstract)
[24] Parsons A J, Stone P M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion[J]. Catena, 2006, 67: 68-78.
[25] R?mkens M J M, Helming K, Prasad S N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes[J]. Catena, 2001, 46: 103-123.
[26] 袁溪,潘忠成,李敏,等. 雨強(qiáng)和坡度對裸地徑流顆粒物及磷素流失的影響[J]. 中國環(huán)境科學(xué),2016,36(10):3099-3106.
Yuan Xi, Pan Zhongcheng, Li Min, et al. Influence of rainfall intensity and slope gradient on suspended substance and phosphorus losses in runoff[J]. China Environmental Science, 2016, 36(10): 3099-3106. (in Chinese with English abstract)
[27] 盧嘉,鄭粉莉,安娟,等. 降雨侵蝕過程中黑土團(tuán)聚體流失特征[J]. 生態(tài)學(xué)報,2016,36(8):2264-2273.
Lu Jia, Zheng Fenli, An Juan, et al. An experimental study of mollisol aggregate loss characteristics during rainfall erosion processes[J]. Acta Ecologica Sinica, 2016, 36(8): 2264-2273. (in Chinese with English abstract)
[28] 邱野,王瑄. 耕作模式對坡耕地土壤水分和大豆產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):128-137.
Qiu Ye, Wang Xuan. Effects of tillage patterns on soil moisture and soybean yield in sloping fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 128-137. (in Chinese with English abstract)
[29] 富涵,鄭粉莉,覃超,等. 東北薄層黑土區(qū)作物輪作防治坡面侵蝕的效果與值研究[J]. 水土保持學(xué)報,2019,33(1):14-19.
Fu Han, Zheng Fenli, Qin Chao, et al. Effects of crop rotation on preventing hillslope soil erosion and itsfactor’s variation in thin layer mollisol region of the Northeast China[J]. Journal of Soil and Water Conservation, 2019, 33(1): 14-19. (in Chinese with English abstract)
[30] 彭怡,王玉寬,傅斌,等. 紫色土流失土壤的顆粒特征及影響因素[J]. 水土保持通報,2010,30(2):142-144.
Peng Yi, Wang Yukuan, Fu Bin, et al. Particle characteristics and influencing factors of eroded purple soil[J]. Bulletin of Soil and Water Conservation, 2010, 30(2): 142-144. (in Chinese with English abstract)
Analysis of sediment particle loss at different gradations on Mollisol hillslopes
Shen Haiou1, Xiao Peiqing2※, Li Hongli1, Mou Tingsen1, He Yunfeng1
(1.,,130118,; 2.,,450003,)
Studies of sediment particle losses at different gradations can reveal hillslope soil erosion mechanisms and can reflect soil nutrient loss characteristics. However, there is a lack of process research on the loss rates and ratios of sediment with different sizes in existing research. This study was conducted to study the effects of inflow scour times and slope gradients on the loss characteristics of sediment with different sizes on hillslopes in the Chinese mollisol region based on a successive inflow scour method. The experiments were conducted at the Scientific Research Base of Soil and Water Conservation, which belongs to Jilin Agricultural University, located in the city of Changchun, Jilin Province. This area represents a typical mollisol region of Northeast China. The soil used in this study is classified as mollisol (USDA Taxonomy), with 10.2% sand (>50m), 9.6% silt (2-50m), 80.2% clay (<2m) and 25.6 g/kg soil organic matter. Natural runoff plots (20 m long and 5 m wide) were subjected to 6 successive inflow scour experiments (1 L/min lasting 60 min each) at two representative slope gradients (5° and 10°). The surrounding hydraulic boundary of each plot was made from a galvanized sheet that was molded to provide a greater rigidity. A runoff collector was attached to the base of the field plot to collect the runoff and sediment samples. An overflow tank, which was 0.5 m long, 5 m wide and 0.5 m deep, was attached to the upper end of the field plot to supply the inflow water. There were 10-12 runoff samples collected during the experiment, and they successively passed through a column of sieves of 5, 2, 1, 0.5 and 0.25 mm diameters to quantify the losses of sediment with different sizes. The results showed that the effects of inflow scour times on the loss rates and loss ratios of sediment with different particle sizes were more obvious than those of the slope gradients. With an increase in inflow scour time, the loss rates of <0.25 mm sediments significantly decreased from 1 965.7-6 698.4 g/(m2·h) to 59.5-80.0 g/(m2·h). The loss rates of <0.25 mm sediments in the former inflow scour treatments were 1.6-2.4 and 1.5-3.5 times greater than those in the latter treatments for the hillslopes of 5° and 10°, respectively. Thus, it is critical to prevent the loss of fine sediments during the early stage of rainfall and runoff events. In this study, the loss ratios of <0.25 mm sediments were the largest, followed by those, in descending order, of 1-2, 2-5, 0.5-1, 0.25-0.5 and >5 mm sediments. The effects of slope gradient on loss ratios of sediment with different sizes were relatively complex. As the inflow scour time increased, the loss ratios of the <0.25 mm sediments generally showed a decreasing trend, but the loss ratios of the 1-2 mm sediments generally exhibited an increasing trend. The <0.25 mm and 1-2 mm sediments were the main components of eroded sediments; furthermore, these sediments were complementary to each other, and their changes had obvious regularities. Therefore, the <0.25 mm and 1-2 mm sediments should be given more attention during studies of soil erosion on the Chinese mollisol hillslopes. Meanwhile, selecting proper mulching measures to control the losses of fine sediments on hillslopes of the mollisol region is also necessary.
soils; runoff; erosion; sediment gradation; inflow scour
沈海鷗,肖培青,李洪麗,牟廷森,賀云鋒. 黑土坡面不同粒級泥沙流失特征分析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(20):111-117.doi:10.11975/j.issn.1002-6819.2019.20.014 http://www.tcsae.org
Shen Haiou, Xiao Peiqing, Li Hongli, Mou Tingsen, He Yunfeng. Analysis of sediment particle loss at different gradations on Mollisol hillslopes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 111-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.014 http://www.tcsae.org
2019-03-01
2019-09-20
國家重點研發(fā)計劃項目(2016YFE0202900);國家自然科學(xué)基金項目(41601281,41571276)
沈海鷗,講師,主要從事土壤侵蝕過程與機(jī)理研究。Email:shensusan@163.com
肖培青,教授級高工,主要從事土壤侵蝕與水土保持研究。Email:peiqingxiao@163.com
10.11975/j.issn.1002-6819.2019.20.014
S157
A
1002-6819(2019)-20-0111-07