茹占強(qiáng),宋賀倫,吳 菲,宋盛星,朱 煜,殷志珍,劉登科,張耀輝
高效非成像聚光光學(xué)系統(tǒng)設(shè)計(jì)與性能分析
茹占強(qiáng),宋賀倫*,吳 菲,宋盛星,朱 煜,殷志珍,劉登科,張耀輝
中國(guó)科學(xué)院蘇州納米技術(shù)與納米仿生研究所系統(tǒng)集成與IC設(shè)計(jì)研究部,江蘇 蘇州 215123
針對(duì)菲涅爾透鏡存在實(shí)際光學(xué)效率偏低的問(wèn)題,本文設(shè)計(jì)了一種由非球面透鏡和棒錐鏡組成的高效非成像聚光光學(xué)系統(tǒng)。在光學(xué)設(shè)計(jì)軟件Zemax的序列模式下對(duì)非球面透鏡進(jìn)行了優(yōu)化設(shè)計(jì),通過(guò)最大程度地減小球差,像面光斑的幾何半徑從42 mm降到了1.7 mm?;诖?,在Zemax的非序列模式下,完成了非球面透鏡和棒錐鏡的建模和優(yōu)化,通過(guò)蒙特卡羅光線追跡分析實(shí)現(xiàn)了光學(xué)效率為87%、接收角為0.9°的非成像聚光光學(xué)系統(tǒng)。最后,基于非球面透鏡陣列和棒錐鏡樣品,實(shí)現(xiàn)了高倍聚光型光伏模組的封裝與測(cè)試。測(cè)試結(jié)果表明,該模組的光電轉(zhuǎn)換效率達(dá)30.03%,與菲涅爾透鏡構(gòu)成的高倍聚光型光伏模組相比有顯著提升。
菲涅爾透鏡;非成像聚光光學(xué)系統(tǒng);非球面透鏡;聚光型光伏
當(dāng)前,聚光型光伏發(fā)電技術(shù)被認(rèn)為是最有可能降低發(fā)電成本的技術(shù)之一[1]。聚光型光伏發(fā)電技術(shù)用聚光器把大面積的陽(yáng)光會(huì)聚到小面積的光伏電池表面,實(shí)現(xiàn)用廉價(jià)的光學(xué)材料代替昂貴的光伏電池材料的目的,適合應(yīng)用于太陽(yáng)直接輻射強(qiáng)度高的區(qū)域[2]。聚光器的選型與優(yōu)化設(shè)計(jì)是聚光型光伏領(lǐng)域必須解決的關(guān)鍵問(wèn)題之一。菲涅爾透鏡具有輕薄、低成本的特點(diǎn),從而成為聚光型光伏領(lǐng)域聚光器的首選。付蕊等開發(fā)出一種高效均勻聚光菲涅爾透鏡,聚光效率大于80%,在此基礎(chǔ)上集成的聚光型光伏模組效率達(dá)27.9%[3]。Ferrer-Rodríguez等研究了菲涅爾透鏡與不同二次聚光器組成的高倍聚光系統(tǒng)對(duì)聚光型光伏模組效率的影響,聚光模組的最高效率達(dá)到了28%[4]。
菲涅爾透鏡從原理上可以達(dá)到較高的光學(xué)效率,但是由于圓角散射、脫模形變、齒根遮光等加工工藝條件的限制[5],實(shí)際運(yùn)行時(shí)光學(xué)效率會(huì)大幅降低,限制了聚光型光伏模組光電轉(zhuǎn)換效率的進(jìn)一步提升。非球面透鏡不存在此類加工工藝限制,且非球面面型可以有效降低像差、提升聚光效率[6-7]。為此,本文創(chuàng)新性地提出用非球面透鏡來(lái)代替菲涅爾透鏡的理念,設(shè)計(jì)了一種由非球面透鏡和棒錐鏡組成的高效非成像聚光光學(xué)系統(tǒng)。在此基礎(chǔ)上,集成微型三結(jié)砷化鎵光伏電池,實(shí)現(xiàn)了高倍聚光型光伏模組樣機(jī)的研制與性能分析。
基于非球面透鏡的高效非成像聚光光學(xué)系統(tǒng)由作為主聚光器的非球面透鏡和作為二次聚光器的棒錐鏡組成,入射光線被非球面透鏡會(huì)聚到棒錐鏡的上端面,經(jīng)棒錐鏡的二次會(huì)聚入射到光伏電池的表面,如圖1所示。
主聚光器的面積和光伏電池的面積之比稱為幾何聚光比,幾何聚光比與非成像聚光光學(xué)系統(tǒng)的光學(xué)效率乘積稱為能量聚光比,能量聚光比越高代表光伏電池表面能量密度越高,最佳能量聚光比的設(shè)計(jì)根據(jù)光伏電池的聚光特性而定。當(dāng)前,高倍聚光型光伏模組普遍采用邊長(zhǎng)為5.5 mm或者10 mm的多結(jié)砷化鎵光伏電池,最佳能量聚光比一般都在幾百倍甚至上千倍,相應(yīng)主聚光器孔徑在十幾到幾十厘米,在保證合理厚度的前提下只能選用菲涅爾透鏡。為了實(shí)現(xiàn)非球面透鏡取代菲涅爾透鏡,并且,厚度控制在合理范圍,必須縮小光伏電池的尺寸。為此,我們開發(fā)出了直徑只有2.5 mm微型三結(jié)砷化鎵光伏電池,圖2為該光伏電池的截面圖。
圖3為該微型三結(jié)砷化鎵光伏電池的光電轉(zhuǎn)換效率隨能量聚光比變化曲線,可知,該電池在能量聚光比為330倍時(shí),光電轉(zhuǎn)換效率可以達(dá)到最大值。非成像聚光光學(xué)系統(tǒng)包含非球面透鏡和棒錐鏡兩個(gè)光學(xué)元件,即四個(gè)光學(xué)界面,系統(tǒng)理想的光學(xué)效率在84%左右,考慮加工誤差和聚光模組的封裝、對(duì)準(zhǔn)誤差,有效的光學(xué)效率大約在80%左右。因此,高倍聚光型光伏模組的幾何聚光比約為413倍,考慮高倍聚光型光伏模組的封裝要求,非球面透鏡要切成正方形再膠合成陣列結(jié)構(gòu),所以非球面透鏡的孔徑應(yīng)為64 mm,切割后的內(nèi)接正方形非球面透鏡的邊長(zhǎng)為45 mm。
圖1 高效非成像聚光光學(xué)系統(tǒng)原理圖
圖2 微型三結(jié)砷化鎵光伏電池截面圖
由上節(jié)可知,透鏡的孔徑為64 mm,為了兼顧聚光效率和系統(tǒng)緊湊性,設(shè)置透鏡的/#為1,則焦距值為′/#=64 mm。波長(zhǎng)范圍根據(jù)三結(jié)砷化鎵光伏電池響應(yīng)特性為348 nm~1860 nm,主波長(zhǎng)為540 nm,視場(chǎng)范圍為0°,透鏡材料選取常用的BK7光學(xué)玻璃。為了滿足實(shí)際應(yīng)用需求,選取透鏡第一個(gè)面為光闌,并設(shè)置為平面,第二個(gè)面曲率的求解類型設(shè)置為/#=1。球面透鏡的初始結(jié)構(gòu)參數(shù)如表1所示。
表1 球面透鏡的初始結(jié)構(gòu)參數(shù)
該球面透鏡的塞德爾像差系數(shù)和點(diǎn)列圖如表2和圖4所示,其中,Surf、STO和IMA分別代表面型、光闌面和像面,SPHA、COMA、ASTI、FCUR、DIST、CLA和CTR分別代表球差、彗差、像散、場(chǎng)曲、畸變、軸向色差和垂軸色差。
圖3 微型三結(jié)砷化鎵光伏電池光電轉(zhuǎn)換效率隨聚光比變化曲線
由表2可知,初始結(jié)構(gòu)的球差SPHA值很大為34.26,在很大程度上影響了系統(tǒng)的聚焦光斑質(zhì)量,如圖4光斑點(diǎn)列圖所示,像面光斑的幾何半徑高達(dá)42 mm,是三結(jié)砷化鎵光伏電池的33.6倍。為了有效降低系統(tǒng)球差,減小像面光斑的幾何半徑,使更多光能入射到三結(jié)砷化鎵光伏電池表面,將透鏡的第二個(gè)面設(shè)置成偶次非球面[8-9],并設(shè)置球差和焦距為優(yōu)化操作函數(shù),非球面曲率、厚度、后焦距、非球面系數(shù)和高階系數(shù)為變量,進(jìn)行軟件自動(dòng)優(yōu)化。
優(yōu)化后的非球面透鏡點(diǎn)列圖和塞德爾像差系數(shù)如圖5和表3所示。
由表3可知,優(yōu)化后的非球面透鏡球差SPHA的值接近于0.1,極大地改善了成像質(zhì)量,如圖5光斑點(diǎn)列圖所示,像面上的光斑幾何半徑也減小到了1.7 mm,基本接近三結(jié)砷化鎵光伏電池半徑。優(yōu)化后的非球面透鏡結(jié)構(gòu)參數(shù)如表4所示。
表2 初始結(jié)構(gòu)的塞德爾像差系數(shù)
圖4 初始結(jié)構(gòu)聚焦光斑點(diǎn)列圖
圖5 非球面透鏡聚焦光斑點(diǎn)列圖
表3 非球面透鏡的塞德爾像差系數(shù)
表4 非球面透鏡結(jié)構(gòu)參數(shù)
在Zemax軟件的非序列模式下對(duì)上節(jié)設(shè)計(jì)的非球面透鏡進(jìn)行建模,同時(shí),建立模擬太陽(yáng)的標(biāo)準(zhǔn)光源模型和探測(cè)器模型,如表5和表6所示。
棒錐鏡主要有3個(gè)作用:1) 使像面光斑的幾何半徑與三結(jié)砷化鎵光伏電池相匹配;2) 在光線偏折入射的情況下使光線盡可能多地入射到三結(jié)砷化鎵光伏電池表面;3) 使三結(jié)砷化鎵光伏電池表面的輻照度更均勻[10]。
由非成像聚光光學(xué)系統(tǒng)原理,棒錐鏡的上端面半徑大于非球面透鏡焦點(diǎn)處光斑的幾何半徑,下端面半徑與三結(jié)砷化鎵光伏電池相匹配,考慮裝配誤差的因素,在此設(shè)置為1.2 mm,初始高度可以隨意設(shè)置為一個(gè)合理值,表7為該棒錐鏡的初始結(jié)構(gòu)參數(shù)。
完成初始結(jié)構(gòu)建模后,將棒錐鏡上端面置于非球面透鏡的焦點(diǎn)位置,探測(cè)器位于棒錐鏡下端面位置。
以棒錐鏡上端面半徑、高度為變量,以探測(cè)器收集到的能量和光斑分布均勻性為評(píng)價(jià)函數(shù),利用蒙特卡羅光線追跡的方法進(jìn)行優(yōu)化,得到棒錐鏡的最優(yōu)結(jié)構(gòu)參數(shù)如表8所示,圖6為基于最優(yōu)結(jié)構(gòu)棒錐鏡的非成像聚光光學(xué)系統(tǒng)光路圖。
表5 標(biāo)準(zhǔn)光源參數(shù)
表6 探測(cè)器參數(shù)
基于最優(yōu)結(jié)構(gòu),對(duì)不同入射條件下非成像聚光光學(xué)系統(tǒng)的聚光效率和聚光效果進(jìn)行蒙特卡羅光線追跡分析,如圖7所示,可知該系統(tǒng)在光線垂直入射時(shí)的光學(xué)效率為87%,在光線入射角為0.9°時(shí)的光學(xué)效率為79.2%,接近且大于垂直入射時(shí)光學(xué)效率的90%,所以該系統(tǒng)的接收角為0.9°。
表7 棒錐鏡初始結(jié)構(gòu)參數(shù)
表8 棒錐鏡最優(yōu)結(jié)構(gòu)參數(shù)
為了對(duì)比,同樣對(duì)不同入射條件下單非球面透鏡的聚光效率和聚光效果進(jìn)行了蒙特卡羅光線追跡分析,如圖8所示。可見在沒(méi)有棒錐鏡的情況下,光線垂直入射時(shí)的光學(xué)效率為87.4%;入射光線偏折0.9°時(shí),系統(tǒng)的光學(xué)效率大幅下降到40%。所以,非成像聚光光學(xué)系統(tǒng)必須包含二次聚光器,同時(shí),高精度的太陽(yáng)能跟蹤控制系統(tǒng)也是不可或缺的[11-12]。
圖6 最優(yōu)結(jié)構(gòu)的非成像聚光光學(xué)系統(tǒng)的光路圖
圖7 不同入射條件下光學(xué)系統(tǒng)聚焦光斑輻照度分布。(a) 光線垂直入射時(shí);(b) 光線入射角為0.9°時(shí)
圖8 不同入射條件下非球面透鏡聚焦光斑輻照度分布。(a) 光線垂直入射時(shí);(b) 光線入射角為0.9°時(shí)
為了驗(yàn)證該非成像聚光光學(xué)系統(tǒng)的聚光性能,在光線入射角為0°的條件下,對(duì)單非球面透鏡和非成像聚光光學(xué)系統(tǒng)進(jìn)行了蒙特卡羅光線追跡對(duì)比分析,結(jié)果如圖9所示。單非球面透鏡的焦面光斑輻照度呈高斯分布狀態(tài),中心點(diǎn)強(qiáng)度峰值高達(dá)111.18 W/cm2,邊緣點(diǎn)強(qiáng)度值為0.99 W/cm2,焦面光斑的輻照分布均勻性為1-(111.18-0.99)/(111.18+0.99)=1.77%,非成像聚光光學(xué)系統(tǒng)的焦面光斑輻照度分布更均勻,中心點(diǎn)強(qiáng)度峰值降低至32.19 W/cm2,邊緣點(diǎn)強(qiáng)度值為11.73 W/cm2,焦面光斑的輻照分布均勻性為1-(32.19-11.73)/(32.19+11.73)=53.42%??梢?,二次聚光器可以有效改善焦面光斑輻照度分布均勻性,有利于三結(jié)砷化鎵光伏電池光電效率的提升。
為了滿足聚光型光伏模組的封裝需求,加工時(shí)要把非球面透鏡切割成正方形,然后膠合到硼硅玻璃基底上,形成6′8陣列,如圖10所示。同時(shí),基于光學(xué)冷加工工藝完成了對(duì)棒錐鏡樣品的加工,如圖11所示。在此基礎(chǔ)上,實(shí)現(xiàn)了基于非球面透鏡的高倍聚光型光伏模組樣品的封裝,如圖12所示。
為了驗(yàn)證該高倍聚光型光伏模組的光電性能,在標(biāo)準(zhǔn)條件下(AM1.5D光譜、1000 W/m2輻照度、=25 ℃)對(duì)其進(jìn)行了I-V性能測(cè)試,結(jié)果如圖13所示。作為對(duì)比,在相同條件下對(duì)主聚光器為菲涅爾透鏡的高倍聚光型光伏模組(如圖14所示)進(jìn)行了I-V性能測(cè)試,結(jié)果如圖15所示。測(cè)試結(jié)果表明,基于非球面透鏡的模組光電轉(zhuǎn)換效率達(dá)到了30.03%,大幅高于基于菲涅爾透鏡的模組25.04%的光電轉(zhuǎn)換效率,可見,非球面透鏡取代菲涅爾透鏡能顯著提升非成像聚光光學(xué)系統(tǒng)的聚光效率。
圖9 入射角為0°時(shí)不同系統(tǒng)聚焦光斑輻照度分布圖。(a) 單非球面透鏡;(b) 非成像聚光光學(xué)系統(tǒng)
圖10 非球面透鏡陣列樣品
圖11 棒錐鏡樣品
圖12 基于非球面透鏡的高倍聚光型光伏模組樣品
圖13 基于非球面透鏡的高倍聚光型光伏模組I-V特性
圖14 基于菲涅爾透鏡的高倍聚光型光伏模組樣品
圖15 基于菲涅爾透鏡的高倍聚光型光伏模組I-V特性
非球面透鏡可以大幅減小系統(tǒng)球差,改善成像像質(zhì),減小像面光斑的幾何半徑,結(jié)合優(yōu)化的棒錐鏡可以實(shí)現(xiàn)非成像聚光光學(xué)系統(tǒng)聚光效率的大幅提升,同時(shí),可以增大高倍聚光光伏系統(tǒng)的接收角,改善光伏電池表面輻照度分布的均勻性,顯著提升高倍聚光型光伏模組的光電轉(zhuǎn)換效率。然而,由于客觀原因多結(jié)砷化鎵光伏電池的幾何尺寸仍然偏大,在保證一定能量聚光比的條件下,非球面透鏡孔徑無(wú)法進(jìn)一步降低,厚度仍然偏厚,不利于實(shí)際工程應(yīng)用。未來(lái),隨著多結(jié)砷化鎵光伏電池進(jìn)一步小型化和非球面透鏡陣列模壓技術(shù)的進(jìn)一步成熟,這種由非球面透鏡和棒錐鏡組成的高效非成像聚光光學(xué)系統(tǒng)在高倍聚光型光伏發(fā)電領(lǐng)域?qū)?huì)有廣闊的應(yīng)用前景。
[1] Burhan M, Chua K J E, Ng K C. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis[J]., 2016, 116: 58–71.
[2] Rajaee M, Ghorashi S M B. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel’s efficiency enhancement[J]., 2015, 9(4): 251–259.
[3] Fu R. Optimization design of Fresnel concentrator and application research in concentrator photovoltaic technology[D]. Beijing: North China Electric Power University, 2017.
付蕊. Fresnel聚光器的優(yōu)化設(shè)計(jì)及其在聚光光伏中的應(yīng)用研究[D]. 北京: 華北電力大學(xué), 2017.
[4] Ferrer-Rodríguez J P, Fernández E F, Baig H,. Development, indoor characterisation and comparison to optical modelling of four Fresnel-based high-CPV units equipped with refractive secondary optics[J]., 2018, 186: 273–283.
[5] Hai D P. Research on fabricating process of Fresnel lens[D]. Harbin: Harbin Institute of Technology, 2007.
海大鵬. 菲涅爾透鏡的加工工藝研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2007.
[6] Roy A C, Yadav M, Khanna A,. Bi-convex aspheric optical lenses[J]., 2017, 110(10): 103701.
[7] Wang Z M, Qu W J, Asundi A. A simplified expression for aspheric surface fitting[J]., 2017, 140: 291–298.
[8] Feng K, Li J S. Design of aspherics lenses shaping system on Gaussian beam[J]., 2013, 40(5): 127–132.
馮科, 李勁松. 高斯光束非球面鏡整形系統(tǒng)的設(shè)計(jì)[J]. 光電工程, 2013, 40(5): 127–132.
[9] Mo W D, Fu Z T, Fan Q,. Determining the best-fit spherical surface and asphericity of aspheric surface by calculating the fringe density[J]., 2012, 39(12): 7–11.
莫衛(wèi)東, 傅振堂, 范琦, 等. 確定非球面最佳參考球面及非球面度的一種新方法[J]. 光電工程, 2012, 39(12): 7–11.
[10] Yeh N. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator[J]., 2016, 95: 542–549.
[11] Obara S, Matsumura K, Aizawa S,. Development of a solar tracking system of a nonelectric power source by using a metal hydride actuator[J]., 2017, 158: 1016–1025.
[12] Yang C K, Cheng T C, Cheng C H,. Open-loop altitude-azimuth concentrated solar tracking system for solar-thermal applications[J]., 2017, 147: 52–60.
Design and performance analysis of high efficiency non-imaging concentrated optical system
Ru Zhanqiang, Song Helun*, Wu Fei, Song Shengxing, Zhu Yu, Yin Zhizhen, Liu Dengke, Zhang Yaohui
System Integration & IC Design Division, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
Principle of high efficiency non-imaging concentrated optical system
Overview:Nowadays, Fresnel lens was widely used as the primary optics element in high concentrated photovoltaic module. In principle, the optical efficiency of Fresnel lens could be high. However, it will decrease sharply due to the limitation of processing technology, for example, scattering of angle of chamfer, the deformation of demoulding, the shading of tooth root, and so on. These issues influence the further improvement of photoelectric conversion efficiency of high concentrated photovoltaic module. Consequently, the idea of replacing Fresnel lens with aspheric lens was proposed innovatively and a high-efficiency non-imaging concentrated optical system composed of an aspheric lens array and 48 trumpet lenses was designed. Firstly, the initial structure parameters of the aspheric lens were determined according to the characteristics of micro-scale three-junction GaAs solar cell. The aspheric lens was optimized in sequential mode of Zemax on the basis of aberration analysis of the initial structure, and the geometric radius of its image spot was reduced from 42 mm to 1.7 mm and the value of SPHA was reduced from 34.26 to 0.1 by minimizing the spherical aberration. The standard light source, detector, aspheric lens and trumpet lens were modeled in non-sequential mode of Zemax, and the trumpet were optimized by altering the radius of upper surface and the height. The high-efficiency non-imaging concentrated optical system with 87% optical efficiency and 0.9° received angle was achieved by Monte Carlo ray tracing analysis. On the basis, the high-efficiency non-imaging concentrated optical system and single aspheric lens were analyzed comparatively. The analysis results showed that the efficiency of single aspheric lens reduced from 87.4% to 40% when the incident angle increased from 0 to 0.9 degrees, and yet the efficiency of the high-efficiency non-imaging concentrated optical system still reached 79.2%. In addition, the irradiance distribution uniformity of the focal spot of the single aspheric lens was 1.77%, and the value of the high-efficiency non-imaging concentrated optical system was up to 53.42%. Finally, the packaging and test of high concentrated photovoltaic modules based on the high-efficiency non-imaging concentrated optical system and Fresnel lens were completed separately. The results of test comparatively showed that the photoelectric conversion efficiency of the module based on Fresnel lens was 25.04%, and the photoelectric conversion efficiency of the module based on the high-efficiency non-imaging concentrated optical system was up to 30.03%, which was significantly improved compared with the high concentrated photovoltaic module composed of the Fresnel lens.
Citation: Ru Z Q, Song H L, Wu F,Design and performance analysis of high efficiency non-imaging concentrated optical system[J]., 2020, 47(2): 190203
Design and performance analysis of high efficiency non-imaging concentrated optical system
Ru Zhanqiang, Song Helun*, Wu Fei, Song Shengxing, Zhu Yu, Yin Zhizhen, Liu Dengke, Zhang Yaohui
System Integration & IC Design Division, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
Aiming at the low optical efficiency of Fresnel lens, a high-efficiency non-imaging concentrated optical (NICO) system composed of an aspheric lens and a trumpet lens was designed. The aspheric lens was optimized in sequential mode of Zemax, and the geometric radius of its image spot was reduced from 42 mm to 1.7 mm by minimizing the spherical aberration. The aspheric lens and trumpet lens were modeled and optimized in non-sequential mode of Zemax, and the NICO system with 87% optical efficiency and 0.9° received angle was achieved by Monte Carlo ray tracing analysis. Finally, the packaging and testing of the high concentrated photovoltaic (HCPV) module were completed based on samples of an aspheric lens array and 48 trumpet lenses. The test results showed that the photoelectric conversion efficiency of the module reached 30.03%, which was significantly improved compared with the HCPV module composed of the Fresnel lens.
Fresnel lens; non-imaging concentrated optical system; aspheric lens; concentrated photovoltaic
Supported by National Key R&D Program of China (2016YFE0129400) and Youth Innovation Promotion Association Talent Fund, CAS (2016290)
TM615
A
10.12086/oee.2020.190203
: Ru Z Q, Song H L, Wu F,. Design and performance analysis of high efficiency non-imaging concentrated optical system[J]., 2020,47(2): 190203
2019-04-24;
2019-05-14
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFE0129400);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)人才資助計(jì)劃(2016290)
茹占強(qiáng)(1982-),男,碩士,高級(jí)工程師,主要從事聚光型光伏及光學(xué)系統(tǒng)的研究。E-mail:zqru2008@sinano.ac.cn
宋賀倫(1980-),男,博士,研究員,主要從事聚光型光伏技術(shù)、半導(dǎo)體器件集成等方面的研究。E-mail:hlsong2008@sinano.ac.cn
茹占強(qiáng),宋賀倫,吳菲,等. 高效非成像聚光光學(xué)系統(tǒng)設(shè)計(jì)與性能分析[J]. 光電工程,2020,47(2): 190203
* E-mail: hlsong2008@sinano.ac.cn