崔 恩,黨革榮,程 健,陳 軍,薛楊春,王耀鳳
(1.西北農(nóng)林科技大學(xué) 機(jī)械與電子工程學(xué)院,陜西 楊凌 712100;2.西安市農(nóng)機(jī)監(jiān)理與推廣總站,西安 710065)
我國(guó)是世界上最大的水果生產(chǎn)國(guó)和消費(fèi)國(guó),隨著水果種植業(yè)的不斷發(fā)展,果園機(jī)械的開(kāi)發(fā)需求正在不斷的提升,未來(lái)我國(guó)果園采摘機(jī)械的發(fā)展趨勢(shì)主要體現(xiàn)為多功能化、操作簡(jiǎn)便、可靠性高、通用性好及自動(dòng)化和智能化等特點(diǎn)[1]。履帶式作業(yè)車(chē)輛作為采摘機(jī)械的一種類型,具有良好的通過(guò)性能,在農(nóng)業(yè)機(jī)械、建筑行業(yè)及軍事領(lǐng)域發(fā)揮著十分重要的作用[2]。本文以研制的履帶式果園作業(yè)車(chē)為研究對(duì)象(見(jiàn)圖1),采用多體動(dòng)力學(xué)仿真軟件RecurDyn對(duì)果園作業(yè)車(chē)進(jìn)行動(dòng)力學(xué)建模,通過(guò)仿真試驗(yàn)來(lái)研究履帶式果園作業(yè)車(chē)在不同工況下的動(dòng)力學(xué)性能[3-4],并通過(guò)實(shí)地試驗(yàn)對(duì)仿真結(jié)果進(jìn)行簡(jiǎn)單驗(yàn)證,旨在為履帶式果園作業(yè)車(chē)進(jìn)一步的改進(jìn)設(shè)計(jì)提供理論參考依據(jù)。
運(yùn)用多體動(dòng)力學(xué)仿真分析軟件RecurDyn自帶的履帶車(chē)輛子系統(tǒng)Track(LM)建立履帶式果園作業(yè)車(chē)三維多體動(dòng)力學(xué)模型如圖2所示,設(shè)置整機(jī)各部分質(zhì)量如表1所示。整機(jī)模型包括履帶底盤(pán)、車(chē)架、升降平臺(tái)及油箱等部件,履帶底盤(pán)由驅(qū)動(dòng)輪、導(dǎo)向輪、支重輪、托帶輪、履帶板等各種履帶行駛系統(tǒng)組件組成[5]。按照簡(jiǎn)化原則,在不影響仿真結(jié)果的情況下,對(duì)一些零部件(如螺栓、螺母等)做出適當(dāng)?shù)暮?jiǎn)化來(lái)提高仿真速度。
圖1 履帶式果園作業(yè)車(chē)Fig.1 The tracked of orchard vehicle
圖2 履帶式作業(yè)車(chē)仿真模型Fig.2 The tracked of orchard vehicle simulation model
表1 履帶式作業(yè)車(chē)各器部件質(zhì)量Table 1 Mass of each for the tracked of orchard vehicle component kg
為了使仿真結(jié)果更加接近真實(shí)情況,需要在兩構(gòu)件之間添加約束,在相對(duì)運(yùn)動(dòng)的部件間增加摩擦因數(shù)。機(jī)構(gòu)內(nèi)部的摩擦阻力系數(shù)通常取經(jīng)驗(yàn)值,本文在RecurDyn中取各個(gè)旋轉(zhuǎn)副的摩擦因數(shù)為0.07。
履帶式果園作業(yè)車(chē)采用液壓馬達(dá)驅(qū)動(dòng)作為動(dòng)力輸出裝置,液壓馬達(dá)輸出動(dòng)力使驅(qū)動(dòng)輪轉(zhuǎn)動(dòng),從而促使履帶帶動(dòng)整機(jī)行駛。通過(guò)預(yù)設(shè)的驅(qū)動(dòng)函數(shù)分別作用于左、右兩側(cè)驅(qū)動(dòng)輪上,進(jìn)而通過(guò)液壓馬達(dá)輸出的動(dòng)力,實(shí)現(xiàn)作業(yè)車(chē)的行進(jìn)運(yùn)動(dòng)。
本文在RecurDyn軟件中使用的是STEP函數(shù)對(duì)整機(jī)施加驅(qū)動(dòng)。該函數(shù)采用三次多項(xiàng)式逼近階躍函數(shù),表達(dá)式為
(1)
式中x0—階躍起點(diǎn)的自變量值;
x1—階躍終點(diǎn)的自變量值;
h0—階躍起點(diǎn)的函數(shù)值;
h1—階躍終點(diǎn)的函數(shù)值。
履帶式行走車(chē)輛在進(jìn)行仿真建模和分析時(shí)要建立與實(shí)際路況相接近的相應(yīng)正確力學(xué)模型,因此在對(duì)履帶式果園作業(yè)車(chē)進(jìn)行動(dòng)力學(xué)仿真研究的過(guò)程中將作業(yè)車(chē)底盤(pán)部分與行進(jìn)地面間的相互關(guān)系作為首要考慮因素。
在研究行進(jìn)地面的力學(xué)特性時(shí),首先需要將土壤的變形用土壤的承壓特性和剪切特性表示[6]。在堅(jiān)實(shí)地面路況上,通過(guò)履帶車(chē)輛與地面之間相互作用產(chǎn)生的接觸力來(lái)反映履帶與行進(jìn)地面之間的壓力,在RecurDyn軟件中接觸碰撞力F計(jì)算公式為
(2)
式中q-q0—地面沉陷量;
相關(guān)理論和試驗(yàn)證明,指數(shù)n取2~3時(shí)計(jì)算所取得的仿真效果速度最佳,同時(shí)土壤阻尼c和剛度系數(shù)k對(duì)仿真結(jié)果也有較大影響?;诿绹?guó)專家貝克提出的壓力—沉陷關(guān)系式,確定履帶對(duì)軟地面的正壓力計(jì)算公式為
(3)
式中Kc—土壤內(nèi)聚力變形模量;
b—履帶板寬度;
Kφ—土壤內(nèi)摩擦變形模量;
Z—土壤沉陷量。
在多體動(dòng)力學(xué)仿真軟件RecurDyn中,履帶在接觸的地面上產(chǎn)生剪切作用,剪切力-位移關(guān)系式為[7]
(4)
式中c—地面壓力為0時(shí)的最大剪切應(yīng)力;
p—地面壓力;
φ—土壤內(nèi)摩擦角;
j—剪切位移;
k—水平剪切變形模量。
本文研究的履帶式果園作業(yè)車(chē),主要在北方的砂壤土果園下進(jìn)行作業(yè)。在RecurDyn軟件中進(jìn)行動(dòng)力學(xué)性能分析時(shí),將砂壤土設(shè)為地面模型土壤,參數(shù)如表2所示。
表2 砂壤土基本參數(shù)Table 2 Parameter of sandy loam
進(jìn)行運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析之前,在RecurDyn軟件中首先進(jìn)行樣機(jī)模型的預(yù)分析和靜平衡階段探究,確保分析結(jié)果的有效性和準(zhǔn)確性[7]。通過(guò)預(yù)分析得出履帶式果園作業(yè)車(chē)的仿真模型中共包括29個(gè)剛體和2個(gè)履帶裝配體,整機(jī)自由度為484個(gè),沒(méi)有冗余約束。所謂靜平衡階段分析,是指整機(jī)模型在自身重力的作用下自然落到水平地面模型上,并緩慢進(jìn)入靜平衡狀態(tài)的過(guò)程。
通過(guò)分析履帶車(chē)輛的接地壓力、履帶行走過(guò)程的總阻力、沉陷深度等指標(biāo)來(lái)驗(yàn)證履帶式作業(yè)車(chē)輛直線平地行駛性能,包括能否在預(yù)設(shè)的平地上完成直線加速、勻速、減速及停止的運(yùn)動(dòng)。在此仿真模擬過(guò)程后,對(duì)實(shí)驗(yàn)中仿真的數(shù)據(jù)進(jìn)行提取和研究分析。選定履帶底盤(pán)裝置中第1塊履帶板記為履帶板A,通過(guò)履帶板A的縱向位移變化及履帶板與地面的間的應(yīng)力力變化來(lái)反映整機(jī)模型的沉陷深度和接地應(yīng)力,如圖 3和圖4 所示。
圖3 履帶板A的縱向位移Fig.3 Longitudinal displacement of tack linkA
圖4 履帶板A與地面的應(yīng)力變化Fig.4 Pressure changes of the tack linkA to ground
由圖3可以看出:在約1.6s時(shí),曲線上升并達(dá)到運(yùn)動(dòng)過(guò)程的最高點(diǎn),表明履帶板A已運(yùn)動(dòng)至托帶輪處;在1.6~3s時(shí)間段內(nèi),曲線開(kāi)始陡然下降,表明履帶板A從導(dǎo)向輪上邊沿逐步開(kāi)始下降;在3~4s時(shí)間段內(nèi),曲線平緩并處于最低峰,表明履帶板A到達(dá)最低點(diǎn),與地面接觸,隨后履帶板A又沿著驅(qū)動(dòng)輪上升,進(jìn)入下一圈循環(huán)。由圖4可以看出:曲線有幾處明顯的波峰,首先第1處波峰的產(chǎn)生是由于履帶板A離開(kāi)導(dǎo)向輪,被擠壓陷入土壤中,土壤對(duì)其形成的應(yīng)力;最后一處波峰是驅(qū)動(dòng)輪對(duì)其施加的力,中間幾處波峰是由于履帶板A受到支重輪的壓力造成的。
由勻速行駛時(shí)驅(qū)動(dòng)輪上的驅(qū)動(dòng)力大小來(lái)代表整車(chē)行走時(shí)行走裝置的總阻力大小[8],驅(qū)動(dòng)輪上的驅(qū)動(dòng)力矩如圖5所示。其中,在1.6s前為整車(chē)啟動(dòng)的過(guò)程,這個(gè)過(guò)程需要加速,驅(qū)動(dòng)力矩先逐漸增大后減小,最大值達(dá)到-2 044 277N·mm;由于啟動(dòng)時(shí)要克服慣性阻力,因此驅(qū)動(dòng)力矩較大,等作業(yè)車(chē)運(yùn)動(dòng)趨于平穩(wěn),驅(qū)動(dòng)力矩又減小到某一值。在1.6s~9s時(shí)為果園作業(yè)車(chē)勻速行駛過(guò)程,需要的驅(qū)動(dòng)力矩則較小,由此可以看出,履帶式果園作業(yè)車(chē)在加速啟動(dòng)階段需要的動(dòng)力遠(yuǎn)大于勻速行駛時(shí);當(dāng)速度達(dá)到3km/h、勻速行駛7.5s過(guò)程中,整機(jī)受力均勻,運(yùn)行平穩(wěn),驅(qū)動(dòng)力矩曲線有規(guī)律的上下波動(dòng),引起這種情況的原因是鏈傳動(dòng)的多邊形效應(yīng);從第9s開(kāi)始,整機(jī)減速制動(dòng)階段,驅(qū)動(dòng)力矩先增大后減小,最大值達(dá)到1 415 033N·mm。由此可以看出,整機(jī)在加速啟動(dòng)時(shí)動(dòng)力需求相對(duì)較大。
圖5 驅(qū)動(dòng)力矩Fig.5 Driving torque
針對(duì)履帶作業(yè)車(chē)在田間作業(yè)時(shí)的平地轉(zhuǎn)向工況進(jìn)行分析,所使用的主要轉(zhuǎn)向方式為差速轉(zhuǎn)向和抱死轉(zhuǎn)向,即一側(cè)履帶的驅(qū)動(dòng)力增加或不變,而另一側(cè)履帶驅(qū)動(dòng)力減小或制動(dòng),由此會(huì)產(chǎn)生一個(gè)轉(zhuǎn)向力矩。轉(zhuǎn)向的靈活性和操控性是履帶車(chē)輛機(jī)動(dòng)能力的重要指標(biāo)之一,研究其性能對(duì)其合理的使用具有重要意義[9]。對(duì)由平地環(huán)境轉(zhuǎn)向工況環(huán)境進(jìn)行仿真前,應(yīng)該選擇一個(gè)符合實(shí)際、滿足條件并且相對(duì)合理的行駛速度。圖6為不同車(chē)速下(1.2km/h和3.0km/h)轉(zhuǎn)向整機(jī)垂向位置的變化曲線,橫坐標(biāo)代表時(shí)間,縱坐標(biāo)代表整機(jī)質(zhì)心位置。由圖6可以看出:行駛速度為1.2km/h時(shí),質(zhì)心的波動(dòng)幅度較小。因此,在接下來(lái)的轉(zhuǎn)向工況仿真中采用速度1.2km/h進(jìn)行仿真試驗(yàn)。
圖6 不同車(chē)速下作業(yè)車(chē)的縱向位移Fig.6 Longitudinal displacement of overall unit at different velocity
轉(zhuǎn)向性能是表征車(chē)輛改變其運(yùn)動(dòng)方向的一種能力,主要通過(guò)最小轉(zhuǎn)向半徑、轉(zhuǎn)向角速度及轉(zhuǎn)向角加速度等指標(biāo)評(píng)價(jià)。其中,轉(zhuǎn)向角速度是評(píng)價(jià)履帶車(chē)轉(zhuǎn)向性能的重要指標(biāo)[10],如圖7所示。由圖7可知:履帶式果園作業(yè)車(chē)在差速轉(zhuǎn)向時(shí)的轉(zhuǎn)向角速度相對(duì)較小,波動(dòng)變化小,均值約為0.15rad/s,說(shuō)明履帶式作業(yè)車(chē)差速轉(zhuǎn)向的穩(wěn)定性相對(duì)較好;而抱死轉(zhuǎn)向的轉(zhuǎn)向角速度較大,且波動(dòng)也較大,均值約為0.36rad/s,說(shuō)明履帶式作業(yè)車(chē)抱死轉(zhuǎn)向方式的穩(wěn)定性相對(duì)較差。由此表明,差速轉(zhuǎn)向相較于抱死轉(zhuǎn)向更趨于平穩(wěn),但完成相同的轉(zhuǎn)向要求時(shí)差速轉(zhuǎn)向方式需要更大的轉(zhuǎn)向半徑,影響了作業(yè)車(chē)整機(jī)的機(jī)動(dòng)性。
圖7 作業(yè)車(chē)輛轉(zhuǎn)向變化時(shí)角速度Fig.7 Steering angular velocity of overall
轉(zhuǎn)向角加速度是車(chē)輛轉(zhuǎn)向時(shí)側(cè)翻與否的重要指標(biāo),如圖8所示。轉(zhuǎn)向角加速度越大,則產(chǎn)生的離心力越大,車(chē)輛就越容易發(fā)生側(cè)翻。由圖8可知:車(chē)輛采用差速轉(zhuǎn)向方式時(shí)其轉(zhuǎn)向的角加速度相對(duì)較小,均值約為0.007rad/s2,而抱死轉(zhuǎn)向時(shí)其轉(zhuǎn)向角加速度相對(duì)較大,均值為0.068 rad/s2;差速轉(zhuǎn)向與抱死轉(zhuǎn)向角加速度曲線變化規(guī)律基本一致,但相較于抱死轉(zhuǎn)向方式,差速轉(zhuǎn)向方式的角加速度幅值波動(dòng)較小,較易趨于穩(wěn)定[11]。由此表明,作業(yè)車(chē)輛差速轉(zhuǎn)向方式比抱死轉(zhuǎn)向方式穩(wěn)定性好;但不論哪種轉(zhuǎn)向方式,作業(yè)車(chē)內(nèi)外側(cè)履帶會(huì)同時(shí)受到阻力,都是外側(cè)履帶克服的阻力較大、內(nèi)側(cè)履帶克服的阻力較小。
根據(jù)仿真結(jié)果,履帶車(chē)樣機(jī)采用差速轉(zhuǎn)向的方式。
圖8 整機(jī)轉(zhuǎn)向角加速度Fig.8 Steering angle acceleration of overall unit
采用履帶車(chē)中心安裝滴水器滴水,沿水線每隔20cm擺放一個(gè)小模塊辦法來(lái)實(shí)現(xiàn)軌跡劃線,水線及小模塊寬度均小于10mm,測(cè)量誤差較小可以忽略。
選取坡度為0°的實(shí)驗(yàn)場(chǎng)地,使作業(yè)車(chē)處于正常工作狀態(tài),在現(xiàn)有路面條件下,以低擋、中擋、高擋直線行駛。由直線行駛軌跡(見(jiàn)圖9)可知:基于預(yù)設(shè)的驅(qū)動(dòng)函數(shù)和控制系統(tǒng)控制下,車(chē)輛在行駛過(guò)程中軌跡偏差較小,最大偏差為0.08m,方差為0.000 78,說(shuō)明履帶式作業(yè)車(chē)在控制系統(tǒng)控制下直線行駛度比較高。
圖9 整機(jī)直線行駛軌跡Fig.9 Track line of line running
根據(jù)履帶車(chē)工作需求試驗(yàn)了180°轉(zhuǎn)向,在排除人為遙控操作情況下,試驗(yàn)自設(shè)的轉(zhuǎn)向控制系統(tǒng)的轉(zhuǎn)向情況,如圖10所示。由圖10可以得出,履帶車(chē)自設(shè)轉(zhuǎn)向控制系統(tǒng)能夠?qū)崿F(xiàn)180°的轉(zhuǎn)向。
圖10 180°轉(zhuǎn)向行駛軌跡Fig.10 Transplanter track of marching 180°
1)在平地直行工況下,仿真得出接地壓力、沉陷深度及驅(qū)動(dòng)力矩曲線,分析可知整機(jī)在獲得驅(qū)動(dòng)力時(shí)性能良好。
2)通過(guò)平地轉(zhuǎn)向工況下對(duì)其轉(zhuǎn)向性能進(jìn)行動(dòng)力學(xué)仿真實(shí)驗(yàn),分析轉(zhuǎn)向角速度與轉(zhuǎn)向角加速度曲線,結(jié)果表明:行駛速度越高,離心力越大,轉(zhuǎn)向時(shí)其穩(wěn)定性就越差;抱死轉(zhuǎn)向相比差速轉(zhuǎn)向,其轉(zhuǎn)向阻力大,穩(wěn)定性低,但轉(zhuǎn)向半徑較小,轉(zhuǎn)向較快。
3)履帶式果園作業(yè)車(chē)的平地直行和轉(zhuǎn)向試驗(yàn)與仿真結(jié)果基本一致,從而驗(yàn)證了整機(jī)模型的正確性,為履帶式果園作業(yè)車(chē)進(jìn)一步改進(jìn)設(shè)計(jì)提供了理論參考依據(jù)。