陳太麗,史忠林,王永艷,嚴(yán)冬春,文安邦,陳佳村
三峽水庫(kù)典型支流消落帶泥沙顆粒態(tài)磷復(fù)合指紋示蹤研究
陳太麗1,2,史忠林1※,王永艷1,2,嚴(yán)冬春1,文安邦1,陳佳村1,2
(1. 中國(guó)科學(xué)院水利部成都山地災(zāi)害與環(huán)境研究所,成都 610041;2. 中國(guó)科學(xué)院大學(xué),北京 100049)
三峽水庫(kù)消落帶是庫(kù)區(qū)水域與周邊陸地環(huán)境的關(guān)鍵過(guò)渡地帶,周期性反季節(jié)干濕交替使其具有強(qiáng)烈的物質(zhì)交換特征。辨析消落帶泥沙及其吸附的顆粒態(tài)磷的來(lái)源對(duì)消落帶土壤污染防治和環(huán)境效應(yīng)評(píng)估以及三峽水環(huán)境保護(hù)具有重要意義。以三峽庫(kù)區(qū)汝溪河支流不同高程(145~155、>155~165、>165~175 m)消落帶為研究對(duì)象,運(yùn)用復(fù)合指紋技術(shù)查明,消落帶泥沙中顆粒態(tài)磷的主要來(lái)源是長(zhǎng)江干流懸移質(zhì)和汝溪河上游懸移質(zhì)。淹水期間長(zhǎng)江干流江水頂托引起的泥沙沉積是顆粒態(tài)磷的主要來(lái)源,在>165~175 m高程帶對(duì)顆粒態(tài)磷的貢獻(xiàn)達(dá)到最大(54.5%)。雨季初期支流上游懸移質(zhì)對(duì)145~155 m高程消落帶的顆粒態(tài)磷貢獻(xiàn)最大(51.6%),而隨高程的增加貢獻(xiàn)率減少。消落帶上方的土壤侵蝕產(chǎn)沙主要堆積在>155~165和>165~175 m高程范圍內(nèi),導(dǎo)致消落帶上方土壤對(duì)泥沙和顆粒態(tài)磷的貢獻(xiàn)率都隨高程的增加而增加。
磷;泥沙;元素;消落帶;復(fù)合指紋技術(shù)
三峽水庫(kù)的蓄水運(yùn)行,在庫(kù)區(qū)干支流兩岸形成了落差30 m,總面積約349 km2的消落帶[1]。蓄水期間,由于水位加深,流速減緩,河流泥沙及其攜帶的污染物在消落帶沉積;而出露期正值雨季,頻繁的降雨和暴曬引發(fā)嚴(yán)重的水土流失,沉積的泥沙及污染物可能在徑流沖刷作用下再次進(jìn)入水體?!堕L(zhǎng)江三峽工程生態(tài)與環(huán)境監(jiān)測(cè)公報(bào)》[2-3]顯示,三峽蓄水以來(lái),盡管庫(kù)區(qū)長(zhǎng)江干流水質(zhì)總體為良,但受蓄水后干流回水頂托作用影響,很多支流水體富營(yíng)養(yǎng)化加劇,部分支流回水區(qū)在春季蓄水期水華現(xiàn)象突出。
磷是水體富營(yíng)養(yǎng)化的主要限制因子,查明水體磷的來(lái)源與遷移是緩解水質(zhì)惡化的重要前提。水環(huán)境中磷的形態(tài)可按物理態(tài)和化學(xué)態(tài)進(jìn)行劃分,按物理態(tài)可分為溶解態(tài)和顆粒態(tài);按化學(xué)態(tài)可分為無(wú)機(jī)態(tài)(正磷酸鹽、縮合磷酸鹽等)和有機(jī)態(tài)(三磷酸腺苷、磷酸酯等)。而流域內(nèi)磷的主要輸出形態(tài)為顆粒態(tài)[4-6],可占磷輸出總量的90%以上[7]。泥沙是顆粒態(tài)磷的主要載體,泥沙來(lái)源對(duì)磷的來(lái)源有重要影響[8-9]。消落帶作為泥沙的堆積場(chǎng)所,同時(shí)也是顆粒態(tài)磷的重要匯,但目前關(guān)于消落帶磷素來(lái)源的研究尚未見(jiàn)報(bào)道。本研究以庫(kù)區(qū)典型支流汝溪河消落帶為研究對(duì)象,運(yùn)用復(fù)合指紋示蹤技術(shù),判別不同高程消落帶沉積泥沙中顆粒態(tài)磷的來(lái)源及其相對(duì)貢獻(xiàn),以期為三峽工程蓄水后消落帶污染特征及環(huán)境效應(yīng)評(píng)估以及三峽水環(huán)境保護(hù)提供科學(xué)依據(jù)。
汝溪河為長(zhǎng)江一級(jí)支流,地處三峽庫(kù)區(qū)腹心地帶,行政上主要隸屬于重慶忠縣(圖1)。流域面積720 km2,主河道長(zhǎng)54.5 km,多年平均徑流量14.9億m3。汝溪河流域?qū)賮啛釒駶?rùn)季風(fēng)氣候區(qū),年均溫18.5 ℃,年均降水1 140 mm,主要集中于5—9月。土地利用以林地、耕地和果園為主,土壤主要為紫色土。三峽庫(kù)區(qū)山高坡陡,而消落帶大多在入江口或地勢(shì)低洼(海拔145~175 m)的狹小范圍內(nèi)形成,因此消落帶長(zhǎng)度與流域長(zhǎng)度相比相差較大。汝溪河流域消落帶總長(zhǎng)約6 km(距長(zhǎng)江匯合口距離),面積6.4 km2,以緩坡型為主,約占80%,蓄水期泥沙沉積明顯。
應(yīng)用指紋識(shí)別技術(shù)首先需在綜合考慮研究目的、時(shí)空尺度、物源間差異性等多種因素的基礎(chǔ)上對(duì)潛在泥沙物源進(jìn)行劃分。流域泥沙物源主要分為類型物源(如侵蝕類型或土地利用類型[10-13])和空間物源(如次級(jí)流域或地質(zhì)亞區(qū)[14-17])2類,其中以類型物源研究居多。實(shí)地調(diào)查表明,對(duì)于三峽支流消落帶,受蓄水后長(zhǎng)江干流回水頂托影響,河流流速減緩,干流輸送的泥沙會(huì)在消落帶發(fā)生沉積;同時(shí),洪水季節(jié)和消落帶淹水期支流所在流域上游來(lái)沙也是潛在泥沙來(lái)源之一;此外,消落帶上方(高程175 m以上)的農(nóng)用地在雨季的坡面侵蝕也可能對(duì)消落帶泥沙有所貢獻(xiàn)。因此,本研究將支流消落帶沉積泥沙源地劃分為消落帶上方土壤(S1)、長(zhǎng)江干流懸移質(zhì)(S2)和汝溪河上游懸移質(zhì)(S3)3類(圖1)。
圖1 研究區(qū)地理位置與采樣點(diǎn)示意圖
1.3.1 沉積泥沙樣品采集
汝溪河消落帶在蓄水前主要為農(nóng)耕地或水田,地勢(shì)較緩,泥沙淤積明顯。通過(guò)實(shí)地考察,沿程選擇6個(gè)沉積斷面(圖1),每個(gè)斷面劃分145~155、>155~165、>165~175 m 3個(gè)高程。于2015年8月消落帶出露期,在不同高程帶選擇泥沙易于沉積的平整地塊鋪設(shè)1 m× 1 m的人工草皮收集泥沙。泥沙收集至2016年7月結(jié)束,涵蓋1個(gè)完整的蓄水—落干周期。
1.3.2 泥沙物源樣采集與歸類
在沉積物采樣斷面175 m高程以上靠近消落帶且易發(fā)生侵蝕的地塊采集0~2 cm表層土壤,每一斷面多點(diǎn)采集后將樣品混合(樣本數(shù)為6),作為消落帶上方產(chǎn)沙物源樣(S1);在距離汝溪河與長(zhǎng)江干流匯合口約1 km處的干流河道上布設(shè)浮動(dòng)式泥沙收集桶,采集干流懸移質(zhì)(S2),采樣時(shí)間為2015年9月—2016年6月,頻率為每月1次;同時(shí),在距匯合口約5 km處的汝溪河河道上放置泥沙收集桶,收集汝溪河上游懸移質(zhì)(S3),采樣時(shí)間和頻率與干流懸移質(zhì)一致。
由于不同高程消落帶淹水時(shí)間不同(圖2),沉積泥沙的物源組成具有差異,消落帶出露期采集的干、支流懸移質(zhì)不作為其潛在物源。因此對(duì)于145~155 m高程消落帶,物源S2和S3的采樣時(shí)間為2015年9月—2016年6月(=9),而對(duì)于>155~165和>165~175 m高程消落帶,S2和S3的采樣時(shí)間則分別為2015年9月—2016年3月(=6)和2015年9月—2016年1月(=4)。
1.3.3 樣品測(cè)試
消落帶沉積泥沙包裹完整后帶回實(shí)驗(yàn)室沖洗、沉淀、過(guò)濾,于60 ℃下烘干至恒質(zhì)量。物源樣經(jīng)自然風(fēng)干,手工去除植物根系等雜質(zhì),研磨后過(guò)2 mm篩。取5 g左右沉積泥沙樣,用10% H2O2和10% HCl分別去除有機(jī)質(zhì)和碳酸鹽,采用MasterSizer2000激光粒度儀(Malvern Instruments, Malvern, England)測(cè)定顆粒組成(超聲波分散2 min)。結(jié)果顯示,不同高程消落帶沉積泥沙以粉粒和黏粒為主,>90%的泥沙粒徑小于63m。因此將所有物源樣和沉積泥沙樣過(guò)63m篩,隨后的分析測(cè)試均限于<63m組分。測(cè)試指標(biāo)包括TOC、TN、TP、K、Mg、Na、Ca、Fe、Al、Cd、Co、Cr、Cu、Mn、Ni、Pb、Ti、Zn共18個(gè),測(cè)試方法詳見(jiàn)文獻(xiàn)[18]。
圖2 不同高程消落帶淹水時(shí)間
1.4.1 復(fù)合指紋組合構(gòu)建
對(duì)各指標(biāo)測(cè)值進(jìn)行Shapiro-Wilk正態(tài)檢驗(yàn)[18],結(jié)果顯示不同高程的物源樣和目標(biāo)樣的指紋特征大部分都通過(guò)檢驗(yàn),數(shù)據(jù)滿足正態(tài)分布(表1)。由于樣品數(shù)量相對(duì)較少,而均值相較中值對(duì)極端值更敏感,因此使用物源樣和目標(biāo)樣的中值作進(jìn)一步分析。
指紋技術(shù)假設(shè)用于模型計(jì)算的指紋因子在泥沙遷移過(guò)程中具有穩(wěn)定性,從而使泥沙和源地的指紋特征直接可比[19],但這一穩(wěn)定性目前很難直接界定。泥沙輸移過(guò)程可能伴隨著粒徑的分選與有機(jī)質(zhì)的富集/消耗,這些過(guò)程可能會(huì)對(duì)指紋因子的濃度產(chǎn)生影響。一些研究嘗試通過(guò)采用顆粒校正或有機(jī)質(zhì)校正來(lái)降低這一影響[20-21],但該方法未考慮不同因子對(duì)顆粒/有機(jī)質(zhì)的敏感程度,采用單一的校正系數(shù)可能帶來(lái)過(guò)度校正[22]。因此本研究未進(jìn)行顆粒/有機(jī)質(zhì)校正[23],而采用范圍檢驗(yàn),即若目標(biāo)泥沙指紋中值落在物源對(duì)應(yīng)指紋中值的范圍之內(nèi),則該指紋因子可視為穩(wěn)定[23]。
為篩選在泥沙源地間具有顯著差異的指紋因子,對(duì)通過(guò)范圍檢驗(yàn)的指紋因子進(jìn)行Kruskal-Wallis H檢驗(yàn)(KW-H);然后對(duì)通過(guò)KW-H檢驗(yàn)的指紋因子(=0.05)進(jìn)行多元判別分析(discriminant function analysis,DFA),從中篩選出可以區(qū)分不同物源的最佳指紋組合。
1.4.2 混合模型求解
采用多元混合模型,求3種潛在物源對(duì)不同高程消落帶沉積泥沙的相對(duì)貢獻(xiàn)[24]。
式中R為殘差平方和;C為沉積泥沙指紋因子的濃度,g/kg或mg/kg;C為泥沙源地中指紋因子的濃度,g/kg或mg/kg;P為源地的泥沙貢獻(xiàn)百分比,%;為指紋因子數(shù)量;為泥沙源地?cái)?shù)量。模型運(yùn)行的邊界條件是所有參與計(jì)算的各源地泥沙貢獻(xiàn)百分比P非負(fù)且總和為100%。在滿足上述條件下,當(dāng)R最小時(shí),即可得到各物源的泥沙貢獻(xiàn)百分比。
利用Crystal Ball軟件的優(yōu)化求解功能,對(duì)物源和泥沙各指紋因子進(jìn)行分布擬合;采用拉丁超立方抽樣方法,進(jìn)行1 000次重復(fù)求解,尋求最優(yōu)解。誤差分析采用擬合優(yōu)度(goodness of fit,GOF)檢測(cè)方法[25],檢驗(yàn)混合模型對(duì)樣本觀測(cè)值的擬合程度(式(2))。當(dāng)GOF>0.8時(shí),認(rèn)為模型計(jì)算結(jié)果可以接受。
表1 各指標(biāo)Shapiro-Wilk正態(tài)檢驗(yàn)結(jié)果
注:*,真實(shí)顯著水平的下限。S1:消落帶上方土壤;S2:長(zhǎng)江干流懸移質(zhì);S3:汝溪河上游懸移質(zhì)。下同。
Note: *, lower bound of the true significance. S1: topsoil above riparian zone; S2: suspended sediment from Yangtze River; S3: suspended sediment from Ruxi River. Same as below.
忽略泥沙輸移過(guò)程中磷的吸附與解析,不同源地對(duì)消落帶泥沙中磷的貢獻(xiàn)可由下式求算[9]:
式中L為泥沙源地的顆粒態(tài)磷貢獻(xiàn)率,%;P為源地的泥沙貢獻(xiàn)百分比,%;C為源地磷素平均濃度,g/kg。
不同高程消落帶沉積泥沙及其對(duì)應(yīng)物源的測(cè)試指標(biāo)值列于表2,指紋判別因子逐步篩選結(jié)果見(jiàn)表3。范圍檢驗(yàn)表明,18個(gè)測(cè)試指標(biāo)中TN、TOC、TP、Na、Ti、Mn、Cd 7個(gè)因子在3個(gè)高程均通過(guò)檢驗(yàn),可認(rèn)為這些因子在隨泥沙輸移的過(guò)程中保持了較好的穩(wěn)定性;Co和Ni在不同高程沉積泥沙中的濃度均超過(guò)其對(duì)應(yīng)物源濃度的范圍,可能是在輸移過(guò)程中因泥沙顆粒的變化而發(fā)生了一定程度的富集,因此將其視為不穩(wěn)定元素予以剔除。
進(jìn)一步采用KW-H檢驗(yàn)和DFA構(gòu)建的145~155 m高程泥沙來(lái)源最佳指紋組合為Cd、Ti、Mn,>155~165 m為Mg、Mn、TP、TOC,>165~175 m為Ca、TN和TP,不同指紋組合對(duì)源地樣品的正確判別率最低達(dá)到95.8%,判別效果較好(表3)。
表2 不同高程消落帶泥沙及其物源測(cè)試指標(biāo)中值
表3 不同高程消落帶泥沙來(lái)源復(fù)合指紋因子
不同高程消落帶沉積泥沙物源相對(duì)貢獻(xiàn)率如圖3a所示,擬合優(yōu)度檢驗(yàn)GOF值介于0.88~0.95。模型求解結(jié)果表明,145~155 m高程消落帶泥沙主要來(lái)源于長(zhǎng)江干流懸移質(zhì)(S2)和汝溪河上游懸移質(zhì)(S3),其貢獻(xiàn)率分別為45.8%和38.4%,消落帶上部土壤(S1)貢獻(xiàn)率僅為15.8%;對(duì)于>155~165和>165~175 m高程消落帶,3種物源對(duì)沉積泥沙的貢獻(xiàn)比例分布基本一致。對(duì)比不同高程消落帶泥沙來(lái)源發(fā)現(xiàn),長(zhǎng)江干流懸移質(zhì)的貢獻(xiàn)均為最大,平均貢獻(xiàn)率為44.1%,物源貢獻(xiàn)的差異主要表現(xiàn)在消落帶上方土壤和汝溪河上游懸移質(zhì)。
3種物源隨高程變化對(duì)泥沙的貢獻(xiàn)率有所不同。消落帶上方土壤對(duì)沉積泥沙的貢獻(xiàn)隨高程的增加從15.8%增加到30.3%,汝溪河上游懸移質(zhì)的貢獻(xiàn)率隨高程增加從38.4%減少至26.3%,而長(zhǎng)江干流懸移質(zhì)對(duì)不同高程泥沙的貢獻(xiàn)率變化不大,介于43%~45.8%之間。
不同高程消落帶沉積物來(lái)源及其貢獻(xiàn)差異主要與三峽水庫(kù)運(yùn)行調(diào)度引起的消落帶淹水季節(jié)(圖2)有關(guān)。高程145~155 m受淹時(shí)間長(zhǎng)達(dá)9個(gè)月,其中涵蓋了部分雨季(2016年4-6月)。雨季時(shí)支流上游來(lái)沙增加,洪水過(guò)程中低海拔消落帶(145~155 m)的季節(jié)性淹沒(méi)帶來(lái)的泥沙沉積致使其對(duì)該高程帶的泥沙貢獻(xiàn)較大,而>155~165和>165~175 m消落帶淹水時(shí)間均處旱季,因此支流懸移質(zhì)的貢獻(xiàn)有所降低。消落帶上部土壤侵蝕對(duì)不同高程的泥沙貢獻(xiàn)變化與支流懸移質(zhì)相反,這可能是由于消落帶上部土壤被侵蝕后在向下坡輸移的過(guò)程中發(fā)生了近源沉積,大部分泥沙優(yōu)先堆積在較高高程[26]。
圖3 不同高程消落帶沉積泥沙及其顆粒態(tài)磷的物源相對(duì)貢獻(xiàn)率
3種物源對(duì)不同高程消落帶沉積泥沙中顆粒態(tài)磷的相對(duì)貢獻(xiàn)比例見(jiàn)圖3b。隨著高程的變化,不同物源對(duì)磷的貢獻(xiàn)大小變化與泥沙貢獻(xiàn)趨勢(shì)基本一致,但相對(duì)比例有所不同,這與周慧平等[9]在九鄉(xiāng)河流域的研究結(jié)果相似。消落帶上方土壤(S1)和長(zhǎng)江干流來(lái)沙(S2)對(duì)消落帶的磷素貢獻(xiàn)率隨高程的增加而增加,而汝溪河上游來(lái)沙(S3)的貢獻(xiàn)率則隨高程增加呈減少趨勢(shì)。
不同高程消落帶沉積泥沙中顆粒態(tài)磷的來(lái)源貢獻(xiàn)主要受泥沙來(lái)源影響。長(zhǎng)江干流和汝溪河上游來(lái)沙對(duì)不同高程帶顆粒態(tài)磷的貢獻(xiàn)率之和介于88.6%~95.4%,對(duì)應(yīng)的泥沙貢獻(xiàn)率之和為69.7%~84.2%,均占主導(dǎo)地位。長(zhǎng)江干流來(lái)沙對(duì)顆粒態(tài)磷的貢獻(xiàn)率在>165~175 m高程帶達(dá)到最大(54.5%),汝溪河上游來(lái)沙對(duì)顆粒態(tài)磷的貢獻(xiàn)率在145~155 m高程帶達(dá)到最大(51.6%)。消落帶上方土壤對(duì)沉積物磷的貢獻(xiàn)較小,平均為8.5%,低于其泥沙平均貢獻(xiàn)率(25.1%),這是由于該源地土壤中磷的質(zhì)量分?jǐn)?shù)(0.45 g/kg)顯著低于干支流懸移質(zhì)中磷的質(zhì)量分?jǐn)?shù)(表2)。不同源地樣品磷素含量的差異可能與其顆粒粒徑有關(guān)。物源樣品顆粒分析結(jié)果表明(圖4),消落帶上方土壤的顆粒組成較干、支流泥沙偏粗,河流泥沙經(jīng)過(guò)一定距離的搬運(yùn)分選后顆粒變細(xì),顆粒越細(xì)對(duì)磷素的吸附能力越強(qiáng)[27]。
圖4 不同物源粒徑分布特征
本文局限性分析:
1)需要指出的是,不同于利用137Cs、210Pb等放射性核素來(lái)區(qū)分土壤表層和次表層泥沙來(lái)源時(shí)具有較為明確的理論基礎(chǔ)[28],基于地球化學(xué)元素的指紋技術(shù)目前很難建立特定指紋參數(shù)與環(huán)境因子之間的直接聯(lián)系,僅僅根據(jù)統(tǒng)計(jì)檢驗(yàn)方法篩選得到的指紋組合可能具有較大的不確定性,不同的參數(shù)組合可能對(duì)泥沙來(lái)源的定量具有較大影響[29-30],因此應(yīng)結(jié)合其他方法進(jìn)一步驗(yàn)證指紋判別結(jié)果的可靠性。
2)消落帶的侵蝕沉積過(guò)程非常復(fù)雜,受水文節(jié)律、地形地貌等多因素影響。本研究只基于1個(gè)蓄水周期的采樣分析,樣本量較少,具有一定的局限性;同時(shí),本研究是在定量泥沙來(lái)源的基礎(chǔ)上分析磷的來(lái)源,因此重點(diǎn)關(guān)注被泥沙吸附的顆粒態(tài)磷,而忽略了泥沙輸移過(guò)程和蓄水期間可能發(fā)生的磷素吸附、解析以及形態(tài)轉(zhuǎn)化等。
不同高程,消落帶泥沙來(lái)源最佳指紋組合不同。不同指紋組合對(duì)源地樣品的正確判別效果均較好(>95.8%)。受近源侵蝕的影響,不同高程消落帶沉積泥沙物源相對(duì)貢獻(xiàn)率的差異主要表現(xiàn)在消落帶上方土壤和汝溪河上游懸移質(zhì),3個(gè)高程帶長(zhǎng)江干流懸移質(zhì)的貢獻(xiàn)率均為最大(43%~45.8%)。隨著高程的變化,不同物源對(duì)磷的貢獻(xiàn)大小變化與泥沙貢獻(xiàn)趨勢(shì)基本一致。
長(zhǎng)江干流和汝溪河上游來(lái)沙是消落帶沉積泥沙及顆粒態(tài)磷的主要來(lái)源。受水庫(kù)運(yùn)行調(diào)度引起的消落帶淹水時(shí)間影響,隨著高程的增加消落帶上方的岸坡侵蝕和長(zhǎng)江干流來(lái)沙對(duì)顆粒態(tài)磷的貢獻(xiàn)相應(yīng)增多,而汝溪河支流對(duì)顆粒態(tài)磷的貢獻(xiàn)率隨著高程的增加呈減少趨勢(shì)。干支流泥沙顆粒組成較細(xì),對(duì)磷等污染物具有明顯的富集效應(yīng),將對(duì)消落帶及庫(kù)區(qū)水生態(tài)環(huán)境造成潛在風(fēng)險(xiǎn),而富含營(yíng)養(yǎng)物質(zhì)的支流泥沙在消落帶堆積,可能隨暴雨侵蝕再次進(jìn)入水體,加重污染負(fù)荷。蓄水后泥沙沉積引起的消落帶磷素長(zhǎng)期富集可能會(huì)對(duì)水庫(kù)消落帶及水環(huán)境產(chǎn)生重要影響。
[1] Bao Yuhai, Gao Peng, He Xiubin. The water-level fluctuation zone of Three Gorges Reservoir: A unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24.
[2] 中華人民共和國(guó)環(huán)境保護(hù)部. 長(zhǎng)江三峽工程生態(tài)與環(huán)境監(jiān)測(cè)公報(bào)[R]. 2014:27-29.
[3] 中華人民共和國(guó)環(huán)境保護(hù)部. 長(zhǎng)江三峽工程生態(tài)與環(huán)境監(jiān)測(cè)公報(bào)[R]. 2015:25-27.
[4] Pionke H B, Kunishi H M. Phosphorus status and content of suspended sediment in a Pennsylvania watershed[J]. Soil Sci, 1992, 153: 452-62.
[5] Vanni M J, Renwick W, Headworth J L, et al. Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: A five-year study[J]. Biogeochemistry, 2001, 54: 85-114.
[6] Foster I D L, Chapman A S, Hodgkinson R M, et al. Changing suspended sediment and particulate phosphorus loads and pathways in under drained lowland agricultural catchments: Herefordshire and Worcestershire, UK[J]. Hydrobiologia, 2003, 494: 119-126.
[7] Simard R R, Beauchemin S, Haygarth P M. Potential for pathways of phosphorus transport[J]. J Environ Qual, 2000, 29(1): 97-105.
[8] Walling D E, Collins A L, Stroud R W. Tracing suspended sediment and particulate phosphorus sources in catchments[J]. Journal of Hydrology, 2008, 350(3/4): 274-289.
[9] 周慧平,常維娜,張龍江. 基于泥沙指紋識(shí)別的小流域顆粒態(tài)磷來(lái)源解析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):251-256.
Zhou Huiping, Chang Weina, Zhang Longjiang. Particulate phosphorus sources apportionment in small watershed based on sediment fingerprinting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 251-256. (in Chinese with English abstract)
[10] 楊明義,徐龍江. 黃土高原小流域泥沙來(lái)源的復(fù)合指紋識(shí)別法分析[J]. 水土保持學(xué)報(bào),2010,24(2):30-34.
Yang Mingyi, Xu Longjiang. Fingerprinting suspended sediment sources in a small catchment on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2010, 24(2): 30-34. (in Chinese with English abstract)
[11] 郭進(jìn),文安邦,嚴(yán)冬春,等. 復(fù)合指紋識(shí)別技術(shù)定量示蹤流域泥沙來(lái)源[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):94-104.
Guo Jin, Wen Anbang, Yan Dongchun, et al. Quantifying catchment scale sediment source using composite fingerprinting technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 94-104. (in Chinese with English abstract)
[12] Pulley S, Foster I, Antunes P. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin[J]. Geomorphology, 2015, 228: 303-319.
[13] Chen Fangxin, Zhang Fengbao, Fang Nufang, et al. Sediment source analysis using the fingerprinting method in a small catchment of the Loess Plateau, China[J]. Journal of Soils and Sediments, 2016, 16(5): 1655-1669.
[14] Walling D E, Woodward J C. Tracing sources of suspended sediment in river basins: A case study of the River Culm, Devon, UK[J]. Marine and Freshwater Research, 1995, 46: 327-336.
[15] Haddadchi A, Olley J, Pietsch T. Quantifying sources of suspended sediment in three size fractions[J]. Journal of Soils and Sediments, 2015, 15(10): 2086-2100.
[16] Vale S S, Fuller I C, Procter J N, et al. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand[J]. Science of The Total Environment, 2016, 543:171-186.
[17] Olley J, Caitcheon G. Major element chemistry of sediments from the Darling–Barwon river and its tributaries: implications for sediment and phosphorus sources[J]. Hydrological Processes, 2000, 14(7): 1159-1175.
[18] Shi Zhonglin, Yan Dongchun, Wen Anbang, et al. Sedimentary Processes: Examples from Asia, Turkey and Nigeria[M]. London: IntechOpen, 2019.
[19] Walling D E, Foster I D L. Using environmental radionuclides, mineral magnetism and sediment geochemistry for tracing and dating fluvial sediments[M]//Kondolf G M, Piégay H. Tools in Fluvial Geomorphology: Second Edition. Chichester: Wiley, 2016: 183-209.
[20] Collins A L, Walling D E, Leeks G J L. Sediment sources in the upper severn catchment: A fingerprinting approach[J]. Hydrology & Earth System Sciences, 1997, 1(3): 509-521.
[21] Koiter A J, Owens P N, Petticrew E L, et al. Assessment of particle size and organic matter correction factors in sediment source fingerprinting investigations: An example of two contrasting watershed on Canada[J]. Geoderma, 2018, 325: 195-207.
[22] Smith H G, Blake W H. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections[J]. Geomorphology, 2014, 204: 177-191.
[23] Wilkinson S N, Hancock G J, Bartley R, et al. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia[J]. Agriculture, Ecosystems & Environment, 2013, 180: 90-102.
[24] Collins A L, Walling D E, Leeks G J L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique[J]. Catena, 1997, 29: 1-27.
[25] Motha J A, Wallbrink P J, Hairsine P B, et al. Determining the sources of suspended sediment in a forested catchment in southeastern Australia[J]. Water Resources Research, 2003, 39(3): 1056-1069.
[26] 閻丹丹,鮑玉海,賀秀斌,等. 三峽水庫(kù)蓄水后長(zhǎng)江干支流及消落帶泥沙顆粒特征分析[J]. 水土保持學(xué)報(bào),2014,28(4):289-292,329.
Yan Dandan, Bao Yuhai, He Xiubin, et al. Particle size characteristics of sediment in draw down area of upper Yangtze River and its major tributaries of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2014, 28(4): 289-292, 329. (in Chinese with English abstract)
[27] 秦宇,王紫薇,韓超. 懸移質(zhì)泥沙粒徑對(duì)磷吸附的影響[J].中國(guó)給水排水,2017,33(7):80-83.
Qin Yu, Wang Ziwei, Han Chao. Effect of different size of suspended sediment on adsorption of phosphorus[J]. China Water & Wastewater, 2017, 33(7): 80-83. (in Chinese with English abstract)
[28] 張信寶,賀秀斌,文安邦,等. 川中丘陵區(qū)小流域泥沙來(lái)源的137Cs和210Pb雙同位素法研究[J]. 科學(xué)通報(bào),2004,49(15):1537-1541.
[29] 周慧平,周宏偉,陳玉東. 指紋技術(shù)識(shí)別泥沙來(lái)源:不確定性研究進(jìn)展[J]. 土壤學(xué)報(bào),2019,56(6):1279-1289.
Zhou Huiping, Zhou Hongwei, Chen Yudong. Sediment source fingerprinting: Progress in uncertainty analysis[J]. Acta Pedologica Sinica, 2019, 56(6): 1279-1289. (in Chinese with English abstract)
[30] 周慧平,陳玉東,常維娜. 指紋技術(shù)識(shí)別泥沙來(lái)源:進(jìn)展與展望[J]. 水土保持學(xué)報(bào),2018,32(5):4-10.
Zhou Huiping, Chen Yudong, Chang Weina. Sediments source fingerprinting: Progresses and prospects[J]. Journal of Soil and Water Conservation, 2018, 32(5):4-10. (in Chinese with English abstract)
Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir
Chen Taili1,2, Shi Zhonglin1※, Wang Yongyan1,2, Yan Dongchun1, Wen Anbang1, Chen Jiacun1,2
(1.,,610041,; 2.,100049,)
Information on deposited sediment and associated particulate phosphorus (PP) is of great importance for development of effective management strategies in the riparian zone of the Three Gorges Reservoir. In this study, a composite fingerprinting approach was used to identify the sources of deposited sediment and associated PP in the riparian zone with different elevations (145-155, >155-165, >165-175 m) along the Ruxi tributary channel. Three potential sediment sources were defined: the topsoil above the 175 m elevation level of the riparian zone, and the suspended sediments transported by both the mainstream of Yangtze River and the upstream Ruxi River. The target deposited sediments were collected at different elevation levels of the riparian zone along the Ruxi River and a total of 18 geochemical properties factors were analyzed for the size fraction of sediment smaller than 63m. A commonly used 3-step (range test, KW-H test and DFA analysis) statistical methodology to element selection was applied to select the optimum subset of tracer properties that could best discriminate sources. The relative contribution of the 3 potential sources to the deposited sediment in the riparian zone was estimated using a frequentist-based multivariate mixing model. The relative importance of those sources to the overall PP was then determined by combining the information obtained from deposited sediment sources with information on the P content of those sources. Source apportionment results showed that the suspended sediments transported by both the Yangtze mainstream and the upstream Ruxi tributary represent the dominant sources of PP deposits in the riparian zone, which account for 88.6%-95.4% of the PP input. The corresponding sediment contribution from these 2 sources ranged from 69.7% to 84.2%, which varied between elevation levels. The PP contribution from the Yangtze mainstream was 54.5% for the >165-175 m level. The relative PP contribution from the Ruxi River was the most important during the early wet season, which was 51.6% (145-155 m). In contrast, the PP input from the topsoil above the 175 m level of the riparian zone exhibited to be less important (mean of 8.5%) during the study period. The information on sediment contribution of this source reveals that most of the eroded sediment from the topsoil above the 175 m level was preferentially deposited in the elevation levels of <155-165 m and >165-175 m. The findings of this research highlight the important impacts of impoundment on the riparian zone of the tributaries of the reservoir in terms of sediment accumulation and pollution.
phosphorus; sediments; elements; riparian zone; composite fingerprinting technique
陳太麗,史忠林,王永艷,嚴(yán)冬春,文安邦,陳佳村. 三峽水庫(kù)典型支流消落帶泥沙顆粒態(tài)磷復(fù)合指紋示蹤研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):118-124.doi:10.11975/j.issn.1002-6819.2019.20.015 http://www.tcsae.org
Chen Taili, Shi Zhonglin, Wang Yongyan, Yan Dongchun, Wen Anbang, Chen Jiacun. Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 118-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.015 http://www.tcsae.org
2019-04-02
2019-09-10
國(guó)家重點(diǎn)研發(fā)計(jì)劃“構(gòu)建源頭削減-生物隔離-濕地消納相結(jié)合的高效生態(tài)攔截技術(shù)體系”(2017YFD0800505);國(guó)家自然科學(xué)基金“三峽庫(kù)區(qū)支流消落帶土-水界面磷素遷移過(guò)程與通量”(41430750)
陳太麗,博士生,主要從事土壤侵蝕與水土保持研究。Email:chentaili1994@126.com
史忠林,助理研究員,博士。主要從事侵蝕泥沙示蹤技術(shù)研究。Email:shizl@imde.ac.cn
10.11975/j.issn.1002-6819.2019.20.015
O613.62
A
1002-6819(2019)-20-0118-07