王云超,魏 彬,楊岳霖
油氣懸架囊式蓄能器真實(shí)氣體多變指數(shù)模型建立及驗(yàn)證
王云超,魏 彬,楊岳霖
(集美大學(xué)機(jī)械與能源工程學(xué)院,廈門 361021)
蓄能器內(nèi)氮?dú)舛嘧冞^程模型的精度是影響油氣懸架系統(tǒng)特性分析的關(guān)鍵因素之一。為了更加精準(zhǔn)地描述蓄能器內(nèi)氮?dú)獾恼鎸?shí)多變過程,該文利用蓄能器試驗(yàn)臺(tái)開展了蓄能器不同振幅和頻率的正弦激勵(lì)試驗(yàn),通過試驗(yàn)數(shù)據(jù)綜合分析發(fā)現(xiàn)氮?dú)怏w積壓縮率和體積壓縮速率與氣體壓力呈一定線性關(guān)系。在此基礎(chǔ)提出了一種基于體積壓縮率和體積壓縮速率的真實(shí)氣體多變指數(shù)模型。為了驗(yàn)證模型的正確性和準(zhǔn)確性,通過蓄能器試驗(yàn)數(shù)據(jù)對(duì)提出的多變指數(shù)模型中的2個(gè)變量系數(shù)進(jìn)行辨識(shí)和模型仿真結(jié)果的對(duì)比驗(yàn)證,并利用6個(gè)懸掛缸的整車油氣懸架系統(tǒng)試驗(yàn)平臺(tái)對(duì)模型進(jìn)行試驗(yàn)驗(yàn)證,結(jié)果表明:仿真預(yù)測(cè)結(jié)果與試驗(yàn)數(shù)據(jù)的平均誤差為5.12%,最大誤差小于10.9%,滿足工程設(shè)計(jì)的要求。該囊式蓄能器的氣體多變指數(shù)模型為更加準(zhǔn)確研究油氣懸架系統(tǒng)真實(shí)特性奠定了基礎(chǔ)。
車輛;試驗(yàn);模型;懸架;蓄能器;遲滯環(huán)
油氣懸架系統(tǒng)以其高度的非線性特性及高能量密度等優(yōu)點(diǎn)[1],被廣泛應(yīng)用于越野車領(lǐng)域。油氣懸架系統(tǒng)的研究也經(jīng)歷了從單個(gè)懸架系統(tǒng)的特性研究[1-6]到不同連通方式的整車油氣懸架系統(tǒng)特性仿真分析和研究[7-15]。已有研究大部分都是基于理想氣體的多變過程建立的油氣懸架系統(tǒng)模型[2-15],而實(shí)際油氣懸架系統(tǒng)內(nèi)的氮?dú)獾亩嘧冞^程并非理想的多變過程[1]。Kat等[16]曾強(qiáng)調(diào)只有經(jīng)過正確參數(shù)驗(yàn)證的模型獲得的結(jié)果才有意義。為此,很多學(xué)者針對(duì)實(shí)際氣體的多變過程進(jìn)行了深入的研究[17-30],主要集中在2個(gè)方面:1)從熱傳遞和能量守恒角度研究氣體多變過程模型[17-26];2)從理論和試驗(yàn)角度研究確定氣體多變指數(shù)的問題[27-30]。
根據(jù)能量守恒定律,在BWR(Benedict-Webb-Rubin)真實(shí)氣體模型的基礎(chǔ)上[17],Otis等[18]建立了一個(gè)熱對(duì)流模型來描述氣體熱動(dòng)力學(xué)過程,并建立了一個(gè)熱時(shí)間常數(shù)模型。Els等[19]在此基礎(chǔ)上,分析了油氣懸架系統(tǒng)對(duì)時(shí)間和溫度的依賴性。Pourmovahed等[20]提出了一種基于試驗(yàn)數(shù)據(jù)的熱時(shí)間常數(shù)關(guān)聯(lián)模型,并準(zhǔn)確預(yù)測(cè)蓄能器的熱力學(xué)損失和壓縮或膨脹過程中的氣體壓力和溫度歷史。Els等[21]進(jìn)一步建立了一個(gè)氣體與油液、環(huán)境的熱傳遞模型,并發(fā)現(xiàn)油氣懸架系統(tǒng)內(nèi)存在顯著的固有阻尼,這主要根源于熱傳遞不是單純的溫度變化或能量積累。吳宏濤等[22]通過熱平衡試驗(yàn)研究了激勵(lì)振幅、激勵(lì)頻率和溫度變化等對(duì)油氣懸架動(dòng)態(tài)特性的影響規(guī)律。Westhuizen等[1]對(duì)比分析了3種理想氣體模型和2種實(shí)際氣體模型的實(shí)用性,認(rèn)為應(yīng)該根據(jù)實(shí)際需要選擇合適的模型。陳軼杰等[23]建立了油氣懸架的自然對(duì)流熱力學(xué)模型。黃夏旭等[24]利用熱學(xué)理論、氣體狀態(tài)方程,建立包含缸筒、活塞桿熱容的非公路自卸車油氣懸架系統(tǒng)的集中參數(shù)熱力學(xué)模型。但是研究發(fā)現(xiàn)針對(duì)具體的蓄能器及其工作范圍,熱時(shí)間常數(shù)必須通過試驗(yàn)測(cè)量獲得。最近,Victor等[25]的研究發(fā)現(xiàn):當(dāng)壓縮比變化時(shí),對(duì)于采用恒定熱時(shí)間常數(shù)的模型,預(yù)測(cè)精度會(huì)降低。范基等[26]經(jīng)過試驗(yàn)研究闡釋了熱時(shí)間常數(shù)并不是一個(gè)常數(shù),即使同一個(gè)蓄能器,也會(huì)隨工況和蓄能器容量的變化而不同??傊瑹釙r(shí)間常數(shù)確定問題是以上研究的主要困難,另外,模型驗(yàn)證方面還缺乏高頻振動(dòng)的試驗(yàn)驗(yàn)證,而且以上研究主要針對(duì)活塞式蓄能器(piston-type hydraulic accumulator)。
其他部分學(xué)者試圖通過理論推導(dǎo)和試驗(yàn)方法確定氣體多變過程指數(shù)的實(shí)際取值,從而描述真實(shí)氣體的多變過程。封士彩等[27-28]通過試驗(yàn)研究認(rèn)為實(shí)際狀態(tài)的氣體多變指數(shù)值要比理論值大,其取值與激勵(lì)頻率有關(guān)。王德偉[29]認(rèn)為氣體壓縮速率對(duì)氣體多變指數(shù)影響較大,并構(gòu)造一個(gè)氣體壓縮率的氣體多變指數(shù)模型,試圖找出蓄能器在充壓過程中氣體多變指數(shù)具體數(shù)值的確定方法,但是,其模型的正確性缺乏試驗(yàn)驗(yàn)證。吳曉元等[30]從理論角度對(duì)氣囊式蓄能器氣體多變指數(shù)的數(shù)值域問題進(jìn)行了推導(dǎo)和分析,認(rèn)為氣囊式蓄能器氣體多變指數(shù)的值域范圍為1~1.4。但是,這些都是基于理想氣體多變過程獲得的結(jié)果,與實(shí)際還存在一定的誤差??傊?,以上研究依然無法描述蓄能器內(nèi)真實(shí)氣體的壓力和體積關(guān)系圖中遲滯環(huán)的現(xiàn)象。
綜上所述,為了描述氣體多變過程指數(shù)描述蓄能器的遲滯現(xiàn)象和簡(jiǎn)化蓄能器內(nèi)氣體的建模,本文通過對(duì)蓄能器多個(gè)工況的試驗(yàn)數(shù)據(jù)綜合分析,發(fā)現(xiàn)影響蓄能器特性的2個(gè)關(guān)鍵因素,并提出一種真實(shí)氣體多變指數(shù)模型,并進(jìn)行了仿真和試驗(yàn)分析和驗(yàn)證。
試驗(yàn)原理:利用伺服激勵(lì)油缸控制一個(gè)被動(dòng)液壓缸按照正弦規(guī)律運(yùn)動(dòng),其無桿腔的油口與蓄能器進(jìn)油口連接,蓄能器的充氣口接有一個(gè)壓力傳感器,用來測(cè)量蓄能器內(nèi)氣體的壓力變化,如圖1a。測(cè)試系統(tǒng)主要參數(shù)如表1所示。
表1 試驗(yàn)臺(tái)主要參數(shù)
主要儀器設(shè)備:1)MEACON的MIK-P300系列壓力傳感器;2)Novotechnik的TP1系列位移傳感器;3)上海元隆工業(yè)自動(dòng)化電器有限公司(YOLON)HOB系列油缸;4)北京機(jī)床所精密機(jī)電有限公司QDY-Ⅱ系列電液伺服閥,型號(hào):QDY6;5)SVA系列伺服放大器,型號(hào):SVA-Ⅱ(TY)型;6)被動(dòng)油缸為自制油缸。
根據(jù)試驗(yàn)臺(tái)的工作范圍,確定如下試驗(yàn)內(nèi)容:1)振幅20 mm,頻率為0.1~0.4 Hz的4種正弦激勵(lì)試驗(yàn);2)頻率為0.4 Hz,振幅為5~20 mm的4種正弦激勵(lì)試驗(yàn)。
試驗(yàn)方法:通過控制正弦激勵(lì)的振幅和頻率,分析激振幅值和頻率對(duì)氣體壓力的影響,從而分析氣體壓力的主要影響因素。
經(jīng)過蓄能器氮?dú)庠囼?yàn)數(shù)據(jù)綜合分析發(fā)現(xiàn)2個(gè)影響氣體壓力的主要因素,為了便于對(duì)試驗(yàn)結(jié)果進(jìn)行分析,首先對(duì)其進(jìn)行定義:
體積壓縮率:
=?Δ/0(1)
體積壓縮速率:
=Δ/0(2)
式中0蓄能器的體積,L;Δ為蓄能器內(nèi)的氮?dú)怏w積變化量(L),Δ,,分別為被動(dòng)油缸的無桿腔面積(100 cm2)和位移量(10 cm),等于激勵(lì)油缸的位移(被動(dòng)油缸被壓縮為正,即氣囊被壓縮時(shí),位移為正);Δ為Δ的變化率,Δ;為被壓縮油缸的運(yùn)動(dòng)速度(10 cm/s)。試驗(yàn)結(jié)果如圖2所示。
圖2 正弦激勵(lì)下氣體壓力與體積壓縮率的關(guān)系
由圖2a可知,對(duì)應(yīng)于體積壓縮率最小和最大值的各頻率下的氣體壓力曲線分別交于(?0.06,3.07)和(0.06,4.99),說明激振頻率對(duì)氣體壓力變化斜率(剛度)沒有明顯影響。但是隨著振動(dòng)頻率的提高,蓄能器內(nèi)氣體的遲滯環(huán)越來越大,說明蓄能器內(nèi)的氣體內(nèi)阻尼不斷增大。主要是由于真實(shí)氣體內(nèi)部分子間的相互作用加劇導(dǎo)致阻尼力增大以及散熱時(shí)間減少所致,另外,油液從被動(dòng)油缸無桿腔到蓄能器的管路和接口也會(huì)有部分阻尼的影響,但管路阻尼專項(xiàng)試驗(yàn)結(jié)果表明該阻尼影響小于0.015 MPa。由于試驗(yàn)條件限制,尚缺乏較高頻率振動(dòng)試驗(yàn)數(shù)據(jù),而相同振幅下較高頻振動(dòng)時(shí)的體積壓縮率極值對(duì)應(yīng)的氣體壓力點(diǎn)是否仍然匯交于一點(diǎn)仍需進(jìn)一步的試驗(yàn)驗(yàn)證。
由圖2b可知,隨著正弦激勵(lì)的振幅從5 mm增大到20 mm,各振幅壓力曲線的最小和最大體積壓縮率對(duì)應(yīng)的氣體壓力基本位于(?0.065,3.074)和(0.065,4.105)兩點(diǎn)的連線上,即氣體壓力與體積壓縮率成線性關(guān)系。同樣由于試驗(yàn)條件限制,未進(jìn)一步探討更大振幅、更高頻率激勵(lì)作用的試驗(yàn)研究,因此,體積壓縮率的極值點(diǎn)對(duì)應(yīng)的氣體壓力點(diǎn)是否依然存在線性關(guān)系仍需進(jìn)一步驗(yàn)證。
蓄能器內(nèi)的氮?dú)舛嘧冞^程是不可逆的,因此,氣體多變指數(shù)在該過程中按照一定方式進(jìn)行變化[1]。
理想氣體多變過程方程
00=PV (3)
式中0為蓄能器充氣壓力,Pa;為蓄能器氣體瞬時(shí)體積,mm3;為蓄能器氣體瞬時(shí)壓力,為氣體多變指數(shù),其值由氣體比熱容、比定壓熱容及比定容熱容決定。
由式(3)可得氣體多變指數(shù)為
=lg(0/)/lg(/0) (4)
將圖2中的試驗(yàn)數(shù)據(jù)代入式(4),得到真實(shí)氣體多變指數(shù),利用Matlab繪制氣體多變指數(shù)隨體積壓縮率的變化規(guī)律,如圖3所示。
圖3 正弦激勵(lì)下氣體多變指數(shù)與體積壓縮率的關(guān)系
從圖3a不同頻率的氣體多變指數(shù)變化可以看出,不同頻率的振動(dòng),其極限體積的氣體多變指數(shù)也基本交于一點(diǎn)。另外,頻率對(duì)壓縮過程的影響不大,而對(duì)膨脹過程的影響比較明顯,其主要是由激振速度信號(hào)引起的,試驗(yàn)的激勵(lì)位移信號(hào)近似正弦,但激振油缸信號(hào)在膨脹過程的實(shí)際速度明顯大于壓縮行程。這也反映了壓縮速度對(duì)氣體壓力和多變指數(shù)的影響,具體詳見圖4a,從圖中可以看出氣體多變指數(shù)與壓縮速率表現(xiàn)為一定的線性比例。
從圖3b可以看出,隨著振幅增大,氣體多變指數(shù)也不斷增大,并且氣體多變指數(shù)的變化范圍也不斷增大。另外,還發(fā)現(xiàn)不同振幅的氣體多變指數(shù)的極值點(diǎn)近似一條直線上,說明在一定頻率下,氣體壓縮率與氣體多變指數(shù)呈一定線性關(guān)系。這也反映了激振速度對(duì)氣體多變指數(shù)的影響,具體詳見圖4b,從圖中也可以看出氣體多變指數(shù)與壓縮速率成一定線性比例。
圖4 正弦激勵(lì)下氣體多變指數(shù)與體積縮速率的關(guān)系
假設(shè)不考慮氣體壓縮率和氣體壓縮速率的影響時(shí),蓄能器內(nèi)氣體的變化為等溫過程,即氣體多變指數(shù)為1。因此,真實(shí)氣體的多變過程指數(shù)可以表示為
=1+1+2(5)
式中1為氣體多變指數(shù)體積壓縮率系數(shù),其值由圖3b中體積壓縮率的最小和最大值對(duì)應(yīng)的氣體多變指數(shù)連線的斜率決定,即可通過試驗(yàn)數(shù)據(jù)辨識(shí)獲得。1理論上可以根據(jù)真實(shí)氣體的BWR模型,由2個(gè)極限位置的氣體溫度和質(zhì)量體積數(shù)值以及公式(5)和理想氣體的多變過程狀態(tài)方程計(jì)算獲得。但是其涉及到氣體溫度的預(yù)測(cè)中熱時(shí)間常數(shù)的確定問題。因此,導(dǎo)致其回歸為傳統(tǒng)方法,失去本方法的意義。如果環(huán)境溫度不隨氣體溫度變化,1為0。如果將蓄能器內(nèi)的氮?dú)庖暈橐粋€(gè)振動(dòng)系統(tǒng),1可等效為系統(tǒng)的剛度系數(shù);為彈性變形量;2為氣體多變指數(shù)體積壓縮速率系數(shù),其數(shù)值由圖4a中體積壓縮速率的最小和最大值對(duì)應(yīng)的氣體多變指數(shù)連線的斜率決定,反映了壓縮速率引起的氣體內(nèi)能(熱交換和做功綜合作用結(jié)果)、氣體內(nèi)阻尼等的綜合影響,2可等效為振動(dòng)系統(tǒng)的阻尼系數(shù);為速度,mm/s。
為了驗(yàn)證真實(shí)氣體多變指數(shù)模型的正確性和精度,利用蓄能器的試驗(yàn)數(shù)據(jù)對(duì)式(5)中的2個(gè)系數(shù)1和2進(jìn)行辨識(shí),可得1=2.4,2=1.5,將這2個(gè)系數(shù)代入式(5)可獲得多變指數(shù),再將代入多變過程狀態(tài)方程,可得
=0(0/)1+2.4η+1.5ε(6)
將蓄能器各個(gè)工況測(cè)得的、和代入公式(6),利用Matlab軟件,對(duì)各種工況的仿真結(jié)果與試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,結(jié)果如圖5所示。
圖5 正弦激勵(lì)下氣體模型預(yù)測(cè)壓力與試驗(yàn)數(shù)據(jù)對(duì)比(蓄能器充氣壓力2 MPa,充油壓力3.5 MPa)
由圖5可知,正弦激勵(lì)下氣體模型預(yù)測(cè)壓力與試驗(yàn)結(jié)果的整體平均誤差為4.05%。圖5 d圖的誤差最大,為10%,該誤差是測(cè)量值出現(xiàn)了明顯波動(dòng)造成的,相同工況的測(cè)試結(jié)果(圖5h)的最大誤差只有2.25%。
為了進(jìn)一步驗(yàn)證模型,多變指數(shù)模型中的1和2保持不變,將蓄能器的充氣壓力降為1.5 MPa,充油后平衡位置的壓力為3.5 MPa,振幅0.02 m,不同頻率的仿真和測(cè)試結(jié)果對(duì)比如圖6所示,由圖可知,正弦激勵(lì)下氣體模型預(yù)測(cè)壓力與試驗(yàn)結(jié)果的最大誤差為9.06%,整體平均偏差為2.01%。
從不同頻率、振幅的仿真模型預(yù)測(cè)和測(cè)試數(shù)據(jù)的對(duì)比結(jié)果看,真實(shí)氣體多變指數(shù)模型能夠很好的跟蹤真實(shí)氣體的多變過程。即便是改變了蓄能器的充氣壓力,其仍然能夠很好地預(yù)測(cè)試驗(yàn)結(jié)果。
圖6 正弦激勵(lì)下氣體模型預(yù)測(cè)壓力與試驗(yàn)數(shù)據(jù)對(duì)比(振幅20 mm,蓄能器充氣壓力1.5 MPa,充油壓力3.5 MPa)
為了進(jìn)一步分析驗(yàn)證真實(shí)氣體多變指數(shù)模型的適用性,多變指數(shù)模型中的1和2仍然保持不變,利用自主開發(fā)的整車懸架系統(tǒng)綜合性能測(cè)試平臺(tái)(圖7)進(jìn)行了側(cè)傾工況試驗(yàn),試驗(yàn)參數(shù)及設(shè)置如表2所示。
根據(jù)試驗(yàn)臺(tái)的工作范圍,確定以下試驗(yàn)內(nèi)容:1)振幅20 mm,頻率為0.1~0.4 Hz的4種正弦激勵(lì)試驗(yàn);2)頻率為0.4 Hz,振幅為5~20 mm的4種正弦激勵(lì)試驗(yàn)。
圖7 整車油氣懸架系統(tǒng)測(cè)試平臺(tái)
表2 測(cè)試平臺(tái)主要參數(shù)
試驗(yàn)方法:通過控制正弦激勵(lì)的振幅和頻率,獲得不同激振幅值和頻率下的懸架系統(tǒng)的側(cè)傾力矩,驗(yàn)證基于氣體多變指數(shù)模型的6缸油氣懸架系統(tǒng)聯(lián)合仿真模型的預(yù)測(cè)精度。
整車油氣懸架系統(tǒng)的側(cè)傾力矩測(cè)試和仿真對(duì)比結(jié)果如圖8和圖9所示。由圖可以看出,油氣懸架系統(tǒng)剛度(各曲線的極值點(diǎn)(2個(gè)頂點(diǎn))連線的斜率)的預(yù)測(cè)值和測(cè)試結(jié)果具有很好的一致性。而油氣懸架系統(tǒng)的阻尼力(曲線的遲滯環(huán)的大小)預(yù)測(cè)結(jié)果和測(cè)試結(jié)果存在一定的偏差,最大誤差為10.9%,總體平均誤差為5.12%。因此,本文提出的真實(shí)氣體多變指數(shù)模型在一定范圍內(nèi)具有較高的預(yù)測(cè)精度。
圖8 振幅20 mm下不同頻率正弦激勵(lì)的側(cè)傾力矩預(yù)測(cè)與試驗(yàn)數(shù)據(jù)對(duì)比
圖9 不同振幅正弦激勵(lì)的側(cè)傾力矩預(yù)測(cè)值與試驗(yàn)數(shù)據(jù)對(duì)比(頻率0.4 Hz)
本文分析了油氣懸架系統(tǒng)蓄能器氮?dú)饨,F(xiàn)狀及存在的問題,針對(duì)存在的問題開展研究,并取得以下成果:
1)通過蓄能器的試驗(yàn)研究發(fā)現(xiàn):真實(shí)的氮?dú)舛嘧冞^程的2個(gè)主要影響因素為體積壓縮率和體積壓縮速率。
2)針對(duì)2個(gè)主要影響因素提出了一種新的氣體多變指數(shù)模型,該模型具有參數(shù)少、模型簡(jiǎn)單、便于試驗(yàn)辨識(shí)等優(yōu)點(diǎn)。在研究范圍內(nèi),該模型的整體平均誤差小于4.05%,最大誤差為9.06%。
3)不同振幅和頻率的蓄能器和整車油氣懸架系統(tǒng)的試驗(yàn)驗(yàn)證表明:基于提出的真實(shí)氣體多變指數(shù)模型的油氣懸架系統(tǒng)仿真模型的預(yù)測(cè)結(jié)果和試驗(yàn)數(shù)據(jù)的整體平均誤差為5.12%,最大誤差為10.9%,具有較高精度。
[1] S Francois van der Westhuizen, P Schalk Els. Comparison of different gas models to calculate the spring force of a hydropneumatic suspension[J]. Journal of Terramechanics, 2015, 57: 41-59.
[2] 李仲興,郭子權(quán),王傳建,等. 越野車用兩級(jí)壓力式油氣彈簧的建模與仿真[J]. 振動(dòng). 測(cè)試與診斷,2017,37(3):512-517,629.
Li Zhongxing, Guo Zhiquan, Wang Chuanjian, et al. Modeling and simulating of a two-stage pressure hydro-pnenumatic spring for off-road vehicle[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3): 512-517, 629. (in Chinese with English abstract)
[3] 樂文超,時(shí)巖,彭安琪,等. 基于主動(dòng)油氣懸架的某重型車平順性研究[J]. 振動(dòng)與沖擊,2016,35(24):183-188.
Yue Wenchao, Shi Yan, Peng Anqi, et al. Study on ride comfort of a heavy vehicle based on active hydro-pneumatic suspension[J]. Journal of Vibration and Shock, 2016, 35(24): 183-188. (in Chinese with English abstract)
[4] 陳雨,陳隨英,杜岳峰,等. 基于摩擦阻尼的高地隙農(nóng)機(jī)底盤懸架減振特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):51-57.
Chen Yu, Chen Suiying, Du Yuefeng, et al. Damping characteristics of chassis suspension system of high clearance agricultural machinery based on friction damper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 51-57. (in Chinese with English abstract)
[5] Nieto A J, Morales A L, Gonza lez A, et al. An analytical model of pneumatic suspensions based on an experimental characterization[J].Journal of Sound and Vibration, 2008, 313: 290-307.
[6] Yin Y, Rakheja S, Yang J, et al. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion[J]. Mechanical Systems and Signal Processing, 2018, 106: 319-333.
[7] 田文朋,易小剛,郭磊,等. 七橋混合耦連油氣懸架車輛仿真與試驗(yàn)[J]. 中國機(jī)械工程,2018,29(9):1084-1089.
Tian Wenpeng, Yi Xiaogang, Guo Lei, et al. Simulation and experiments for seven spindled hybrid coupled hydro pneumatic suspension vehicles[J]. China Mechanical Engineering, 2018, 29(9): 1084-1089. (in Chinese with English abstract)
[8] 田文朋,楊宜坤,王偉. 油氣懸架耦連形式對(duì)車輛穩(wěn)定性的影響[J]. 汽車工程,2017,39(12):1362-1367,1389.
Tian Wenpeng, Yang Yikun, Wang Wei. The influence of the interconnection forms of hydro-pneumatic suspension on vehicle stability[J]. Automotive Engineering, 2017, 39(12): 1362-1367, 1389. (in Chinese with English abstract)
[9] 孫會(huì)來,金純,張文明,等. 考慮驅(qū)動(dòng)電機(jī)激振的電動(dòng)車油氣懸架系統(tǒng)振動(dòng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(12):51-57.
Sun Huilai, Jin Chun, Zhang Wenming, et al. Vibration analysis of hydro-pneumatic suspension system based on drive motor excitation force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 51-57. (in Chinese with English abstract)
[10] Yin Yuming, Rakheja Subhash, Boileau Paul-Emile. Multi- performance analyses and design optimisation of hydro-pneumatic suspension system for an articulated frame-steered vehicle[J]. Vehicle System Dynamics, 2019, 57(1): 108-133.
[11] Cao D, Rakheja S, Su C Y. Roll-and pitch-plane coupled hydro-pneumatic suspension: Part 1: feasibility analysis and suspension properties[J]. Vehicle System Dynamics, 2010, 48(3): 361-386.
[12] Zhu Hengjia, Yang James, Yunqing Zhang. Modeling and optimization for pneumatically pitch-interconnected suspensions of a vehicle[J]. Journal of Sound and Vibration, 2018, 432: 290-309.
[13] Smith W A, Zhang N, Jeyakumaran J. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis[J]. Vehicle System Dynamics, 2010, 48(1): 41-64.
[14] Kyuhyun Sim, Hwayoung Lee, Ji Won Yoon, et al. Effectiveness evaluation of hydro-pneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors[J]. Journal of Terramechanics, 2017, 69: 23-32.
[15] Zheng Enlai, Zhong Xinyu, Zhu Rui, et al. Investigation into the vibration characteristics of agricultural wheeled tractor- implement system with hydro-pneumatic suspension on the front axle[J]. Biosystems Engineering, 2019, 186: 14-33.
[16] Kat C J, Els P S. Validation metric based on relative error[J]. Mathematical and computer modelling of dynamical systems: methods, tools and application in engineering and related sciences, 2012, 18(5): 487-520.
[17] Cooper H W, Goldfranck J C. B-W-R constants and new correlations[J]. Hydrocarbon Processing, 1967, 46(12): 141-146.
[18] Otis D R, Pourmovahed A. An algorithm for computing nonflow gas processes in gas springs and hydro- pneumatic accumulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107: 93-96.
[19] Els P S, Grobbelaar B. Investigation of the time- and temperature dependency of hydro-pneumatic suspension systems[J]. SAE Technical Paper Series, 1993, 3: 55-62.
[20] Pourmovahed A, Otis DR. An experimental thermal time constant correlation for hydraulic accumulators[J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 1990, 112: 116-121.
[21] Els P S, Grobbelaar B. Heat transfer effects on hydropneumatic suspension systems[J]. Journal of Terramechanics, 1999, 36: 197-205.
[22] 吳宏濤,張明. 油氣彈簧熱平衡仿真及試驗(yàn)研究[J]. 車輛與動(dòng)力技術(shù),2007,107(3):37-40.
Wu Hongtao, Zhang Ming. Hydro-pneumatic spring thermal equilibrium simulation and test research[J]. Vehicle and Power Technology, 2007, 107(3): 37-40. (in Chinese with English abstract)
[23] 陳軼杰,趙博,張旭,等. 基于隨機(jī)激勵(lì)的油氣懸掛溫升現(xiàn)象研究[J]. 機(jī)械強(qiáng)度,2010,32(6):869-872.
Chen Yijie, Zhao Bo, Zhang Xu, et al. Research on the temperature rise of hydro-pneumatic suspension under the random power[J]. Journal of Mechanical Strength, 2010, 32(6): 869-872. (in Chinese with English abstract)
[24] 黃夏旭,申焱華,楊玨,等. 基于集中參數(shù)熱模型法的自卸車油氣懸架系統(tǒng)熱分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):64-70.
Huang Xiaxu, Shen Yanhua, Yang Jue, et al. Thermal analysis of hydro-pneumatic suspension system for dumper based on a lumped-parameter thermal model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 64-70. (in Chinese with English abstract)
[25] Victor Irizar, Casper Schousboe Andreasen. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator[J]. Simulation Modelling Practice and Theory, 2017, 79: 1-22.
[26] 范基,吳勁. 蓄能器的蓄能性能研究[J]. 液壓工業(yè),1990(2):2-6.
[27] 封士彩. 氣囊式蓄能器氣體多變指數(shù)理論值和實(shí)際值的確定[J]. 液壓與氣動(dòng),2002(5):3-5.
Feng Shicai. Determining the air polytropic exponent value both theoretical and practical for bladder accumulator[J]. Chinese Hydraulics & Pneumatics, 2002(5): 3-5. (in Chinese with English abstract)
[28] 封士彩,徐勇,鹿洪禹. 工程車輛油氣懸架蓄能器性能的試驗(yàn)研究[J]. 工程機(jī)械,2001(9):8-11,1.
Feng Shicai, Xu Yong, Lu Hongyu. Test and study for the performance of oil-gas suspension accumulators on engineering vehicles[J]. Construction Machinery and Equipment, 2001(9): 8-11,1. (in Chinese with English abstract)
[29] 王德偉. 蓄能器充壓過程中氣體多變指數(shù)的確定[J]. 液壓與氣動(dòng),2007(9):78-79.
Wang Dewei. Determination of the gas polytropic exponent in the charge process of the energy accumulator[J]. Chinese Hydraulics & Pneumatics, 2007(9): 78-79. (in Chinese with English abstract)
[30] 吳曉元,陳忠基,王世東,等. 氣囊式蓄能器氣體多變指數(shù)值域的研究[J]. 鞍山科技大學(xué)學(xué)報(bào),2003(3):204-220.
Wu Xiaoyuan, Chen Zhongji, Wang Shidong, et al. Study of range of air polytropic exponent value for bladder accumulator[J]. Journal of University of Science and Technology Liaoning, 2003(3): 204-220. (in Chinese with English abstract)
Establishment and verification of real gas multivariate index model for hydro-pneumatic suspension system
Wang Yunchao, Wei Bin, Yang Yuelin
(,,361021,)
One of the problems in the analysis of the dynamics performance of off-road vehicles is the effect of the accuracy of the hydro-pneumatic suspension model. However, the accuracy of the model for the polytropic process of nitrogen in the gas-charged hydraulic accumulator is one of the key factors, which affects the accuracy of the model for the hydro-pneumatic suspension systems. The traditional approach based on the energy equation and the Benedict-Webb-Rubin equations deduces the well-known thermal time constant model. However, researchers indicate that the thermal time constant varies with the change in the accumulator size and operating cases. Other researchers attempt to modify the multivariate index to model the real gas behavior, but the hysteresis loop representing the energy losses in a cycle can’t be described because the multivariate index is treated as a constant value. In this paper, an attempt was made to describe the hysteresis loop by adopting a variable multivariate index. On the accumulator rig, some tests excited by the sinusoidal displacement with four different amplitudes and frequencies respectively were carried out. The plots of the gas pressures versus the gas volume ratio and the gas volume rate respectively were made according to the experimental data from the accumulator test by using the Matlab software. A comprehensive analysis of experimental data showed that the relationship between the gas pressure and both the volume compression ratio and the volume compression rate were very close. To analyze the relationship between the multivariate index and the two parameters respectively, the formula of the multivariate index was deduced based on the ideal gas approach and multivariate index. By substituting the experimental data from the accumulator test into the formula, the plots of the multivariate index versus the two parameters respectively were also made. The plots illustrated that the multivariate index was closely proportional to the two parameters, respectively. Based on the analysis, a novel method was proposed to build a multivariate index model with the two parameters to describe the real gas behavior. In order to verify the correctness and the accuracy of the proposed multivariate index model, the two coefficients in the model were identified by using the experimental data from the previous accumulators test, and the coefficient of the volume compression ratio in the model was 2.4 for the test accumulator, and the coefficient of the volume compression rate was 1.5. Moreover, substituting the values of the two parameters, which were determined by the different operating cases, into the proposed multivariate index model with the two identified coefficients gave a comparison with these experimental data. Furthermore, a co-simulation model, which was based on the multivariate index model, for six hydro-pneumatic suspension systems was built to check the application of the multivariate index model in the hydro-pneumatic suspension systems of the overall vehicle. And a platform for the hydro-pneumatic suspension systems of the overall vehicle invented and designed by our laboratory, which was the first platform with the capability to test the comprehensive characteristics of multiple suspension systems, was used to test the rolling characteristics of the six hydro-pneumatic suspension systems. Several tests were carried out under the sinusoidal displacements with four different amplitudes and frequencies, respectively. The comparison of the co-simulation results and experimental data showed that the average discrepancy was equal to 5.12% and the maximum discrepancy was less than 10.9%. Therefore, a good correlation was achieved. It further demonstrated that the proposed multivariate index model can describe the behavior of the real nitrogen in the accumulator. But the proposed model should be further verified by using more experimental data from much higher frequency tests, and the influence of dissipated energy on the two coefficients in the proposed model should be explored.
vehicle; experiments; models; suspensions; hydraulic accumulator; hysteresis loops
王云超,魏 彬,楊岳霖. 油氣懸架囊式蓄能器真實(shí)氣體多變指數(shù)模型建立及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):10-16.doi:10.11975/j.issn.1002-6819.2019.20.002 http://www.tcsae.org
Wang Yunchao, Wei Bin, Yang Yuelin. Establishment and verification of real gas multivariate index model for hydro-pneumatic suspension system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 10-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.002 http://www.tcsae.org
2019-05-12
2019-09-29
國家自然科學(xué)基金資助項(xiàng)目(51575233)
王云超,教授,從事多軸車輛的轉(zhuǎn)向系統(tǒng)和懸架系統(tǒng)研究。Email:ychaowang@jmu.edu,cn
10.11975/j.issn.1002-6819.2019.20.002
TH137.8+1
A
1002-6819(2019)-20-0010-07