杜晨曦 王金麗 周華坤 殷恒霞
摘要:赤霉素(Gibberellins,GAs)作為植物體內(nèi)廣泛存在的一類生長(zhǎng)調(diào)節(jié)劑,參與調(diào)控植物種子萌發(fā),下胚軸伸長(zhǎng),葉片伸展,花、果實(shí)及種子發(fā)育等諸多生理過程。大量研究表明,赤霉素在植物抵抗非生物脅迫中也發(fā)揮著重要作用,主要通過調(diào)節(jié)GAs的生物合成、信號(hào)轉(zhuǎn)導(dǎo)及其生物活性,以提高植物對(duì)非生物脅迫的耐受性。系統(tǒng)綜述了近年來外源赤霉素對(duì)植物種子萌發(fā)以及幼苗生長(zhǎng)發(fā)育影響的相關(guān)研究,從種子萌發(fā)、生理生化特性、相關(guān)基因調(diào)控等方面進(jìn)行了系統(tǒng)闡述,旨在為赤霉素在農(nóng)作物生產(chǎn)中的利用提供參考依據(jù)。
關(guān)鍵詞:赤霉素;種子萌發(fā);幼苗生理特性;基因調(diào)控
中圖分類號(hào):Q945? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2019)22-0009-06
DOI:10.14088/j.cnki.issn0439-8114.2019.22.002? ? ? ? ? ?開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research progress on the effects of gibberellin on plant
seed germination and seedling growth
DU Chen-xi1a,1b,WANG Jin-li1a,1b,ZHOU Hua-kun2,YIN Heng-xia1a
(1a.State Key Laboratory of Plateau Ecology and Agriculture Qinghai University;1b.College of Eco-Environmental Engineering,Qinghai University,Xining 810016,China;2.Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province,Northwest Institute of Plateau Biology, Chinese Academy of Sciences,Xining 810008,China)
Abstract: Gibberellin (Gibberellins, gas) as a kind of growth regulator widely existing in plants, are involved in the regulation of plant seed germination, hypocotyl extension, leaf extension, the development of the flower, fruit and seed and many other physiological processes. A large number of studies have shown that GAs also play an important role in plant resistance to abiotic stress by regulating the biosynthesis, signal transduction and biological activity of GAs, in order to improve the tolerance of plants to abiotic stress. The recent studies on the effect of exogenous gibberellins on seed germination and the growth and development of seedlings were systematically reviewed, mainly focusing on seed germination, physiological and biochemistry characteristics, and related gene regulation, and an important reference basis for the utilization of the gibberellin in the production of the crops was provided.
Key words: gibberellin; seed germination; seedling physiological characteristics; gene regulation
赤霉素(Gibberellin,GAs)是廣泛分布于植物的一類重要生長(zhǎng)調(diào)節(jié)劑,參與種子萌發(fā),幼苗生長(zhǎng)發(fā)育、果實(shí)成熟發(fā)育等重要的生理過程[1,2]。赤霉素的種類很多,自1926年日本學(xué)者黑澤英一在研究水稻惡苗病中發(fā)現(xiàn)赤霉素以來,已陸續(xù)發(fā)現(xiàn)136種天然赤霉素,但僅有部分赤霉素具有生理功能,如GA1、GA3、GA7、GA30等。赤霉素是由4個(gè)異戊二烯組成的二萜類物質(zhì),主要在高等植物細(xì)胞的質(zhì)體、內(nèi)質(zhì)網(wǎng)和細(xì)胞質(zhì)基質(zhì)中合成[3],其生物合成途徑如圖1所示[4],其中參與赤霉素合成的主要酶中,CPS和KS屬于TPSs酶,K0和KAO屬于P450類,GA20ox和GA3ox等屬于2ODDs類[5-8]。
1? 外源赤霉素對(duì)植物種子萌發(fā)的影響
赤霉素能促進(jìn)生長(zhǎng)素的合成和細(xì)胞分裂膨大,提高種子胚內(nèi)酶的活性并促進(jìn)代謝活動(dòng),尤其對(duì)休眠種胚的生長(zhǎng)有顯著的促進(jìn)作用(表1)[10]。研究發(fā)現(xiàn),赤霉素通過誘導(dǎo)植物相關(guān)基因的表達(dá)控制酶蛋白的合成和各種內(nèi)源生長(zhǎng)調(diào)節(jié)劑的分泌,促進(jìn)植物體內(nèi)多種生理生化代謝反應(yīng),從而提高種子的活力[11]。
不同植物種子對(duì)于外源赤霉素的敏感程度也不盡相同,因此,摸索適宜濃度的赤霉素對(duì)于種子萌發(fā)具有重要意義(表1)。赤霉素促進(jìn)植物種子萌發(fā)的機(jī)理主要有兩個(gè)方面:首先,一定濃度的赤霉素對(duì)種皮的蠟質(zhì)層具有不同程度的腐蝕作用,浸種后能提高種皮的透水、透氣性,增強(qiáng)種子內(nèi)生理生化過程與呼吸作用,促進(jìn)胚生長(zhǎng),從而能促進(jìn)種子萌發(fā)[21];其次,赤霉素能促進(jìn)生長(zhǎng)素的合成和細(xì)胞分裂膨大,提高種子胚內(nèi)酶(如淀粉酶)的活性和代謝活動(dòng),從而提高其發(fā)芽勢(shì)和發(fā)芽率[22,23]。另外,研究發(fā)現(xiàn)種子浸出液電導(dǎo)率的高低能夠反映種子細(xì)胞膜的完整性[24],通過對(duì)羊草、洋蔥種子浸出液的電導(dǎo)率進(jìn)行檢測(cè)發(fā)現(xiàn),赤霉素浸種濃度過高時(shí),與對(duì)照相比電導(dǎo)率較高,可能高濃度的赤霉素對(duì)種子產(chǎn)生了脅迫,反而抑制了種子的萌發(fā)[25,26]。
2? 外源赤霉素對(duì)植物幼苗生理生化特性的影響
赤霉素通過促進(jìn)細(xì)胞分裂伸長(zhǎng)進(jìn)而調(diào)控植物株高、器官大小、葉面積以及根系發(fā)育[27-32]。江雪[27]研究發(fā)現(xiàn),外源赤霉素顯著促進(jìn)了毛竹實(shí)生苗新分蘗植株的株高和節(jié)間伸長(zhǎng);李品榮等[28]研究發(fā)現(xiàn),外源赤霉素能促進(jìn)李子開花結(jié)實(shí)。大量的研究表明,外源赤霉素對(duì)株高、單株葉片數(shù)、嫩枝鮮重等都具有十分重要的作用[29-32]。
2.1? 外源赤霉素對(duì)植物幼苗抗氧化系統(tǒng)酶活性的影響
自然環(huán)境條件下,植物為了維持正常的生長(zhǎng)發(fā)育,通過自身抗氧化酶系統(tǒng)和抗氧化劑(即非酶系統(tǒng)) 進(jìn)行不利生長(zhǎng)條件下活性氧的清除[33]。其抗氧化酶系統(tǒng)中超氧化物歧化酶(SOD)是植物抗氧化的第一道防線,能清除細(xì)胞中多余的超氧陰離子;過氧化氫酶(CAT)和過氧化物酶(POD)可以使H2O2歧化成無(wú)毒害的水和氧分子[34]。丙二醛(MDA)是植物器官衰老或在逆境條件下受傷害時(shí)組織或器官膜脂質(zhì)發(fā)生過氧化反應(yīng)而產(chǎn)生的,它的含量與植物衰老及逆境傷害有密切關(guān)系。研究發(fā)現(xiàn),外源赤霉素通過提高活性氧清除劑SOD和CAT的活性調(diào)節(jié)脂質(zhì)過氧化,從而抑制植株衰老[35-38]。同時(shí),研究表明,外源噴施赤霉素后,植株體內(nèi)MDA含量顯著降低,有效地防止了保護(hù)酶和膜系統(tǒng)的破壞,延緩了膜系統(tǒng)的衰老[13,37,39]。
2.2? 外源赤霉素對(duì)植物幼苗滲透調(diào)節(jié)物質(zhì)含量的影響
可溶性蛋白質(zhì)、可溶性糖和脯氨酸是植物體內(nèi)主要的滲透調(diào)節(jié)物質(zhì),通過保持植物細(xì)胞的含水量和膨壓勢(shì)來維持正常的生長(zhǎng)和代謝[40]。Matsukura等[41]研究發(fā)現(xiàn),外源赤霉素能夠增加水稻植株中包括糖在內(nèi)的滲透溶質(zhì)的總量。鄒竣竹[42]、劉春冬等[43]研究發(fā)現(xiàn),低濃度的赤霉素促進(jìn)了野牛草和楊梅幼苗中可溶性糖、可溶性蛋白含量的增加。何麗等[39]對(duì)番茄的研究發(fā)現(xiàn),外源赤霉素處理的番茄幼苗體內(nèi)脯氨酸的含量顯著低于對(duì)照。因此,外源赤霉素處理能夠促進(jìn)植物體內(nèi)滲透調(diào)節(jié)物質(zhì)的顯著增加,并使植物細(xì)胞保持較高的含水量,從而保證了植物的正常生長(zhǎng)和代謝活動(dòng)。
2.3? 外源赤霉素對(duì)植物幼苗葉片葉綠素含量的影響
Aftab等[44]研究發(fā)現(xiàn),外源赤霉素處理使得黃花蒿葉片的氣孔導(dǎo)度、內(nèi)部CO2含量和凈光合速率顯著提高。同時(shí),大量研究表明,外源赤霉素處理使葉片的葉綠素含量、細(xì)胞間CO2濃度、光合速率、氣孔導(dǎo)度和蒸騰速率都有不同程度的增加,延緩衰老過程中葉綠素的降解[45-48]。
2.4? 外源赤霉素對(duì)植物內(nèi)源生長(zhǎng)調(diào)節(jié)劑含量的影響
內(nèi)源生長(zhǎng)調(diào)節(jié)劑作為植物體內(nèi)重要的調(diào)控因子,參與了植物生長(zhǎng)發(fā)育過程中一系列的生理生化過程,對(duì)植物營(yíng)養(yǎng)生長(zhǎng)時(shí)期各器官的形成和生長(zhǎng)發(fā)揮著重要作用[49]。內(nèi)源生長(zhǎng)素可以通過調(diào)節(jié)赤霉素的合成和代謝,共同調(diào)控植物主根、側(cè)根和根毛的形成延伸,葉片中營(yíng)養(yǎng)元素的運(yùn)輸以及促進(jìn)葉原基的發(fā)生等生理活動(dòng)。內(nèi)源脫落酸、生長(zhǎng)素和赤霉素在植物生長(zhǎng)發(fā)育的多個(gè)過程中存在相互作用,共同調(diào)控植物的生長(zhǎng)發(fā)育過程。研究表明,植物通過調(diào)節(jié)生長(zhǎng)素和脫落酸的平衡來控制側(cè)根的發(fā)育,在幼苗生長(zhǎng)時(shí)期脫落酸與赤霉素具有相互拮抗作用[50],而且外源赤霉素能夠降低內(nèi)源脫落酸水平[51]。通過外源赤霉素浸種后植株內(nèi)赤霉素和生長(zhǎng)素含量均呈逐漸升高的趨勢(shì),反之,脫落酸和乙烯的含量呈逐漸下降的趨勢(shì),由此可以看出,外源赤霉素通過降低脫落酸含量來打破植物種子休眠而促進(jìn)種子萌發(fā)[52-56]。Liu等[57]研究發(fā)現(xiàn),外源赤霉素提高了水稻分蘗節(jié)中的ABA和IAA含量,而降低了玉米素+玉米素核糖苷(Z+ZR)的含量??偠灾?,外源赤霉素能夠使植株內(nèi)IAA含量升高,而IAA能夠直接調(diào)節(jié)細(xì)胞的伸長(zhǎng),從而促進(jìn)了植物的生長(zhǎng)發(fā)育。
3? 外源赤霉素對(duì)植物幼苗生長(zhǎng)相關(guān)基因表達(dá)的影響
赤霉素信號(hào)傳導(dǎo)路徑中的主要元件由活性GA受體GID1蛋白、核心調(diào)控DELLA蛋白、泛素E3連接酶復(fù)合體(SCFSLY1/GID2)和降解作用的26S蛋白酶等組成[58-61]。近年來,隨著研究的不斷深入,赤霉素信號(hào)傳導(dǎo)路徑中主要元件之間的相互作用及功能已比較明確,赤霉素信號(hào)傳導(dǎo)路徑主要過程為活性GA、GID1蛋白受體和DELLA蛋白結(jié)合后形成三聯(lián)體,并且在F-box型蛋白SLY1和GID2的標(biāo)靶下與26S蛋白相結(jié)合后被降解[61-63]。相關(guān)研究結(jié)果表明,在植物體內(nèi)內(nèi)源活性赤霉素水平較低的情況下,DELLA蛋白通過抑制赤霉素效應(yīng)來減少植物生長(zhǎng),而此過程中調(diào)控植物生長(zhǎng)的轉(zhuǎn)錄因子,如SPY和EL1均可增強(qiáng)其對(duì)植物生長(zhǎng)的抑制作用[64];而當(dāng)植物體內(nèi)內(nèi)源活性赤霉素水平較高時(shí),GID1蛋白受體通過構(gòu)象變化結(jié)合活性赤霉素,之后與DELLA蛋白形成三聯(lián)體,最后DELLA蛋白被降解,解除了對(duì)植物生長(zhǎng)的抑制作用,開啟活性赤霉素對(duì)植物生長(zhǎng)的促進(jìn)作用[65,66]。
Rinne等[67]研究發(fā)現(xiàn),外源赤霉素處理后使與其合成相關(guān)的基因GA20ox和GA3ox的表達(dá)量下調(diào)。李軍等[68]以一定濃度的赤霉素水溶液灌注太子參根部,結(jié)果發(fā)現(xiàn)赤霉素生物合成關(guān)鍵酶基因GA20ox1、GA20ox2和GA3ox1表達(dá)量顯著降低,并且2個(gè)赤霉素受體蛋白基因GID1a和GID1b的表達(dá)量也顯著降低。同時(shí),Zhuang等[69]用赤霉素處理果梅枝條后發(fā)現(xiàn),GA20ox、GA2ox等與赤霉素代謝相關(guān)的基因也發(fā)生了顯著差異表達(dá)。Ueno等[70]通過轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)有2個(gè)與赤霉素信號(hào)相關(guān)的基因GASA和ERD14,以及赤霉素的受體GID1在橡樹季節(jié)性休眠誘導(dǎo)和解除中起關(guān)鍵作用。Barros等[71]研究扁桃花芽萌發(fā)的機(jī)制時(shí)發(fā)現(xiàn),與赤霉素代謝相關(guān)的基因PdGA20ox和PdGA2ox差異表達(dá)導(dǎo)致赤霉素代謝發(fā)生變化,從而影響扁桃的花芽萌發(fā)。Gocal等[72]研究模式植物擬南芥時(shí)發(fā)現(xiàn),具有GAMYB樣活性的atmy33基因在外源赤霉素處理后表達(dá)量增加,且促進(jìn)植株在短時(shí)間內(nèi)開花。魏志剛等[73]用不同濃度等體積赤霉素(GA3)溶液進(jìn)行葉面噴灑處理白樺,研究發(fā)現(xiàn)與白樺成花相關(guān)的基因LFY、ELF3、GI和LD表達(dá)量都明顯降低,表明外源赤霉素抑制了促進(jìn)開花相關(guān)基因的表達(dá)。
4? 展望
赤霉素在植物的生長(zhǎng)發(fā)育過程中發(fā)揮著重要的調(diào)控作用。目前,雖然已經(jīng)對(duì)赤霉素的作用機(jī)制有了初步了解,但在農(nóng)業(yè)生產(chǎn)中為了更好地利用赤霉素,仍需繼續(xù)進(jìn)行深入研究。①外源赤霉素與內(nèi)源赤霉素之間的相互作用機(jī)制。研究表明,通過外源赤霉素浸種或者葉片噴施,會(huì)使內(nèi)源赤霉素的含量增加;但是目前外源赤霉素如何調(diào)控相應(yīng)的基因,進(jìn)而調(diào)控內(nèi)源赤霉素的整個(gè)生物合成過程及隨后的信號(hào)感知及信號(hào)傳導(dǎo)過程仍不清楚。②赤霉素與其他生長(zhǎng)調(diào)節(jié)劑在休眠進(jìn)程中的相互作用機(jī)理。許多研究表明,赤霉素與脫落酸的含量比值決定著木本植物的休眠狀態(tài);同時(shí)其他生長(zhǎng)調(diào)節(jié)劑在休眠進(jìn)程中同樣起著重要的作用;研究赤霉素與其他生長(zhǎng)調(diào)節(jié)劑對(duì)休眠進(jìn)程的調(diào)控機(jī)制,對(duì)深入理解赤霉素的破眠機(jī)制具有十分重要的意義。③赤霉素代謝相關(guān)基因與其他基因之間的調(diào)控網(wǎng)絡(luò)。盡管赤霉素生物合成、信號(hào)感知及傳導(dǎo)過程已經(jīng)研究得比較透徹,但赤霉素如何通過調(diào)控赤霉素代謝相關(guān)基因進(jìn)而調(diào)控其他生命活動(dòng)相關(guān)基因仍不清楚。④赤霉素使用方法的改進(jìn)。各種傳統(tǒng)栽培措施基本上是側(cè)重運(yùn)用外部條件來影響植物生理狀況,而赤霉素的使用,則是外部條件加內(nèi)源生長(zhǎng)調(diào)節(jié)劑水平的雙重調(diào)控,從而為農(nóng)作物栽培獲得更高的產(chǎn)量提供了可能。
參考文獻(xiàn):
[1] OGAWA M,HANADA A,YAMAUCHI Y,et al. Gibberellin biosynthesis and response during Arabidopsis seed germination[J].Plant cell,2003,15(7):1591-1604.
[2] CHENG H,QIN L,LEE S,et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function[J].Development,2004,131(5):1055-1064.
[3] 潘瑞熾,王小菁,李娘輝.植物生理學(xué)[M].北京:高等教育出版社,2012.
[4] YAMAGUCHI S. Gibberellin metabolism and its regulation[J].Annu Rev Plant Biol,2008,59:225-251.
[5] HELLIWELL C A,CHANDLER P M,POOLE A,et al. The CYP88A cytochrome P450,ent-kaurenoic acid oxidase,catalyzes three steps of the gibberellin biosynthesis pathway[J].Proceedings of the national academy of sciences,2001,98(4):2065-2070.
[6] HELLIWELL C A,SULLIVAN J A,MOULD R M,et al. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway[J].The plant journal,2001,28(2):201-208.
[7] SUN T P,KAMIYA Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase a of gibberellin biosynthesis[J].The plant cell,1994,6(10):1509-1518.
[8] APPLEFORD N E J,EVANS D J,LENTON J R,et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J].Planta,2006,223(3):568-582.
[9] 蔡斌華,莊維兵,高志紅,等.赤霉素解除木本植物季節(jié)性休眠機(jī)制的研究進(jìn)展[J].西北植物學(xué)報(bào),2014,34(10):2145-2152.
[10] 李保珠,趙? 翔,安國(guó)勇.赤霉素的研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),2011,27(1):1-5.
[11] 李冬玲,段紅霞,劉鴻晨,等.赤霉素及其功能類似物與赤霉素受體的研究進(jìn)展[J].農(nóng)藥學(xué)學(xué)報(bào),2013,15(6):601-608.
[12] KOUAKOU K L,KOUAKOU C,KOFFI K K,et al. Effect of mechanical scarification and gibberellins (GA3) on seed germination and growth of Garcinia kola (Heckel)[J].Journal of applied biosciences,2016,103(1):9811-9818.
[13] 張會(huì)靈,余義和,郭大龍,等.赤霉素對(duì)蘿卜種子萌發(fā)及幼苗生理特性的影響[J].北方園藝,2016(15):31-33.
[14] DESAI A,PANCHAL B,TRIVEDI A,et al. Studies on seed germination and seedling growth of papaya (Carica papaya L.) CV. madhubindu as influenced by media,GA3 and cow urine under net house condition[J].Journal of pharmacognosy and phytochemistry,2017,6(4):1448-1451.
[15] 郭曄紅,藺海明.赤霉素和細(xì)胞激動(dòng)素對(duì)白刺種子萌發(fā)的調(diào)控研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(6):1196-1199.
[16] 王永紅,蘇? 李,張艷紅.層積處理及赤霉素浸種對(duì)大葉芹種子萌發(fā)的影響[J].湖北農(nóng)業(yè)科學(xué),2018,57(1):71-73.
[17] 韋? 妍,李? 萍,田? 嬋,等.不同濃度赤霉素浸種對(duì)刺蒺藜種子萌發(fā)特性的影響[J].延安大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,37(1):84-87,91.
[18] 付遠(yuǎn)洪,錢沉魚,李朝嬋,等.不同濃度赤霉素對(duì)伴娘山月桂種子萌發(fā)的影響[J].種子,2017,36(2):5-8.
[19] ADAMS R P,TEBEEST A K. The effects of gibberellic acid (GA3),ethrel, seed soaking and pre-treatment storage temperatures on seed germination of Helianthus annuus and H. petiolaris[J].Phytologia,2016,98:213-218.
[20] 趙東興,李 春,李? 濤,等.4種植物生長(zhǎng)調(diào)節(jié)劑對(duì)馬檳榔種子萌發(fā)和幼苗生長(zhǎng)的影響[J].南方農(nóng)業(yè)學(xué)報(bào),2015,46(10):1834-1838.
[21] 申惠翡,趙? 冰,黃文梅.溫度和赤霉素對(duì)金背杜鵑種子萌發(fā)和幼苗生長(zhǎng)的影響[J].江蘇農(nóng)業(yè)科學(xué),2016,44(6):281-283.
[22] INADA S,SHIMMEN T. Regulation of elongation growth by gibberellin in root segments of Lemna minor[J].Plant and cell physiology,2000,41(8):932-939.
[23] UBEDA-TOM?魣S S,F(xiàn)EDERICI F,CASIMIRO I,et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size[J].Current biology,2009,19(14):1194-1199.
[24] 鐘希瓊,王惠珍.高等植物赤霉素生物合成及其調(diào)節(jié)研究進(jìn)展[J].植物學(xué)通報(bào),2001,18(3):303-307.
[25] 崔? 爽.外源赤霉素(GA3)對(duì)羊草生長(zhǎng)發(fā)育及生物量的影響[D].長(zhǎng)春:東北師范大學(xué),2004.
[26] ALI M A,HOSSAIN M M,ZAKARIA M,et al. Effect of GA3 on quality seed production of onion in bangladesh[J].Ecofriendly agricultural journal,2015,8(3):47-50.
[27] 江? 雪.外源赤霉素對(duì)毛竹實(shí)生苗生長(zhǎng)的影響[D].南京:南京林業(yè)大學(xué),2015.
[28] 李品榮,陳? 強(qiáng),常恩福,等.李子豐產(chǎn)栽培技術(shù)研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2003(1):130-132.
[29] KUCHLAN P,KUCHLAN M K,HUSAIN S M. Effect of foliar application of growth activator,promoter and antioxidant on seed quality of soybean[J].Legume Res,2017,40(2):313-318.
[30] DILIP W S,SINGH D,MOHARANA D,et al. Influence of gibberellic acid(GA3) on seed germination and seedling growth of Kagzi Lime[J].Journal of scientific agriculture,2018,1:62-68.
[31] 徐小玉,張鳳銀,曹? 陽(yáng).赤霉素和乙烯利對(duì)美女櫻種子萌發(fā)及幼苗生長(zhǎng)的影響[J].種子,2014,33(6):72-74.
[32] RAHEMI M,BANINASAB A. Effect of gibberellic acid on seedling growth in two wild species of pistachio[J].The Journal of horticultural science and biotechnology,2000,75(3):336-339.
[33] FOYER C H,DESCOURVIERES P,KUNERT K J.Protection against oxygen radicals:An important defense mechanism studied in transgenic plants[J].Plant, cell & environment,1994,17(5):507-523.
[34] 李? 璇,岳? 紅,王? 升,等.影響植物抗氧化酶活性的因素及其研究熱點(diǎn)和現(xiàn)狀[J].中國(guó)中藥雜志,2013,38(7):973-978.
[35] DHINDSA R S,PLUMB-DHINDSA P L,REID D M. Leaf senescence and lipid peroxidation: Effects of some phytohormones,and scavengers of free radicals and singlet oxygen[J].Physiologia plantarum,1982,56(4):453-457.
[36] 施? 園.外源赤霉素對(duì)甜瓜幼苗建成與產(chǎn)量形成的影響[D].黑龍江大慶:黑龍江八一農(nóng)墾大學(xué),2017.
[37] 張秀麗.赤霉素和矮壯素對(duì)綠豆生育性狀和生理指標(biāo)及產(chǎn)量的影響研究[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2007.
[38] 趙? 鑫,張繼澍,王? 敏.CaCl2和GA3處理對(duì)棗果采后衰老和膜脂過氧化的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2003(2):118-120,124.
[39] 何? 麗,劉? 杰,何彩燕,等.不同濃度赤霉素對(duì)番茄種子萌發(fā)及幼苗生長(zhǎng)的影響[J].農(nóng)業(yè)科技與信息,2018(4):43-45.
[40] DAI H P, WEI S H,TWARDOWSKA I,et al.Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behaviorbased on cell membrane permeability[J].Environ Sci Pollut Res,2017,24:23161-23167.
[41] MATSUKURA C,ITOH S,NEMOTO K,et al. Promotion of leaf sheath growth by gibberellic acid in a dwarf mutant of rice[J].Planta,1998,205(2):145-152.
[42] 鄒竣竹.激素浸種對(duì)野牛草種子發(fā)芽與幼苗生長(zhǎng)生理的影響[D].北京:中國(guó)林業(yè)科學(xué)研究院,2017.
[43] 劉春冬,傅建卿,陳汝頂.赤霉素對(duì)東魁楊梅花芽分化期生理特性的影響[J].南方園藝,2013,24(1):13-14,18.
[44] AFTAB T,KHAN M M A,IDREES M,et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application[J].Journal of plant interactions,2010,5(4):273-281.
[45] RAMTEKE V,PAITHANKAR D H,BAGHEL M M,et al. Impact of GA3 and propagation media on growth rate and leaf chlorophyll content of papaya seedlings[J].Research journal of agricultural sciences,2016,7(1):169-171.
[46] 曹柳青.赤霉素對(duì)冬棗光合作用和內(nèi)源激素的影響[D].河北保定:河北農(nóng)業(yè)大學(xué),2006.
[47] SKUTNIK E,RABIZA J,WACHOWICZ M,et al. Senescence of cut leaves of Zantedeschia aethiopica and Z. elliottiana. part I. chlorophyll degradation[J].Acta Sci Pol,2004,3(2):57-65.
[48] KHADER S,SINGH B P,KHAN S A. Effect of GA3 as a post-harvest treatment of mango fruit on ripening,amylase and peroxidase activity and quality during storage[J].Scientia horticulturae,1988,36(3-4):261-266.
[49] RUBIO V,BUSTOS R,IRIGOYEN M L,et al. Plant hormones and nutrient signaling[J].Plant molecular biology,2009,69(4):361-373.
[50] BRADFORD K J,NONOGAKI H. Seed development,dormancy and germination[M].Oxford:Blackwell publishing,2007.
[51] TOYOMASU T,YAMANE H,MUROFUSHI N,et al. Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic lettuce seeds[J].Plant and cell physiology,1994,35(1):127-129.
[52] 方志榮,蘇智先,胡進(jìn)耀. 脫落酸、赤霉素和乙烯對(duì)種子休眠的萌發(fā)和調(diào)控[J].西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,28(2):127-132.
[53] 王? 寧,梅海軍,袁美麗,等.赤霉素浸種和變溫層積過程對(duì)冬青種子激素含量的影響[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,44(5):524-527.
[54] 吳建明,李楊瑞,楊? 柳,等.赤霉素誘導(dǎo)甘蔗節(jié)間伸長(zhǎng)與內(nèi)源激素變化的關(guān)系[J].熱帶作物學(xué)報(bào),2009,30(10):1452-1457.
[55] 曹柳青.外源赤霉素對(duì)冬棗葉片內(nèi)源生長(zhǎng)調(diào)節(jié)劑含量的影響[J].南方農(nóng)業(yè),2015,9(21):193-194.
[56] 鄭順林,袁繼超,馬? 均,等.外源赤霉素對(duì)小整薯休眠解除中的激素變化及物質(zhì)轉(zhuǎn)化的影響[J].西南農(nóng)業(yè)學(xué)報(bào),2008,21(2):323-327.
[57] LIU Y,DING Y F,WANG Q S,et al. Effect of plant growth regulators on growth of rice tiller bud and changes of endogenous[J].Acta agronomica sinica,2011,37(4):670-676.
[58] UEGUCHI-TANAKA M,ASHIKARI M,NAKAJIMA M,et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J].Nature,2005,437(7059):693-698.
[59] PENG J,CAROL P,RICHARDS D E,et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes & development,1997,11(23): 3194-3205.
[60] MCGINNIS K M,THOMAS S G,SOULE J D,et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J].Plant cell,2003,15(5):1120-1130.
[61] MILLER J,GORDON C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins[J].FEBS letters,2005,579(15):3224-3230.
[62] HARBERD N P,BELFIELD E,YASUMURA Y.The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:How an “inhibitor of an inhibitor” enables flexible response to fluctuating environments[J].Plant cell,2009,21(5):1328-1339.
[63] SUN T P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J].Current biology,2011,21(9):338-345.
[64] SUN T. Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development[J].Plant physiology,2010, 154(2):567-570.
[65] DILL A,THOMAS S G,HU J,et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation[J].Plant cell,2004,16(6):1392-1405.
[66] GRIFFITHS J,MURASE K,RIEU I,et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J].Plant cell,2006,18(12):3399-3414.
[67] RINNE P L H,WELLING A,VAHALA J,et al. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus[J].Plant cell,2011,23(1):130-146.
[68] 李? 軍,周? 濤,鄭? 偉,等.外源GA3對(duì)太子參塊根發(fā)育及赤霉素生物合成的調(diào)控[J].分子植物育種,2018,16(20):6867-6874.
[69] ZHUANG W,GAO Z,WANG L,et al. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release[J].Journal of experimental botany,2013,64(16):4953-4966.
[70] UENO S,KLOPP C,LEPL?魪 J C,et al. Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing[J].BMC genomics,2013,14(1):236.
[71] BARROS P M,GON?覶ALVES N,SAIBO N J M, et al. Cold acclimation and floral development in almond bud break:Insights into the regulatory pathways[J].Journal of experimental botany,2012,63(12):4585-4596.
[72] GOCAL G F W,SHELDON C C,GUBLER F,et al. GAMYB-like genes,flowering,and gibberellin signaling in Arabidopsis[J].Plant physiology,2001,127(4):1682-1693.
[73] 魏志剛,錢婷婷,張凱旋,等.外源GA3對(duì)白樺成花基因影響的定量PCR分析[J].林業(yè)科學(xué),2011,47(7):187-192.