劉敬璇,樊金宇,汪 權,史國華*
SS-OCTA對黑色素瘤皮膚結構和血管的成像實驗
劉敬璇1,2,樊金宇2,汪 權2,史國華2*
1中國科學技術大學,安徽 合肥 230000;2中國科學院蘇州生物醫(yī)學工程技術研究所,江蘇 蘇州 215000
掃頻源光學相干層析血管成像(SS-OCTA)是一種基于分頻幅去相關血管造影法(SSADA)的新型血管成像技術,在腫瘤等疾病的早期診斷方面擁有較大前景。本文在5.12 mm′5.12 mm成像視場、標準圖像最大信噪比34.3 dB的SS-OCTA成像平臺,對黑色素瘤C57BL6小鼠進行皮膚結構和血管成像采集。結果表明在皮膚科疾病的早期診斷方面,利用SS-OCTA系統(tǒng)進行血管成像優(yōu)于結構成像。
掃頻源光學相干層析血管成像;皮膚結構;腫瘤血管;黑色素瘤;SS-OCTA
近年來,光學相干層析成像(Optical coherence tomography, OCT)迅速發(fā)展,成為一種熱門的新型成像技術[1]。OCT通過測量光學弱相干反射和背向散射,利用超外差探測技術提高信噪比獲取生物組織斷層圖像[2]。在保證一定探測深度的前提下,OCT兼具非侵入、高分辨和高速成像的優(yōu)點,非常適合生物醫(yī)學領域的應用[2-3]。掃頻源光學相干層析血管成像(swept source optical coherence tomography angiography,SS-OCTA)是一種基于分頻幅去相關血管造影法(split spectrum amplitude deeorrelation angiography,SSADA)的高分辨率的新型非侵入性血管成像技術[4],主要用于血管內(nèi)紅細胞運動的檢測和測量[5-6]。SS-OCTA依舊以邁克爾遜干涉儀作為基礎光路[7],再通過測量組織后向散射光的低相干干涉信號進行斷層成像,軸向分辨率可達1mm~15mm,能夠清晰顯示微細結構,通過對截面圖進行三維重構,可以獲取生物組織結構的3D圖像,在眼科、皮膚科成像、腫瘤檢測等領域有廣泛的應用[2,8]。尤其在眼科領域的眼底血管成像方面,SS-OCTA除了擁有傳統(tǒng)OCT可獲得血管結構信息的優(yōu)點以外,還能夠分層觀察視網(wǎng)膜脈絡膜血管形態(tài)及血流改變情況,使用偽彩可區(qū)分正常與異常的血管結構,并且能夠對血流信號進行探測和量化分析,將原始全頻譜圖像分裂為數(shù)個不同頻譜圖像并減少其噪聲,提高信噪比,然后再將其合并,從而達到視網(wǎng)膜、脈絡膜各層血管形態(tài)在橫斷面的清晰成像[5-8,15-17]。
實體瘤的生長對受到誘導所形成的血管網(wǎng)有較強的依賴性[9]。無論是直接研究,還是間接研究,都是腫瘤生長依賴血管的有力證據(jù)[9-10]。絕大多數(shù)的腫瘤在出現(xiàn)癌變現(xiàn)象之前處于靜息期,血管不會生長;一旦進入血管期,新生血管將迅速生長,為腫瘤代謝提供了支撐,對腫瘤增殖發(fā)揮了非常關鍵的作用[9]。對于血管成像有不同的成像方式,如X線血管成像、計算機斷層血管成像、磁共振血管成像、光學相干斷層成像和血管內(nèi)超聲[11]。但是對于皮膚腫瘤,并不像冠狀動脈疾病、眼底疾病那樣具有公認的關于血管成像評估標準[8, 12]。近年來,SS-OCTA的應用領域不再局限于眼底成像,皮膚淺層血管成像也越來越得到人們的關注。由于皮膚病,如炎癥、角化不全等均會引起皮膚組織微觀結構的病變,而SS-OCTA技術的成像深度正好可以覆蓋皮膚的全層組織結構,滿足臨床上的需要,更重要的是可以避免傳統(tǒng)的組織活檢所帶來的損傷。同時偏轉OCT還可用于組織表層的燒傷程度的檢測[20]。任杰等[13]利用激光散斑成像和光學相干層析成像技術,對兔耳皮膚真皮層微血管的相關參數(shù)進行無創(chuàng)測量。對皮膚血管的無創(chuàng)實時成像,意味著將SS-OCTA技術應用在腫瘤、皮膚科等疾病上進行輔助診斷成為可能,對于一些腫瘤的早期診斷有很大應用前景。
所以,本文在掃頻源光學相干層析血管成像(SS-OCTA)系統(tǒng)的基礎上,對接種黑色素瘤的C57BL6小鼠進行圖像采集,并作出對比分析,發(fā)現(xiàn)了腫瘤早期生長時血管的發(fā)育的異常變化。在早期診斷方面,利用SS-OCTA系統(tǒng)進行血管成像優(yōu)于結構成像,表明SS-OCTA系統(tǒng)在皮膚科疾病的臨床診斷方面具有潛在價值。
SS-OCTA手術導航系統(tǒng)平臺的基本設計搭建如圖1所示。
掃頻光源發(fā)出近紅外波段的光,5%的光進入馬赫-曾德爾干涉儀,其干涉信號由平衡探測器獲取,用于對OCT干涉信號進行校準;95%的光經(jīng)耦合器與環(huán)形器分別進入到參考臂和樣品臂中,二維掃描振鏡[14]將樣品臂的光偏轉后照射至小鼠皮膚成像區(qū)域,其部分光從樣品內(nèi)部各層組織原路返回,并分別與參考臂返回的光發(fā)生干涉,最終由光電平衡探測器與數(shù)字采集卡記錄,經(jīng)過OCT深度重構處理形成包含組織內(nèi)微觀結構的圖像。其橫向掃描可以快速獲取非侵入二維和三維分辨率優(yōu)于10 μm的圖像。光束照射到標本上,形成顯微結構反射,對反射光時間延遲起到測量作用,可對組織的縱向內(nèi)部結構進行無創(chuàng)檢測。
本文中SS-OCTA系統(tǒng)的算法采用分頻幅去相關血管造影法(split spectrum amplitude deeorrelation angiography,SSADA)[15],能在最大程度上降低噪聲、偽影等的影響,使得信噪比得到明顯提升[16-17]。
光在樣品內(nèi)部散射,然后通過處理形成高分辨率、高深度的圖像來分析內(nèi)在的微觀結構。光束照射到標本上,形成顯微結構反射,對反射光時間延遲起到測量作用,可對組織的縱向內(nèi)部結構進行無創(chuàng)檢測。一個光帶所提供的血流信息都是獨立的,對多幀掃描圖像所對應的去相干圖像進行計算,將不同光帶去相干圖像進行合并處理,就能獲得平均值,使得血流信號變強,具有重要的臨床研究意義[16]。
SS: 掃頻光源(swept-source);MZI: 馬赫-曾德爾干涉儀(Mach-Zehnder interferometer);BD: 平衡探測器(balance detector);PC: 偏振控制器(polarize controller);M: 反射鏡(mirror);G: 振鏡(galvanometer)
因為SSADA只對信號強度信息進行干涉,所以其算法就能對動態(tài)物質背景進行分離,使得抖動影響大大變小,對流場檢測的信噪比明顯增強,然后利用幅值去相關技術提取流動信息,如下式[16]:
式中:為相同位置實現(xiàn)多幀重復掃描的幀數(shù)索引;為分光譜幀數(shù)索引用;1、分別為分光譜數(shù)和多幀重復掃描數(shù)。當采集時間間隔不增加時,增加1就可導致信噪比大大提升。
本文利用SSADA算法對SS-OCTA系統(tǒng)進行成像檢測,結果如圖2所示。圖中顯示的噪聲基底為70.3 dB,最大信號強度為104.6 dB,標準圖像的最大信噪比為34.3 dB。
本次實驗使用的實驗動物為C57BL6小鼠。小鼠經(jīng)麻醉、脫毛后,左背部后肢部位皮下注射0.2 ml B16F10單細胞懸液,注射細胞量為105個,接種5天后進行成像。
圖2 利用SSADA算法對SS-OCTA系統(tǒng)進行成像檢測的結果
本次成像實驗設定SS-OCTA實驗平臺的采集視場為5.12 mm′5.12 mm,黑色素瘤因體積大于采集視場,無法單次采集整個腫瘤的血管圖像。為此,本次實驗以不同方向與角度進行采集,將采集到的結構、血管圖像進行拼接,形成完整的皮膚黑色素瘤的結構圖與血管圖。圖3分別展示了小鼠腫瘤處的實物圖、SS-OCTA掃描的結構圖和血管圖。
圖3(a)可以看到,接種后,小鼠腫瘤處皮膚呈黑色,與粉色的正常皮膚有明顯差異。圖3(b)為SS-OCTA掃描采集的結構圖經(jīng)過拼接后的完整皮膚表面。由圖可知腫瘤皮膚表面不平整,存在一些凹凸不平的現(xiàn)象,猜測應該是皮膚表面的粗糙程度,并沒有明顯的異?,F(xiàn)象。圖3(c)為SS-OCTA掃描采集的血管圖像經(jīng)過拼接后的黑色素瘤處完整血管圖像,由圖紅色虛線區(qū)域可知,腫瘤部位血管呈現(xiàn)不均勻分布,并且血管分支復雜、紊亂,很多微血管結構不完整,這些特征跟周圍正常皮膚血管相比尤為突出(紅色箭頭)。并且腫瘤新生的毛細血管主要分布在腫瘤生長活躍的邊緣,呈現(xiàn)由外向內(nèi)的生長趨勢。
將小鼠腫瘤處的皮膚結構圖和血管圖進行疊加,得到圖4。在圖4中,可以更清晰看到,小鼠黑色素瘤處的皮膚與其皮下異常生長的血管叢并無太大關系。單單看皮膚結構圖,很難判別皮膚是否異常、是否存在腫瘤。而在看血管圖片時,則很容易看出血管生長、分布和結構的異常。這說明本文設計搭建的SS-OCTA成像系統(tǒng)在對皮膚黑色素瘤成像時,可以從血管特征方面對早期的黑色素瘤進行簡要判定,而在皮膚結構界面則很難起到早期判定的作用。相比較而言,SS-OCTA對于血管特征的分辨要高于對皮膚組織結構的分辨。
與內(nèi)窺式OCT相比較,在實時無創(chuàng)成像的同時,還可以基本給出腫瘤血管與正常血管的邊界線,這將有助于在手術切除腫瘤的同時更少地切除周邊正常組織[18]。相比較對黑色素瘤進行早期輔助診斷的普遍性手段皮膚鏡而言,SS-OCTA成像不僅可以進行皮膚表面結構成像,而且還可以進行更深層次的皮下血管成像,并且同樣可以做到實時、無創(chuàng)成像[19]。同時,本實驗也證明SS-OCTA可以對生物組織結構、血管進行無創(chuàng)成像,對一些腫瘤的早期診斷有很大應用前景。
圖3 小鼠腫瘤處的皮膚結構圖、血管圖。(a) 小鼠皮膚實物圖;(b) 小鼠皮膚結構圖;(c) 小鼠皮膚血管圖
圖4 結構圖與血管圖的疊加
本文利用掃頻源光學相干層析血管成像(SS-OCTA)系統(tǒng)完成了對皮膚的結構成像,并對黑色素瘤小鼠進行腫瘤部位的皮膚結構和血管成像。證明了本文的SS-OCTA系統(tǒng)能發(fā)現(xiàn)腫瘤早期生長時血管發(fā)育的異常變化。同時,在早期診斷方面,利用SS-OCTA系統(tǒng)進行血管成像優(yōu)于結構成像,表明SS-OCTA系統(tǒng)在皮膚科疾病的臨床診斷方面具有潛在價值。
[1] Liang L, Jia Y L, Takusagawa H L,.Optical coherence tomography angiography of the peripapillary retina in Glaucoma[J].,2015, 133(9): 1045–1052.
[2] Zhao S Y, Yu X, Huang N Y,. Rat ear blood vessels imaging by optical coherence tomography[J]., 2011, 20(3): 137–140, 202.
趙士勇, 俞信, 黃乃艷,等.大鼠耳部微血管光學相干層析成像研究[J]. 中國激光醫(yī)學雜志,2011, 20(3): 137–140, 202.
[3] Zhang Y M, Yang L, Dai P D,. Application of optical coherence tomography in otology[J]., 2018, 18(4): 285–288.
張玉梅, 楊琳, 戴培東, 等. 光學相干層析成像技術在耳科學研究中的應用[J]. 中國眼耳鼻喉科雜志,2018, 18(4): 285–288.
[4] Di Y, Ye J J. Application of optical coherence tomography angiography in ophthalmology[J]., 2017, 53(1): 65–72.
狄宇, 葉俊杰. 光學相干層析掃描血管成像檢查在眼科的應用[J]. 中華眼科雜志,2017, 53(1): 65–72.
[5] Go??biewska J, Olechowski A, Wysocka-Mincewicz M,.Optical coherence tomography angiography vessel density in children with type 1 diabetes[J].,2017, 12(10): e0186479.
[6] Zhang Q, Jonas J B, Wang Q,.Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation[J].,2018, 8(1): 6024.
[7] 孟慶剛. 邁克爾遜干涉儀的應用[J]. 黑龍江科技信息,2011(36): 62.
[8] Skalet A H, Li Y, Lu C D,.Optical coherence tomography angiography characteristics of iris melanocytic tumors[J].,2017, 124(2): 197–204.
[9] Folkman J. Tumor angiogenesis: therapeutic implications[J].,1971, 285(21): 1182–1186.
[10] Balch C M, Murad T M, Soong S J,.A multifactorial analysis of melanoma: prognostic histopathological features comparing Clark's and Breslow's staging methods[J].,1978, 188(6): 732–742.
[11] Fazlali H R, Karimi N, Soroushmehr S M R,.Vessel segmentation and catheter detection in X-ray angiograms using superpixels[J].,2018, 56(9): 1515–1530.
[12] Kato S, Kitagawa K, Ishida N,.Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial[J].,2010, 56(12): 983–991.
[13] Ren J, Wang Y, Gu Y. Basic research on noninvasive detection of skin microvasculature by laser speckle imaging and optical coherence yomography[J].,2012, 21(5): 309.
任杰, 王穎, 顧瑛. 激光散斑成像和光學相干層析成像用于皮膚微血管無創(chuàng)檢測的基礎研究[J]. 中國激光醫(yī)學雜志,2012, 21(5): 309.
[14] 喻超. 二維振鏡式掃描系統(tǒng)在激光掃描成像中的應用[D]. 北京: 北京郵電大學, 2011.
[15] Wang Q, Wei W B. Optical coherence tomography angiography with split-spectrum amplitude decorrelation angiography[J]., 2016, 40(2): 112–116.
王倩, 魏文斌. 分頻幅去相干血管成像[J]. 國際眼科縱覽,2016, 40(2): 112–116.
[16] Gao F, Fan J Y, Kong W,. Research progress on optical coherence tomography in detecting vascular flow field[J]., 2018, 45(2): 0207019.
高峰, 樊金宇, 孔文, 等. 光學相干層析技術在血管流場檢測方面的研究進展[J]. 中國激光,2018, 45(2): 0207019.
[17] Jia Y L, Tan O, Tokayer J,.Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J].,2012, 20(4): 4710–4725.
[18] Luo S T, Fan Y W, Chang W,.Boundary region of stomach mucinous carcinoma with swept source optical coherence tomography[J].,2018, 38(5): 0507001.
羅斯特, 范應威, ?,|, 等.掃頻光學相干層析成像應用于判斷黏液型胃癌邊界區(qū)域[J]. 光學學報,2018, 38(5): 0507001.
[19] Cozzani E, Chinazzo C, Ghigliotti G,.Cutaneous angiosarcoma: the role of dermoscopy to reduce the risk of a delayed diagnosis[J].,2018, 57(8): 996–997.
[20] Schoenenberger K, Colston B W, Maitland D J,. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography[J]., 1998, 37(25): 6026–6036.
Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography
Liu Jingxuan1,2, Fan Jinyu2, Wang Quan2, Shi Guohua2*
1University of Science and Technology of China, Hefei, Anhui 230000, China;2Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215000, China
The superimposition of the structure map and the vascular map
Overview:In recent years, optical coherence tomography (OCT) has developed rapidly and become a new imaging technology. OCT weakens coherent reflection and backscattering. Super heterodyne detection technique was used to improve the signal-to-noise ratio of biological tissue tomography. OCT has the advantages of non-invasive, high resolution, and high-speed imaging, and thus it is very suitable for biomedical applications. Scanning source optical coherence tomography (SS-OCTA) is a frequency-domain OCT technology and can support a high resolution in vivo angiography. As a new angiography technique, SS-OCTA still uses the Michelson interferometer's basic optical path and can achieve axial resolution of 15 microns by measuring the back scattering of light from low-coherent interference signals in tissue. Cross sectional images of 3D reconstruction of 3D images of biological tissues can be obtained, which are widely used in ophthalmology, dermatology imaging, tumor detection, and other fields. In addition to imaging biological tissue, SS-OCTA can also image surface blood vessels such as fundus and skin. SS-OCTA can observe the changes of retinal blood vessel morphology and blood flow in the choroid retina in the field of ophthalmology such as retinal angiography. Furthermore, it can also use pseudo-color to distinguish normal and abnormal vascular structures, blood flow signal detection and quantitative analysis, split different spectral images of the original full-spectrum image, reduce noise, improve signal-to-noise ratio, and then merge, so as to achieve retinal, choroidal vascular formation of any layer of significant cross-sectional imaging. Finally, we use laser speckle imaging and optical coherence tomography to noninvasive measurement of animal skin irritation and obtain dermal microvascular parameters. Angiography provides a possibility for the applications of SS-OCTA in the diagnosis of tumors, skin diseases, and other diseases. In fact, solid tumor growth is strongly dependent on the induced vascular network. Direct and indirect studies can support a strong evidence that tumor growth depends on blood vessels. Most tumors remain inactive until they become cancerous, and blood vessels no longer grow. Once entering the vascular phase, new blood vessels will grow rapidly to support tumor metabolism and play an important role in tumor proliferation. SS-OCTA can perform noninvasive imaging of biological tissues and blood vessels. This is of great significance for the early diagnosis of some tumors. Therefore, skin structure and angiography of melanoma C57BL6 mice were collected and compared with the SS-OCTA system. To observe the changes of the vascular development and biological tissue structure in the early stage of tumor growth, SS-OCTA is better at distinguishing vascular functional structures than the structural imaging.
Citation: Liu J X, Fan J Y, Wang Q,Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]., 2020, 47(2): 190239
Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography
Liu Jingxuan1,2, Fan Jinyu2, Wang Quan2, Shi Guohua2*
1University of Science and Technology of China, Hefei, Anhui 230000, China;2Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215000, China
Sweep source optical coherence tomographic angiography (SS-OCTA) is a kind of angiography technologies based on split spectrum amplitude deeorrelation angiography (SSADA). It has a great prospect in the early diagnosis of tumors and other diseases. In this paper, skin structure and angiography of melanoma C57BL6 mice were collected on the basis of the SS-OCTA imaging platform with an imaging field of 5.12 mm′5.12 mm and a standard image maximum signal-to-noise ratio of 34.3 dB. The results show that the SS-OCTA system is superior to the structural imaging in early diagnosis of dermatological diseases.
scanning frequency source optical coherence tomography; skin structure; tumor vessels; melanoma; SS-OCTA
Supported by Key Research and Development Plan of the Ministry of Science and Technology - Digital Diagnosis and Treatment Equipment (2017YFC0108201, 2017YFC0108200, 2017YFB0403700), Key Research Project of Frontier Science of Chinese Academy of Sciences (QYZDB-SSW-JSC03), and Key Projects for Inter-governmental International Scientific and Technological Innovation Cooperation (2016YFE0107700)
A
10.12086/oee.2020.190239
: Liu J X, Fan J Y, Wang Q,. Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]., 2020,47(2): 190239
2019-05-13;
2019-11-23
科技部重點研發(fā)計劃-數(shù)字診療裝備(2017YFC0108201, 2017YFC0108200, 2017YFB0403700);中國科學院前沿科學重點研究項目(QYZDB-SSW-JSC03);政府間國際科技創(chuàng)新合作重點專項(2016YFE0107700)
劉敬璇(1993-),女,碩士研究生,主要從事光學生物成像的研究。E-mail:ljx1216@126.com
史國華(1981-),男,博士,研究員,主要從事新型在體光學成像與檢測的研究。E-mail:ghshi_lab@126.com
劉敬璇,樊金宇,汪權,等. SS-OCTA對黑色素瘤皮膚結構和血管的成像實驗[J]. 光電工程,2020,47(2): 190239
R732.2;TP391
* E-mail: ghshi_lab@126.com