劉永晨 司成成 柳洪鵑,* 張彬彬 史春余,*
研究簡(jiǎn)報(bào)
改善土壤通氣性促進(jìn)甘薯源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)的原因解析
劉永晨1司成成2柳洪鵑1,*張彬彬1史春余1,*
1山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/ 作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 山東泰安 271018;2海南大學(xué)園藝學(xué)院, 海南海口 570228
為了明確土壤通氣性對(duì)甘薯源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)的調(diào)控機(jī)制, 本研究以淀粉型品種商薯19和濟(jì)徐23為試驗(yàn)材料, 設(shè)置疏松、對(duì)照和緊實(shí)3個(gè)處理進(jìn)行大田試驗(yàn), 研究結(jié)果表明, 與對(duì)照處理相比, 疏松處理顯著提高2個(gè)品種的塊根產(chǎn)量和經(jīng)濟(jì)系數(shù), 2年平均增幅分別為27.03%~38.74%和6.30%~13.05%, 緊實(shí)處理則顯著降低2個(gè)品種的塊根產(chǎn)量和經(jīng)濟(jì)系數(shù), 2年平均降幅分別為17.87%~15.92%和10.83%~15.63%。功能葉13C標(biāo)記結(jié)果顯示, 疏松處理顯著提高塊根中光合產(chǎn)物的輸入效率。疏松處理顯著提高塊根中蔗糖和淀粉含量, 顯著降低地上部器官中淀粉含量和莖中尤其是莖的中下部中蔗糖含量; 緊實(shí)處理則顯著降低塊根中蔗糖和淀粉含量, 而顯著提高地上部器官蔗糖和淀粉含量, 且莖中下部蔗糖含量增幅較大。疏松處理顯著降低50~150 d莖基部與莖頂部間和莖基部與塊根間的蔗糖含量差; 緊實(shí)處理則顯著提高莖基部與莖頂部間和莖基部與塊根間的蔗糖含量差, 且莖基部與塊根間蔗糖含量差的變幅大于莖基部與莖頂部間的蔗糖含量差。相關(guān)分析表明, 莖基部與塊根間、莖基部與莖頂部間蔗糖含量差與塊根蔗糖和淀粉含量呈極顯著負(fù)相關(guān)。說(shuō)明改善土壤通氣性可促進(jìn)莖基部光合產(chǎn)物向塊根的運(yùn)轉(zhuǎn), 提高塊根中碳水化合物含量, 增加塊根產(chǎn)量。
甘薯; 土壤通氣性; 塊根產(chǎn)量; 光合產(chǎn)物; 運(yùn)轉(zhuǎn)
甘薯用途廣, 適應(yīng)性強(qiáng)[1-4], 丘陵山地多有種植[5-6]。近年來(lái), 隨著甘薯生產(chǎn)收益的增加, 甘薯種植也不斷向平原地區(qū)擴(kuò)張[7]。甘薯是以地下塊根為收獲物, 土壤疏松、通氣良好是其獲得高產(chǎn)的主要土壤條件之一[8-9]。土壤黏度大、板結(jié)、通氣性差時(shí), 塊根產(chǎn)量降低、品質(zhì)變差。丘陵山地因水澆條件差, 土壤極易因干旱而板結(jié); 平原地區(qū)隨著機(jī)械化的普及和肥料的不合理施用, 耕作層土壤的緊實(shí)度逐年增加[10-12], 土壤通氣狀況日益惡化, 嚴(yán)重影響甘薯塊根產(chǎn)量。土壤通氣狀況已經(jīng)成為制約甘薯高產(chǎn)穩(wěn)產(chǎn)的主要因素之一。
改善土壤通氣性可以促進(jìn)塊根膨大過(guò)程中光合產(chǎn)物由地上部向塊根的運(yùn)輸, 提高干物質(zhì)在塊根中的分配率, 顯著提高甘薯塊根產(chǎn)量[13-15]。關(guān)于土壤通氣性調(diào)控光合產(chǎn)物運(yùn)轉(zhuǎn)分配的生理原因, 前人進(jìn)行了有益的探索, 一般認(rèn)為改善通氣性可以提高塊根形成層的活動(dòng)能力[16], 增加塊根中ATP含量和脫落酸(ABA)含量[17], 降低淀粉酶活性[14-15]等促進(jìn)源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)。但前人的研究多集中于塊根的膨大特性, 而對(duì)光合產(chǎn)物由葉片裝載、經(jīng)莖運(yùn)輸后卸載到塊根的整個(gè)運(yùn)轉(zhuǎn)過(guò)程的關(guān)注較少, 缺乏對(duì)土壤通氣性調(diào)控光合產(chǎn)物運(yùn)轉(zhuǎn)關(guān)鍵環(huán)節(jié)的認(rèn)識(shí)。因此, 本研究設(shè)置不同通氣性的土壤條件, 從源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)效率、不同器官和功能葉以下莖不同部位蔗糖和淀粉含量、不同器官間蔗糖含量差等方面系統(tǒng)分析土壤通氣性引起光合產(chǎn)物由源到庫(kù)運(yùn)轉(zhuǎn)差異的關(guān)鍵環(huán)節(jié), 研究結(jié)果可以為促進(jìn)甘薯源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)及栽培措施的改進(jìn)提供理論依據(jù)。
2017年和2018年在山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)試驗(yàn)站進(jìn)行大田試驗(yàn)。供試品種為商薯19和濟(jì)徐23, 供試土壤為沙壤土。2017年0~20 cm土層含堿解氮106.29 mg kg-1、速效磷36.93 mg kg-1、速效鉀109.67 mg kg-1、有機(jī)質(zhì)0.97%。2018年0~20 cm土層含堿解氮88.82 mg kg-1、速效磷33.27 mg kg-1、速效鉀90.35 mg kg-1、有機(jī)質(zhì)1.05%。依據(jù)土壤容重[18]和緊實(shí)度設(shè)置3個(gè)處理: (1)緊實(shí)區(qū)(JS), 壓實(shí)試驗(yàn)地而成, 0~20 cm土層的容重為1.40~1.50 g cm-3, 緊實(shí)度大于600 kPa, 一般不高于1200 kPa。(2)標(biāo)準(zhǔn)區(qū)(CK), 0~20 cm土層的容重為1.30~1.40 g cm-3, 緊實(shí)度為300~400 kPa。(3)疏松區(qū)(SS), 試驗(yàn)地土壤、有機(jī)肥和沙混合而成, 其土壤有機(jī)質(zhì)含量和標(biāo)準(zhǔn)區(qū)一致并將3個(gè)處理的速效氮、磷、鉀含量調(diào)到基本一致, 0~20 cm土層的容重為1.20~1.30 g cm-3, 緊實(shí)度為100~200 kPa。3個(gè)處理土壤物理性狀如表1所示。采取裂區(qū)試驗(yàn)設(shè)計(jì), 品種為主區(qū), 緊實(shí)度為副區(qū), 重復(fù)3次, 小區(qū)面積為10 m2, 行距80 cm, 株距25 cm。在栽秧期、塊根膨大前期、塊根膨大高峰期、塊根膨大后期用土壤緊實(shí)度儀測(cè)量土壤緊實(shí)度。栽秧后間隔5 d測(cè)量土壤0~20 cm和20~40 cm土層土壤體積含水量。小區(qū)每平方米含水量(m3)為H×1 m2×土壤體積含水量(%), 其中H為土層深度。以含水量最高的小區(qū)為標(biāo)準(zhǔn)將其余小區(qū)含水量補(bǔ)齊。
表1 栽秧期土壤物理性狀
SS: 疏松土壤; CK: 對(duì)照土壤; JS: 緊實(shí)土壤。
SS: loose soil; CK: control soil; JS: compact soil.
1.2.1 收獲期測(cè)產(chǎn) 在收獲期測(cè)定每個(gè)小區(qū)每行的薯塊數(shù)和塊根鮮重。
1.2.2 甘薯各器官中碳水化合物含量 自栽后50 d開(kāi)始取樣, 每隔20 d取樣一次, 共計(jì)取樣6次。留樣時(shí)選取各品種每個(gè)處理長(zhǎng)勢(shì)基本一致的植株5株, 分為葉片、葉柄、莖蔓及塊根四部分。葉片和葉柄各200 g; 塊根切片混勻后留取200 g; 莖蔓中的主莖留取莖頂部、莖中部和莖基部三部分樣品, 莖頂部為主莖倒5葉葉柄所在位置向下延伸10~15 cm, 莖中部為主莖(去掉自生長(zhǎng)點(diǎn)向下第5片展開(kāi)葉以上部分)對(duì)折后, 自中點(diǎn)向兩側(cè)延伸5.0~7.5 cm, 莖基部為主莖最下面10~15 cm (圖1), 將主莖剩余部分和側(cè)莖剪碎混勻后留取200 g。以上樣品105℃殺青, 60℃烘干, 磨成粉末過(guò)篩, 用于蔗糖和淀粉含量的測(cè)定。采用蒽酮比色法測(cè)定蔗糖和淀粉含量[19]。
圖1 主莖各部位劃分模式圖
1.2.3 經(jīng)濟(jì)系數(shù) 塊根鮮重與整株鮮重的比值。
1.2.4 器官間蔗糖含量差 均以前面器官的蔗糖含量作為被減數(shù), 計(jì)算公式如下:
柄與葉間(%)=(柄-葉)/[(柄+葉)/2]×100
柄與莖頂間(%)=(柄-莖頂)/[(柄+莖頂)/2]×100
莖基部與莖頂部間(%)=(基部-頂部)/[(基部+頂部)/2]×100
莖基部與塊根間(%)=(基部-塊根)/[(基部+塊根)/2]×100。
1.2.513C標(biāo)記 于塊根膨大中期(栽秧后100 d左右), 選擇晴朗無(wú)風(fēng)天氣9:00-11:00, 從每個(gè)小區(qū)選擇生長(zhǎng)基本
一致、具有代表性的植株3株, 在其主莖頂部第4片和第5片展開(kāi)葉上標(biāo)記13CO2。由Ba13CO3(99%13C)和磷酸在反應(yīng)器中生成13CO2, 并用氣球收集; 標(biāo)記前將欲標(biāo)記葉用體積約為400 mL的聚氯乙烯透明塑料薄膜袋密封, 用醫(yī)用注射器注入50 mL13CO2(1%); 光合同化40 min, 之后撤掉塑料薄膜袋。標(biāo)記完成24 h后, 剪取植株地上部, 挖出地下部塊根。主要留取: 塊根、標(biāo)記葉及其所在的標(biāo)記莖和標(biāo)記柄、主莖、側(cè)莖、側(cè)葉。分樣后將塊根切片, 莖切段, 裝袋, 經(jīng)105oC殺青10~30 min, 在60oC烘箱中烘干至恒重; 然后稱(chēng)重、粉碎, 用質(zhì)譜儀(Isoprime 100)測(cè)定δ13C。
采用Microsoft Excel 2007分析數(shù)據(jù)和作圖, 統(tǒng)計(jì)分析中的方差分析檢驗(yàn)采用DPS (Data Processing System) v7.05數(shù)據(jù)處理系統(tǒng)。采用SPSS Statistics 20進(jìn)行相關(guān)性分析。
由表2可知, 與對(duì)照處理相比, 疏松處理顯著提高兩品種的塊根產(chǎn)量和經(jīng)濟(jì)系數(shù), 2年平均增幅分別為27.03%~38.74%和6.30%~13.05%, 緊實(shí)處理則顯著降低塊根產(chǎn)量和經(jīng)濟(jì)系數(shù), 2年平均降幅分別為17.87%~ 15.92%和10.83%~15.63%。疏松處理的單薯重顯著高于對(duì)照, 而緊實(shí)處理則顯著低于對(duì)照。即疏松處理主要通過(guò)提高單薯重, 提高經(jīng)濟(jì)系數(shù)而增產(chǎn), 緊實(shí)處理則因降低單薯重, 降低了經(jīng)濟(jì)系數(shù)而減產(chǎn)。
由表3可知, 塊根快速膨大期, 與對(duì)照處理相比, 疏松處理顯著提高塊根中13C同化物的分配率, 顯著降低其他器官13C同化物分配率; 緊實(shí)處理與之相反。13C標(biāo)記后24 h后, 與對(duì)照處理相比, 疏松處理顯著提高塊根中13C豐度單位時(shí)間增加量, 顯著降低標(biāo)記葉中13C豐度單位時(shí)間降低量和主莖13C豐度單位時(shí)間增加量; 緊實(shí)處理變化規(guī)律與之相反。
由表4可知, 與對(duì)照處理相比, 疏松處理2個(gè)品種葉片、葉柄和塊根中蔗糖含量顯著提高, 而莖中蔗糖含量顯著降低; 緊實(shí)處理則與之相反, 兩年數(shù)據(jù)規(guī)律一致。由表5可知, 疏松處理塊根中淀粉含量顯著高于對(duì)照處理, 緊實(shí)處理則顯著低于對(duì)照處理; 疏松處理葉、柄和莖中淀粉含量分別自栽秧后90 d、70 d和50 d至收獲期均顯著低于對(duì)照處理, 而緊實(shí)處理則顯著高于對(duì)照處理。即改善土壤通氣性塊根中蔗糖和淀粉快速積累開(kāi)始的早、積累時(shí)間長(zhǎng); 降低土壤通氣性莖部蔗糖和淀粉的積累效率高。
表2 塊根產(chǎn)量及經(jīng)濟(jì)系數(shù)
標(biāo)以不同字母的值在處理間差異顯著(< 0.05)??s寫(xiě)同表1。
Values followed by different letters within the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
表3 塊根快速膨大期各器官內(nèi)13C同化物的分配率(%, 2017年, 品種為商薯19)
標(biāo)以不同字母的值在處理間差異顯著(<0.05)??s寫(xiě)同表1。
Values followed by different letters in the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
圖2 標(biāo)記葉、主莖和塊根中13C豐度變化特點(diǎn)(2017年)
縮寫(xiě)同表1。Abbreviations are the same as those given in Table 1.
表4 不同器官蔗糖含量
標(biāo)以不同字母的值在處理間差異顯著(< 0.05)??s寫(xiě)同表1。
Values followed by different letters within the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
表5 不同器官淀粉含量
標(biāo)以不同字母的值在處理間差異顯著(< 0.05)。縮寫(xiě)同表1。
Values followed by different letters within the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
由表6可知, 莖基部蔗糖含量顯著高于莖頂部和莖中部。與對(duì)照處理相比, 疏松處理顯著提高莖頂部蔗糖含量而顯著降低莖中部和基部蔗糖含量; 緊實(shí)處理變化規(guī)律與之相反。疏松處理主莖各部位淀粉含量均顯著下降, 而緊實(shí)處理主莖各部位淀粉含量均顯著提高, 2個(gè)處理均以莖中部和基部的變化幅度較大。即改善土壤通氣性減少了蔗糖和淀粉在莖中部和基部的積累。
表6 莖不同部位蔗糖和淀粉含量(%, 2018年)
標(biāo)以不同字母的值在處理間差異顯著(< 0.05)。縮寫(xiě)同表1。
Values followed by different letters within the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
器官間蔗糖含量差可以反映器官間光合產(chǎn)物運(yùn)轉(zhuǎn)的情況。由表7可知, 疏松處理顯著降低莖基部與莖頂部和莖基部與塊根間的蔗糖含量差, 而顯著提高柄與葉片和柄與莖頂部間的蔗糖含量差; 緊實(shí)處理顯著提高莖基部與莖頂部和莖基部與塊根間的蔗糖含量差, 對(duì)柄與葉片和柄與上莖的蔗糖含量差的影響存在年份差異。兩處理引起器官間蔗糖含量差的變化幅度表現(xiàn)為莖基部與塊根間>莖基部與莖頂部間>柄與葉片間和柄與莖頂間。即改善土壤通氣性主要提高了莖基部到塊根間光合產(chǎn)物的運(yùn)轉(zhuǎn)效率。
表7 不同器官間蔗糖含量差
標(biāo)以不同字母的值在處理間差異顯著(< 0.05)。縮寫(xiě)同表1。
Values followed by different letters within the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1.
由表8可知, 莖基部與莖頂部和莖基部與塊根間的蔗糖含量差與塊根中蔗糖和淀粉含量均呈極顯著負(fù)相關(guān), 且莖基部與塊根間蔗糖含量差與塊根蔗糖含量相關(guān)系數(shù)較大、莖基部與莖頂部間蔗糖含量差與塊根淀粉含量相關(guān)系數(shù)較大。
表8 甘薯器官間蔗糖含量差與塊根碳水化合物含量的相關(guān)性分析
*表示在0.05水平(雙側(cè))上顯著相關(guān),**表示在0.01水平(雙側(cè))上顯著相關(guān)
*and**mean significant at the 0.05 and 0.01 probability levels, respectively.
改善土壤通氣性能顯著提高甘薯塊根產(chǎn)量[13,17,20-22], 增加土壤容重或向土壤中沖入氮?dú)? 降低氧氣濃度, 則顯著降低塊根產(chǎn)量[14-15]。土壤通氣性好, 塊根形成早、數(shù)量多, 塊根產(chǎn)量高, 而土壤通氣性差, 塊根膨大慢[14-15], 塊根產(chǎn)量低。也有研究認(rèn)為, 改善土壤通氣性通過(guò)提高甘薯單薯重和收獲指數(shù)增加塊根產(chǎn)量[22]。本研究結(jié)果表明, 與對(duì)照處理相比, 疏松處理能顯著提高塊根產(chǎn)量, 商薯19和濟(jì)徐23兩年的平均增幅分別為27.03%和38.74%; 緊實(shí)處理則顯著降低兩品種塊根產(chǎn)量, 降幅分別為17.87%和15.92% (表1)。與對(duì)照處理相比, 疏松處理顯著提高塊根中13C同化物的分配率(表3), 塊根單薯重和經(jīng)濟(jì)系數(shù); 緊實(shí)處理則提高地上部器官中13C同化物的分配率, 降低塊根單薯重和經(jīng)濟(jì)系數(shù)。即改善土壤通氣性能通過(guò)促進(jìn)光合產(chǎn)物向塊根中運(yùn)轉(zhuǎn), 促進(jìn)塊根膨大而增加塊根產(chǎn)量。
目前, 改善土壤通氣性提高甘薯塊根產(chǎn)量的原因分析多集中于塊根的形成及膨大特性, 認(rèn)為改善土壤通氣性能提高塊根形成過(guò)程中土壤溫度的日較差[23]; 減少初生木質(zhì)部的數(shù)量[15], 增強(qiáng)根中初生形成層的活動(dòng)能力, 促進(jìn)塊根的形成[14,16]。改善土壤通氣性能提高塊根中焦磷酸化酶活性而降低淀粉酶活性[15]; 提高塊根中ATP含量和ATP酶活性、提高脫落酸含量[17]; 提高塊根中蔗糖合酶和ADPG焦磷酸化酶的活性[23], 促進(jìn)塊根中淀粉的積累, 促進(jìn)塊根的膨大。而對(duì)甘薯源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)差異的分析較少, 僅有部分研究認(rèn)為改善土壤通氣性能增加葉片中鉀、鈣、錳、硼和鋅的含量, 提高ATP含量和ATP酶活性, 促進(jìn)葉片中光合產(chǎn)物的輸出[13,17]。而甘薯源庫(kù)間光合產(chǎn)物的運(yùn)轉(zhuǎn)需要葉、柄、莖蔓和塊根共同完成, 只關(guān)注某一個(gè)器官的生理變化, 無(wú)法確定土壤通氣性引起光合產(chǎn)物運(yùn)轉(zhuǎn)差異的關(guān)鍵環(huán)節(jié)。本研究結(jié)果表明, 與對(duì)照處理相比, 疏松處理顯著提高塊根中13C同化物的輸入效率, 緊實(shí)處理與之相反(圖2)。疏松處理顯著提高塊根中蔗糖和淀粉含量; 顯著降低地上部各器官淀粉含量, 且對(duì)莖的作用時(shí)間早, 并顯著降低莖基部蔗糖含量(表4和表5)。緊實(shí)處理顯著降低塊根中蔗糖和淀粉含量; 顯著提高莖、柄和葉中淀粉含量, 并顯著提高莖基部蔗糖含量(表6)。改善土壤通氣性顯著降低莖基部與塊根間蔗糖含量差(表7)。相關(guān)分析的結(jié)果也表明, 莖基部與塊根間蔗糖含量差與塊根蔗糖和淀粉含量呈極顯著負(fù)相關(guān)關(guān)系(表8)。說(shuō)明改善土壤通氣性促進(jìn)甘薯源庫(kù)間光合產(chǎn)物運(yùn)轉(zhuǎn)的關(guān)鍵過(guò)程是光合產(chǎn)物由莖基部向塊根的運(yùn)轉(zhuǎn), 該過(guò)程運(yùn)轉(zhuǎn)順暢, 源庫(kù)間光合產(chǎn)物的運(yùn)轉(zhuǎn)效率高, 塊根中光合產(chǎn)物積累多, 塊根產(chǎn)量就高。
[1] Rankine D R, Cohen J E, Taylor M A, Coy A D, Simpson L A, Stephenson T. Parameterizing the FAO Aquacrop model for rainfed and irrigated field-grown sweet potato., 2015, 107: 1.
[2] Hazra P, Chattopadhyay A, Karmakar K, Dutta S. Sweet potato. In: Modern Technology in Vegetable Production. New Delhi: New India Publishing Agency, 2011. pp 358–370.
[3] Abdissa T A, Chali K, Tolessa F, Tadese A G. Yield and yield components of sweet potato as influenced by plant density in Adami Tulu Jido Kombolcha District, Central Rift Valley of Ethiopia., 2001, 1: 40–48.
[4] Mu T H, Tan S S, Xue Y L. The amino acid composition, solubi-lity and emulsifying properties of sweet potato protein., 2009, 112: 1002–1005.
[5] Bourke R M. Sweet potato () production and research in Papua New Guinea., 1985, 33: 89–108.
[6] Bourke R M. Influence of soil moisture on sweet potato yield in the Papua New Guinea highlands., 1989, 9: 322–328.
[7] Duan W, Wang Q, Zhang H. Comparative study on carbon- nitrogen metabolism and endogenous hormone contents in normal and overgrown sweetpotato., 2018, 115: 199–207.
[8] Kazuyki W, Toshio K. Effects of the capacity and composition of soil air on the growth and yield of sweet potato plants., 1964, 33: 418–422.
[9] Anikwe M A N, Ubochi J N. Short-term changes in soil properties under tillage systems and their effect on sweet potato (L.) growth and yield in an Ultisol in south-eastern Nigeria., 2007, 45: 351–358.
[10] Bogunovic I, Pereira P, Kisic I, Sajko K, Sraka M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia)., 2018, 160: 376–384.
[11] Ungureanu N, Croitoru S T, Biri? S, Voicu G, Vlǎ Du? V, Selvi K C. Agricultural soil compaction under the action of agricultural machinery., 2015, 43: 31–42.
[12] Botta G F, Tolon-Becerra A, Lastra-Bravo X, Tourn M. Tillage and traffic effects (planters and tractors) on soil compaction and soybean (L.) yields in., 2010, 110: 167–174.
[13] 史春余, 王振林, 郭風(fēng)法, 余松烈. 土壤通氣性對(duì)甘薯養(yǎng)分吸收、14C-同化物分配及產(chǎn)量的影響. 核農(nóng)學(xué)報(bào), 2002, 16: 232–236.Shi C Y, Wang Z L, Guo F F, Yu S L. Effects of the soil aeration on nutrient absorption,14C-assimilates distribution and storage root yield in sweet potato., 2002, 16: 232–236 (in Chinese with English abstract).
[14] Watanabe K, Ozaki K. Studies on the effects of soil physical conditions on the growth and yield of crop plants: III. Effects of the capacity and composition of soil air on the growth and yield of sweet potato plants., 1964, 33: 418–422.
[15] Watanabe K, Kodama T, Nomoto T. Studies on the effects of soil physical conditions on the growth and yield of crop plants: IV. Effects of the different soil structures on a few physiological characters of sweet potato plants., 1966, 34: 409–412.
[16] 王樹(shù)鈿, 于作慶. 甘薯在不同土壤條件下高產(chǎn)規(guī)律的初步研究. 中國(guó)農(nóng)業(yè)科學(xué), 1981, 14(1): 49–55.Wang S D, Yu Z Q. A preliminary study on the high-yielding law of sweet potato in different kind of soil., 1981, 14 (1): 49–55 (in Chinese with English abstract).
[17] 史春余, 王振林, 余松烈. 土壤通氣性對(duì)甘薯產(chǎn)量的影響及其生理機(jī)制. 中國(guó)農(nóng)業(yè)科學(xué), 2001, 34: 173–178.Shi C Y, Wang Z L, Yu S L. Effects of soil aeration on sweet potato yield and its physiological mechanism., 2001, 34: 173–178 (in Chinese with English abstract).
[18] 孫向陽(yáng). 土壤學(xué). 北京: 中國(guó)林業(yè)出版社, 2005. pp 131–136.Sun X Y. Soil Science. Beijing: China Forestry Publishing House Publishers, 2005. pp 131–136 (in Chinese).
[19] 朱偉. 蒽酮-硫酸比色法測(cè)定香菇多糖含量. 北方藥學(xué), 2011, 8(8): 8–9.Zhu W. Determination of the lentinan content by anthrone-sulfuric acid colorimetry., 2011, 8(8): 8–9 (in Chinese with English abstract).
[20] Kodama T, Nomoto T, Watanabe K. The effect of soil density and amount of fertilizer on the growth and yield., 1959, 27: 372–374.
[21] Kaoru E, Hakabu S. Effect of atmospheric humidity and soil moisture on the translocation of sucroce-14C in the sweet potato plant., 1962, 32: 41–44.
[22] Kazuyuki W, Toshio K. Effects of the different soil structures on a few physiological characters of sweet potato plants., 1965, 34: 409–412.
[23] 史文卿, 張彬彬, 柳洪鵑, 趙慶鑫, 史春余, 王新建, 司成成. 甘薯塊根形成和膨大對(duì)土壤緊實(shí)度的響應(yīng)機(jī)制及與產(chǎn)量的關(guān)系. 作物學(xué)報(bào), 2019, 45: 755–763.Shi W Q, Zhang B B, Liu H J, Zhao Q X, Shi C Y, Wang X J, Si C C. Response mechanism of sweet potato storage root formation and bulking to soil compaction and its relationship with yield., 2019, 45: 755–763 (in Chinese with English abstract).
Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato
LIU Yong-Chen1, SI Cheng-Cheng2, LIU Hong-Juan1,*, ZHANG Bin-Bin1, and SHI Chun-Yu1,*
1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;2College of Horticulture and Landscape Architecture, Hainan University, Haikou 570228, Hainan, China
Fieldexperiments were performed using the varieties of starchy sweet potato Shangshu 19 and Jixu 23 with three treatments including loose soil, control soil and compact soil, to clarify the regulatory mechanism of soil compaction on transportation of photosynthates between sink and source of sweet potato. Compared with control treatment, storage root yield and economic coefficient of loose soil treatment were significantly increased by 27.03%–38.74% and 6.30%–13.05% in two years, respectively, while those of compact soil treatment significantly decreased by 17.87%–15.92% and 10.83%–15.63%, respectively. The13C labeling results of functional leaves showed that loose treatment significantly improved the import efficiency of photosynthate in storage roots. Loose soil treatment significantly increased sucrose and starch contents in storage roots, but significantly reduced starch content in aboveground organs, especially in lower-middle position of stem. Compact soil treatment significantly decreased sucrose and starch contents in storage roots, but significantly increased starch and sucrose contents in aboveground organs especially in lower-middle position of stem. Both difference of sucrose content between stem base and stem top and between stem base and storage root at 50–150 days after planting in loose treatment were significantly decreased. While, significantly increased in compact treatment. The variation range of sucrose content difference between stem base and storage root was larger than between stem base and stem top. There was a very significantly negative correlation between the sucrose content difference of stem base and storage root, and the sucrose and starch content in storage root. Improvement of soil aeration, can promote the transportation of photosynthates from stem base to storage root, increase carbohydrate content in storage root and enhance storage root yield.
sweet potato; soil aeration; storage root yield; photosynthate; transportation
2019-03-08;
2019-09-26;
2019-10-12.
10.3724/SP.J.1006.2020.94038
史春余, E-mail:scyu@sdau.edu.cn, Tel: 0538-8246259; 柳洪鵑, E-mail: liumei0535@126.com
E-mail: liuyongchensdau@163.com
本研究由國(guó)家自然科學(xué)基金項(xiàng)目(31371577, 31701357)和山東省薯類(lèi)產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)首席專(zhuān)家項(xiàng)目(SDAIT-16-01)資助。
This study was supported by the National Natural Science Foundation of China (31371577, 31701357) and the Potato Innovation Program for Chief Expert of Shandong Province (SDAIT-16-01).
URL:http://kns.cnki.net/kcms/detail/11.1809.S.20191012.1214.004.html