銀瑞,王俊鋼
論著
白術(shù)多糖對肺癌模型大鼠免疫功能的調(diào)節(jié)作用及機(jī)制研究
銀瑞,王俊鋼
研究白術(shù)多糖對肺癌模型大鼠免疫相關(guān)因子及癌細(xì)胞增殖凋亡的影響,探討其腫瘤抑制機(jī)制。
觀察記錄不同給藥劑量20、50、80 mg/(kg·d)白術(shù)多糖對肺癌模型大鼠肺指數(shù)、脾臟指數(shù)、胸腺指數(shù)的影響。全自動血細(xì)胞分析儀檢測大鼠外周血中白細(xì)胞和溶菌酶含量。ELISA 法檢測大鼠血清中 IgG、IgA、IgM 水平。流式細(xì)胞儀分析 T 淋巴細(xì)胞亞群 CD3+、CD4+、CD8+比例。MTT 法和 Annexin V-FITC/PI 雙染法分別檢測癌細(xì)胞增殖和凋亡。
與模型組相比,白術(shù)多糖各劑量組大鼠肺指數(shù)均下降(< 0.01),脾臟和胸腺指數(shù)上升(< 0.01),大鼠外周血中白細(xì)胞和溶菌酶含量升高(< 0.01),且均呈劑量依賴性。ELISA 法和流式細(xì)胞儀分析結(jié)果顯示,白術(shù)多糖給藥組大鼠血清免疫球蛋白 IgG、IgA、IgM 水平和 T 淋巴細(xì)胞亞群 CD3+、CD4+、CD4+/CD8+水平呈劑量依賴性升高(< 0.01)。MTT 法和 Annexin V-FITC/PI 雙染法檢測結(jié)果表明,對比模型組,白術(shù)多糖各劑量組肺癌模型大鼠癌細(xì)胞增殖率降低(< 0.01),細(xì)胞凋亡率增大(< 0.01)。
白術(shù)多糖能夠增強(qiáng)肺癌模型大鼠機(jī)體免疫功能,抑制癌細(xì)胞增殖并誘導(dǎo)凋亡。
肺腫瘤; 免疫球蛋白類; T 淋巴細(xì)胞; 白術(shù)多糖
2018 年,肺癌新發(fā)病例數(shù)約為 209 萬,死亡病例數(shù)約為176 萬,是全球第一大惡性腫瘤[1],其惡性程度較高,易浸潤轉(zhuǎn)移,多數(shù)患者就診時被確診為晚期,預(yù)后效果差,發(fā)病率和死亡率呈上升趨勢[2-3]。手術(shù)治療、放療、化療、靶向治療、姑息治療等多種現(xiàn)代醫(yī)學(xué)治療手段在肺癌的臨床治療中發(fā)揮作用,但器官功能受損、耐藥、腫瘤轉(zhuǎn)移等不良反應(yīng)導(dǎo)致死亡率仍居高不下[4-5]。提高患者免疫力對改善生活質(zhì)量、延長患者生存期、抑制腫瘤生長具有積極意義[6]。白術(shù)()是一種天然中草藥,在我國江蘇、福建、四川、安徽等地均有分布,可用于治療水腫、脾虛、腹瀉等癥,其水溶性多糖是白術(shù)的重要組成成分,能夠提高機(jī)體免疫力,抑制腫瘤生長[7-8]。已有研究表明,白術(shù)多糖能夠抑制神經(jīng)膠質(zhì)瘤細(xì)胞增殖,減緩癌癥發(fā)展[9],但其在肺癌中的作用尚未報道。本文將建立大鼠肺癌模型,觀察白術(shù)多糖給藥后免疫球蛋白、T 淋巴細(xì)胞亞群、白細(xì)胞水平及癌細(xì)胞增殖、凋亡情況,探討白術(shù)多糖對肺癌模型大鼠免疫力及腫瘤生長的影響。
Wistar 大鼠共 60 只,體質(zhì)量(150 ± 30)g,雌雄各半,購自南京君科生物工程有限公司;白術(shù)多糖購自陜西慈緣生物技術(shù)有限公司;微球菌購自ELISA 試劑盒購自美國 BioLegend 公司;MTT 細(xì)胞增殖檢測試劑盒購自美國 Abcam 公司;Annexin V-FITC/PI 細(xì)胞凋亡檢測試劑盒購自江蘇凱基生物技術(shù)有限公司;水合氯醛購自青島宇龍海藻有限公司;胰蛋白酶、PBS 購自美國 Sigma 公司;邁瑞B(yǎng)C-5180 全自動血細(xì)胞分析儀購自武漢盛世達(dá)醫(yī)療設(shè)備有限公司;流式細(xì)胞儀購自美國 BD 公司。
1.2.1 造模與分組 60 只 Wistar 大鼠常規(guī)飼養(yǎng) 1 周后,隨機(jī)選取 12 只作為對照組,其余48只參考文獻(xiàn)[10]肺癌模型建立方法造模,每只實驗大鼠肌肉注射青霉素鈉 5 萬單位和鏈霉素 50 mg,預(yù)防肺部感染。水合氯醛麻醉后,將大鼠置于活動操作臺上,調(diào)整合適的角度,使大鼠自然仰臥并用臺面上方的固定線掛住大鼠上頜門齒。鴨咀鑷將舌輕輕拉出,彈性金屬彎形壓舌板輕輕壓舌根,暴露喉頭。趁大鼠吸氣時在額鏡直視下將吸有藥物的鈍頭注射針通過聲門輕輕插至氣管分叉處,然后輕輕向右下方斜插入心后葉的肺支氣管內(nèi),緩緩注入致癌碘油,肺內(nèi)可見碘油為灌注成功。建模成功后,將實驗大鼠隨機(jī)分為模型(NS)組、白術(shù)多糖低、中、高劑量組,每組 12 只。白術(shù)多糖低、中、高劑量組大鼠分別按 20、50、80 mg/(kg·d) 給藥并標(biāo)記為 BZ1 組、BZ2 組、BZ3 組,NS 組給予等體積生理鹽水,每周給藥 5 d,連續(xù) 16 周,給藥結(jié)束后以麻醉法處死大鼠。
1.2.2 各組大鼠肺、脾臟、胸腺指數(shù)變化 給藥結(jié)束處死大鼠后,稱取各組大鼠體重及其肺、脾臟、胸腺重量并記錄,于–80 ℃保存,計算肺、脾臟、胸腺指數(shù)。肺、脾臟、胸腺指數(shù) = 肺、脾臟、胸腺重量(mg)÷ 大鼠體重(g)。
1.2.3 大鼠外周血中白細(xì)胞和溶菌酶含量測定 采集各組大鼠外周血,全自動血細(xì)胞分析儀進(jìn)行白細(xì)胞計數(shù)。大鼠外周血以 3000 r/min 離心 10 min,取上清。適量微球菌懸液與 LB 培養(yǎng)基混勻后倒平板,平板凝固后以無菌打孔器打孔,孔內(nèi)加入上清液稀釋液,每個樣品重復(fù) 3 次,置于37 ℃恒溫保濕箱 24 h。測量溶菌環(huán)直徑,計算溶菌酶含量。
1.2.4 大鼠血清 IgG、IgA、IgM 水平檢測 將麻醉后的大鼠腹部向上固定在操作臺上,剪開皮膚,暴露腹腔。手持穿刺針 30° 斜向下刺入主動脈,抽取血液,2000 r/min 離心 15 min,收集血清,–20 ℃保存。ELISA 法檢測大鼠血清中 IgG、IgA、IgM水平。
1.2.5 大鼠外周血 CD3+、CD4+、CD8+水平檢測 取 100 μl 大鼠全血,加入含相應(yīng)抗體的 EP 管中,4 ℃暗室孵育 30 min,加入紅細(xì)胞裂解液,混勻后避光靜置 10 min,加入 500 μl PBS 洗滌兩次,離心棄上清。2% 多聚甲醛固定,流式細(xì)胞儀分析 T 淋巴細(xì)胞亞群 CD3+、CD4+、CD8+比例。
1.2.6 MTT 法檢測肺癌模型大鼠癌細(xì)胞增殖 取適量肺癌組織,剪碎,1% 胰酶消化30 min,反復(fù)吹打,流式細(xì)胞儀分選純化細(xì)胞系,制成細(xì)胞懸液。取適量細(xì)胞懸液接種于 96 孔板,于 37 ℃、5% CO2條件下培養(yǎng) 48 h,加入 20 μl MTT(5 mg/ml),繼續(xù)培養(yǎng) 4 h,吸除培養(yǎng)液后加入 150 μl DMSO,振蕩反應(yīng) 10 min,酶標(biāo)儀檢測 490 nm 處吸光度()值。
1.2.7 肺癌模型大鼠癌細(xì)胞凋亡檢測 細(xì)胞懸液離心后收集細(xì)胞,加入 100 μl 1 × binding buffer 重懸細(xì)胞,按照 Annexin V-FITC/PI 細(xì)胞凋亡檢測試劑盒說明書依次加入 5 μl Annexin V-FITC 和 10 μl PI,輕輕混勻,避光反應(yīng) 15 min,流式細(xì)胞儀檢測細(xì)胞凋亡。
圖1 白術(shù)多糖對肺癌模型大鼠肺、脾和胸腺指數(shù)的影響(與對照組相比,*P < 0.01;與NS 組相比,#P < 0.01;與 BZ1組相比,&P < 0.01;與 BZ2 組相比,$P < 0.01)
Figure 1 Effect of Atractylodes macrocephala L. polysaccharide on lung index, spleen and thymus index in lung cancer model rats (*< 0.01 compared with control group;#< 0.01 compared with NS group;&< 0.01 compared with BZ1 group;$< 0.01 compared with the BZ2 group)
稱量大鼠肺葉重量并計算肺指數(shù),結(jié)果如圖 1 顯示,與對照組相比,NS 組、白術(shù)多糖給藥各組大鼠肺指數(shù)上升,脾和胸腺指數(shù)下降;與 NS 組相比,白術(shù)多糖給藥各組大鼠肺指數(shù)下降,脾和胸腺指數(shù)上升;與 BZ1 組相比,BZ2、BZ3 大鼠肺指數(shù)下降,脾和胸腺指數(shù)上升;與 BZ2 組相比,BZ3 大鼠肺指數(shù)下降,脾和胸腺指數(shù)上升(< 0.01)。
白術(shù)多糖給藥后,各組大鼠外周血中白細(xì)胞和溶菌酶含量低于對照組;與 NS 組相比,白術(shù)多糖給藥各組大鼠外周血中白細(xì)胞和溶菌酶含量升高;與BZ1 組相比,BZ2、BZ3 大鼠外周血中白細(xì)胞和溶菌酶含量升高;與 BZ2 組相比,BZ3 大鼠外周血中白細(xì)胞和溶菌酶含量升高(< 0.01)(圖2)。
采用 ELISA 法檢測大鼠血清 IgG、IgA、IgM 水平,結(jié)果如圖 3 所示,與 NS 組相比,不同劑量白術(shù)多糖給藥后,大鼠血清 IgG、IgA、IgM 水平上升(< 0.01),呈劑量依賴性。
流式細(xì)胞儀分析顯示,白術(shù)多糖給藥(BZ1、BZ2、BZ3)的肺癌模型大鼠外周血 CD3+、CD4+細(xì)胞和CD4+/CD8+比值明顯高于NS 組(< 0.01)而 CD8+細(xì)胞低于NS 組(< 0.01),均呈劑量依賴性(圖4)。
分別采用 MTT 和 Annexin V-FITC/PI 雙染法檢測細(xì)胞增殖和凋亡檢測,結(jié)果如圖5 所示,與 NS 組相比,白術(shù)多糖各組(BZ1、BZ2、BZ3)肺癌模型大鼠癌細(xì)胞培養(yǎng) 48 和 72 h 后,其增殖率明顯降低(< 0.01),細(xì)胞凋亡率增大(< 0.01)。
肺癌的發(fā)生與吸煙、室內(nèi)環(huán)境污染、呼吸系統(tǒng)疾病等因素有關(guān),據(jù)我國癌癥登記數(shù)據(jù)顯示,肺癌的發(fā)病率和死亡率均逐年上升,嚴(yán)重危害人體健康及生命安全,已被列為重點(diǎn)防治癌癥之一[11]。中藥治療是中國傳統(tǒng)治療方式,能夠減輕患者病痛、延長患者生存期、改善生活質(zhì)量,提高免疫系統(tǒng)功能,已成為目前研究的熱點(diǎn)[12]。姜黃素可通過調(diào)節(jié) Wnt 信號通路、NF-κB/AKT 通路等多種途徑,影響肺癌細(xì)胞增殖、凋亡及耐藥性[13-14];紫杉醇、喜樹堿可調(diào)節(jié)癌細(xì)胞周期,破壞微管功能,從而抑制細(xì)胞增殖和血管生成,誘導(dǎo)細(xì)胞凋亡[15-16]。
圖 2 白術(shù)多糖對肺癌模型大鼠外周血中白細(xì)胞(A)和溶菌酶(B)含量的影響(與對照組相比,*P < 0.01;與NS 組相比,#P < 0.01;與 BZ1組相比,&P < 0.01;與 BZ2 組相比,$P < 0.01)
Figure 2 Effect of Atractylodes macrocephala L. polysaccharide on WBC (A) and lysozyme (B) content in peripheral blood of lung cancer model rats (*< 0.01 compared with control group;#< 0.01 compared with NS group;&< 0.01 compared with the BZ1 group;$< 0.01compared with the BZ2 group)
圖 3 白術(shù)多糖對肺癌模型大鼠血清IgG(A)、IgA(B)、IgM(C)水平的影響(與對照組相比,*P < 0.01;與NS 組相比,#P < 0.01;與 BZ1組相比,&P < 0.01;與 BZ2 組相比,$P < 0.01)
Figure 3 Effect of Atractylodes macrocephala L. polysaccharide on serum IgG (A), IgA (B) and IgM (C) levels in lung cancer model rats (*< 0.01 compared with control group;#< 0.01 compared with NS group;&< 0.01 compared with BZ1 group;$< 0.01 compared with the BZ2 group)
白術(shù)多糖在臨床應(yīng)用中對患者毒副作用小,無殘留;可增加脾臟和胸腺重量,促進(jìn)淋巴細(xì)胞增殖,提高單核吞噬細(xì)胞吞噬率,誘導(dǎo) IL-1、IL-2、IL-6 等免疫分子分泌,同時對樹突狀細(xì)胞表面分子表達(dá)及吞噬能力具有促進(jìn)作用,提高抗體分子 IgG 和 IgM 抗體水平,發(fā)揮免疫調(diào)節(jié)作用,改善機(jī)體免疫功能,抑制腫瘤細(xì)胞增殖并誘導(dǎo)凋亡[17-19]。李鵬等[20]以白術(shù)多糖對小鼠灌胃,小鼠淋巴細(xì)胞轉(zhuǎn)化能力及巨噬細(xì)胞吞噬活性增強(qiáng),提高機(jī)體免疫能力。此外,白術(shù)多糖能夠調(diào)節(jié)血清中 VEGF 水平,增強(qiáng)機(jī)體免疫力,調(diào)節(jié)凋亡相關(guān)蛋白表達(dá),誘導(dǎo)胃癌細(xì)胞凋亡,發(fā)揮抑癌作用[21-22]。本研究以不同劑量白術(shù)多糖給藥肺癌模型大鼠,發(fā)現(xiàn)對比 NS 組,給藥各組大鼠肺指數(shù)下降,主要免疫器官脾臟和胸腺指數(shù)增大,白細(xì)胞和溶菌酶含量升高,且均呈劑量依賴性。
免疫球蛋白普遍存在于外分泌液、組織液和血液中,是一種具有抗體活性的糖蛋白分子,其中 IgG、IgA、IgM 是主要測量指標(biāo)。IgG 是血清免疫球蛋白的主要抗體成分,多種抗病原菌、病毒抗體屬于 IgG[23]。IgA 主要通過黏膜輸出,可與周圍淋巴細(xì)胞、漿細(xì)胞組成局部免疫系統(tǒng),抵御病原微生物[24]。IgM 分子量較大,不能通過血管壁,可用于機(jī)體感染早期診斷。T 細(xì)胞亞群是主要的細(xì)胞免疫應(yīng)答形式,其免疫調(diào)節(jié)作用主要通過 CD4+和 CD8+完成,CD4+可分化產(chǎn)生抗體,誘導(dǎo)有效免疫反應(yīng)的作用;CD8+則抑制 T 細(xì)胞增殖、抗體合成和分泌,CD4+/CD8+比值的穩(wěn)定能維持機(jī)體的有效免疫應(yīng)答[25-26]。有研究發(fā)現(xiàn),在惡性腫瘤患者外周血中,CD3+、CD4+、CD8+和 CD4+/CD8+水平下降,機(jī)體免疫功能普遍下降,表明腫瘤的發(fā)生發(fā)展可能與免疫應(yīng)答有關(guān)[27-28]。本文在不同劑量組白術(shù)多糖給藥的肺癌模型大鼠血中,免疫球蛋白IgG、IgA、IgM 和 T 細(xì)胞亞群 CD3+、CD4+和 CD4+/CD8+水平上升(< 0.01),表明白術(shù)多糖能夠提高肺癌模型大鼠免疫功能。進(jìn)一步檢測癌細(xì)胞增殖和凋亡情況,發(fā)現(xiàn)白術(shù)多糖能劑量依賴性抑制癌細(xì)胞增殖并誘導(dǎo)凋亡。這一試驗結(jié)果有望為改善肺癌的臨床治療提供新靶點(diǎn)。
圖 4 白術(shù)多糖對肺癌模型大鼠外周血CD3+(A)、CD4+(B)、CD8+(C)和CD4+/CD8+(D)水平的影響(與對照組相比,*P < 0.01;與NS 組相比,#P < 0.01;與 BZ1組相比,&P < 0.01;與 BZ2 組相比,$P < 0.01)
Figure 4 Effect of Atractylodes macrocephala L. polysaccharide on CD3+(A), CD4+(B), CD8+(C) and CD4+/CD8+(D) levels in peripheral blood of lung cancer model rats (*< 0.01 compared with control group;#< 0.01 compared with NS group;&< 0.01 compared with BZ1 group;$< 0.01 compared with the BZ2 group)
圖 5 白術(shù)多糖對肺癌模型大鼠癌細(xì)胞增殖(A)和凋亡(B)的影響(與NS 組相比,*P < 0.01;與 BZ1組相比,#P < 0.01;與 BZ2 組相比,&P < 0.01)
Figure 5 Effect of Atractylodes macrocephala L. polysaccharide on proliferation (A) and apoptosis (B) of cancer cells in lung cancer model rats (*< 0.01 compared with NS group;#< 0.01 compared with BZ1 group;&< 0.01 compared with BZ2 group)
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6):394-424.
[2] Harpole DH Jr, Herndon JE 2nd, Young WG Jr, et al. Stage I nonsmall cell lung cancer. A multivariate analysis of treatment methods and patterns of recurrence. Cancer, 2015, 76(5):787-796.
[3] Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer, 2015,75(1 Suppl):191-202.
[4] Anandappa G, Popat S. Management of lung cancer. Medicine, 2016, 44(4):244-248.
[5] Wang BQ, Wang XH, Li ZG. Research progress in traditional Chinese medicine treatment of lung cancer. China J Chin Med, 2018, 33(3): 371-374. (in Chinese)
王保芹, 王心恒, 李澤庚. 中醫(yī)藥治療肺癌研究進(jìn)展. 中醫(yī)學(xué)報, 2018, 33(3):371-374.
[6] Wei D, Yu F, Chen J. Clinical effect of ribonucleic acid on improving immunity and quality of life in patients with advanced lung cancer. Clin Res Pract, 2018, 3(20):22-23. (in Chinese)
魏丹, 于菲, 陳娟. 核糖核酸在提高晚期肺癌患者免疫力、改善生存質(zhì)量中的臨床效果. 臨床醫(yī)學(xué)研究與實踐, 2018, 3(20):22-23.
[7] Huang HL, Lin TW, Huang YL, et al. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorg Med Chem Lett, 2016, 26(8):1905-1909.
[8] Yue MY, Pan Y, Ao H. Advance on the chemical, pharmacological and clinical of atractylodes macrocephala koidz. Asia Pac Traditional Med, 2016, 12(5):66-68. (in Chinese)
岳美穎, 潘媛, 敖慧. 白術(shù)化學(xué)、藥理與臨床研究進(jìn)展. 亞太傳統(tǒng)醫(yī)藥, 2016, 12(5):66-68.
[9] Li X, Liu F, Li Z, et al. Atractylodes macrocephala polysaccharides induces mitochondrial mediated apoptosis in glioma C6 cells. Int
J Biol Macromol, 2014, 66(5):108-112.
[10] Tian HS, Liu MQ, Gao WQ, et al. A methodological study on the establishment of an animal lung cancer model -- II. A new method of lung cancer induced by intrabronchial infusion of carcinogenic iodine oil solution in rats. Cancer Res Prev Treat, 1982, 9(1):2-4, 61-62. (in Chinese)
田鴻生, 劉銘球, 高文琴, 等. 建立動物肺癌模型的方法學(xué)研究——II.肺葉支氣管內(nèi)灌注致癌質(zhì)碘油溶液誘發(fā)大白鼠肺癌的新方法. 腫瘤防治研究, 1982, 9(1):2-4, 61-62.
[11] Chen WQ, Zuo TT, Zheng RS, et al. Lung cancer incidence and mortality in China in 2013. Chin J Oncol, 2017, 39(10):795-800. (in Chinese)
陳萬青, 左婷婷, 鄭榮壽, 等. 2013年中國肺癌發(fā)病與死亡分析. 中華腫瘤雜志, 2017, 39(10):795-800.
[12] Tseng CY, Lin CH, Wu LY, et al. Potential combinational anti-cancer therapy in non- small cell lung cancer with traditional Chinese medicine sun-bai-pi extract and cisplatin. PLoS One, 2016, 11(5):e0155469.
[13] Zhu JY, Yang X, Chen Y, et al. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and Sonic Hedgehog pathways. Phytother Res, 2017, 31(4):680-688.
[14] Ai Y, Zhu B, Ren C, et al. Discovery of new monocarbonyl ligustrazine-curcumin hybrids for intervention of drug-sensitive and drug-resistant lung cancer. J Med Chem, 2016, 59(5):1747-1760.
[15] Chen K, Shi W. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumor Biology, 2016, 37(8):10539-10544.
[16] Hariri G, Edwards AD, Merrill TB, et al. Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked "nanosponge" network for lung cancer chemotherapy. Mol Pharm, 2014, 11(1):265- 275.
[17] Fan W, Zhang S, Pan H, et al. Structure characterization of three polysaccharides and a comparative study of their immunomodulatory activities on chicken macrophage. Carbohydr Polym, 2016, 153:631- 640.
[18] Xu D, Tian Y. Selenium and polysaccharides of atractylodes macrocephala koidz play different roles in improving the immune response induced by heat stress in chickens. Biol Trace Elem Res, 2015, 168(1):235-241.
[19] Yang JT, Cheng X, Chen HW, et al. Advances in the mechanism of polysaccharide immunization in atractylodes macrocephala koidz. Chin J Vet Drug, 2018, 52(6):80-85. (in Chinese)
楊錦濤, 程希, 陳紅偉, 等. 白術(shù)多糖免疫調(diào)節(jié)作用機(jī)制的研究進(jìn)展. 中國獸藥雜志, 2018, 52(6):80-85.
[20] Li P, He S, Zhu HX, et al. Effect of Atractylodes macrocephala L. on immunomodulation in mice. Cardiovasc Dis J Integr Traditional Chin West Med (Electron), 2016, 4(32):95. (in Chinese)
李鵬, 賀頌, 朱鴻翔, 等. 白術(shù)多糖對小鼠免疫調(diào)節(jié)作用的影響. 中西醫(yī)結(jié)合心血管病電子雜志, 2016, 4(32):95.
[21] Zhou J, Su DC, Song GQ. Experimental study on anti-tumor effect of Atractylodes macrocephala L. on H22 liver cancer mice. Asia Pac Traditional Med, 2015, 11(17):9-10. (in Chinese)
周劍, 蘇德春, 宋國權(quán). 白術(shù)多糖對H22肝癌小鼠抗腫瘤作用實驗研究. 亞太傳統(tǒng)醫(yī)藥, 2015, 11(17):9-10.
[22] Wang H, Chen YJ, Zhang ZH. Effect of Atractylodes polysaccharides on apoptosis of gastric cancer cell line SGC-7901. Chin J Ethnomed Ethnopharm, 2015, 24(24):10-11. (in Chinese)
王鶴, 陳擁軍, 張中華. 白術(shù)多糖對胃癌細(xì)胞SGC-7901凋亡的影響. 中國民族民間醫(yī)藥, 2015, 24(24):10-11.
[23] Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs, 2016, 4(1):17-23.
[24] Macpherson AJ, Mccoy KD, Johansen FE, et al. The immune geography of IgA induction and function. Mucosal Immunol, 2008, 1(1):11-22.
[25] Kara EE, Comerford I, Fenix KA, et al. Tailored immune responses: novel effector helper t cell subsets in protective immunity. PLoS Pathog, 2014, 10(2):e1003905.
[26] Kawamoto K, Nakamura S, Iwashita A, et al. Clinicopathological characteristics of primary gastric T-cell lymphoma. Histopathology, 2009, 55(6):641-653.
[27] Yu DP, Han Y, Zhao QY, et al. CD3+ CD4+ and CD3+ CD8+ lymphocyte subgroups and their surface receptors NKG2D and NKG2A in patients with non-small cell lung cancer. Asian PacJ Cancer Prev, 2013, 15(6):2685-2688.
[28] Ye W, Liu SF, Nie AL. Comparative analysis of expression levels in patiens with gastric cancer cells perioperative peripheral blood T cell subsets (CD3+, CD4+, CD8+) and NK (CD16+ CD56+). Chin Community Dr, 2014, 30(36):167-169. (in Chinese)
葉文, 劉詩富, 聶愛俐. 胃癌患者圍手術(shù)期外周血T細(xì)胞亞群(CD3+、CD4+、CD8+)及NK(CD16+ CD56+)細(xì)胞表達(dá)水平的比較分析. 中國社區(qū)醫(yī)師, 2014, 30(36):167-169.
Regulation and mechanism of Atractylodes macrocephala L. polysaccharide on immune function in lung cancer model rats
YIN Rui, WANG Jun-gang
000
To explore the effect and mechanism of Atractylodes macrocephala L. polysaccharide on immune factors, cell proliferation and apoptosis in lung cancer model rats.
The effect of different doses of Atractylodes macrocephala L. polysaccharide 20, 50, 80 mg/(kg·d) on lung index, spleen index and thymus index in lung cancer model rats were recorded. White blood cells and lysozyme in peripheral blood of rats were detected by automatic blood cell analyzer. IgG, IgA and IgM in rat serum were detected by ELISA. The ratio of CD3+, CD4+and CD8+was analyzed by flow cytometry. Cell proliferation and apoptosis were detected by MTT and Annexin V-FITC/PI double staining assay, respectively.
As compared with NS (model group) group, the lung index was decreased (< 0.01) while the spleen, thymus index, leukocytes and lysozyme in rats were increased (< 0.01) of Atractylodes macrocephala L. polysaccharide in each dose group. The result of ELISA and flow cytometry showed that serum immune globulin IgG, IgA, IgM and T lymphocyte subsets CD3+, CD4+, CD4+/CD8+were increased in a dose-dependent manner (< 0.01) in rats treated with Atractylodes macrocephala L. polysaccharide. The results of MTT assay and Annexin V-FITC/PI double staining showed that cell proliferation rate was decreased (< 0.01) and apoptosis rate was increased (< 0.01) of BZ1 group, BZ2 group and BZ3 group.
Atractylodes macrocephala L. polysaccharide enhances the immunologic function of lung cancer model rats, inhibits cell proliferation and induces apoptosis.
Lung neoplasms; Immunoglobulins; T-lymphocytes; Atractylodes macrocephala L. polysaccharide
YIN Rui, Email: 155203699@qq.com
Author Affiliation: Department of Thoracic Surgery, NanYang Central Hospital, Henan 473000, China
10.3969/j.issn.1673-713X.2019.06.009
473000 河南,南陽市中心醫(yī)院胸外科
銀瑞,Email:155203699@qq.com
2019-07-29