国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

綠肥、蠶沙有機(jī)肥配施化肥對(duì)免耕稻田土壤碳庫平衡的影響

2020-02-22 11:20劉順翱吳昊胡鈞銘韋翔華劉開強(qiáng)蒙炎成李婷婷魏宗輝

劉順翱 吳昊 胡鈞銘 韋翔華 劉開強(qiáng) 蒙炎成 李婷婷 魏宗輝

摘要:【目的】探索免耕稻田綠肥、蠶沙有機(jī)肥投入對(duì)土壤有機(jī)碳積累及CO2和CH4排放的影響,為保護(hù)性耕作稻田土壤碳固持及稻田減肥增效的農(nóng)業(yè)有機(jī)資源可持續(xù)利用提供理論依據(jù)。【方法】在前期粉壟與常規(guī)耕作基礎(chǔ)上,2018—2019年連續(xù)開展田間免耕試驗(yàn),在同等養(yǎng)分投入條件下,設(shè)置綠肥、蠶沙有機(jī)肥與化肥配施模式,以常規(guī)施用化肥為對(duì)照,同步設(shè)不施肥空白對(duì)照,保護(hù)性耕作試驗(yàn)第2年,采用分離式靜態(tài)箱—?dú)庀笊V法測(cè)定稻田溫室氣體CO2和CH4排放通量,同時(shí)在水稻返青期、分蘗期、齊穗期和收獲期采集0~15 cm耕層土壤,測(cè)定土壤有機(jī)碳含量?!窘Y(jié)果】在粉壟免耕模式下,蠶沙有機(jī)肥配施化肥處理耕層土壤有機(jī)碳含量在返青期和分蘗期較常規(guī)免耕模式提高56%和19%;水稻返青期、分蘗期、齊穗期和收獲期粉壟免耕稻田綠肥配施化肥處理的土壤有機(jī)碳含量較單施化肥處理分別提高111%、30%、74%和31%,較不施肥處理分別提高90%、22%、58%和22%;蠶沙有機(jī)肥配施化肥處理較單施化肥處理分別提高148%、90%、48%和39%,較不施肥處理分別提高113%、78%、35%和29%。粉壟免耕模式下,與單施化肥處理相比,綠肥配施化肥處理的CO2累積排放量降低16.9%,蠶沙有機(jī)肥配施化肥處理降低15.1%;CH4排放通量出現(xiàn)2個(gè)峰值,常規(guī)免耕和粉壟免耕模式下,綠肥配施化肥處理的CH4排放通量峰值分別是單施化肥處理的7.69和7.61倍。綠肥和蠶沙有機(jī)肥配施化肥降低了稻田土壤CO2累積排放量,增加了CH4累積排放量?!窘Y(jié)論】粉壟免耕稻田施用綠肥、蠶沙有機(jī)肥利于土壤有機(jī)碳積累,減少CO2溫室氣體排放,可作為一種稻田土壤固碳減排可持續(xù)生產(chǎn)應(yīng)用技術(shù)。

關(guān)鍵詞: 粉壟;化肥配施;免耕稻田;土壤有機(jī)碳;溫室氣體

中圖分類號(hào): S142;S141.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)11-2690-07

Effects of chemical fertilizer combined with green manure and silkworm excrement on soil carbon pool balance

in no-tillage paddy field

LIU Shun-ao1,2, WU Hao3, HU Jun-ming1*, WEI Xiang-hua2, LIU Kai-qiang4,

MENG Yan-cheng1, LI Ting-ting1, WEI Zong-hui1,2

(1Agricultural Resource and Environment Research Institute,Guangxi Academy of Agricultural Sciences, Nanning ?530007,China; 2College of Agriculture, Guangxi University, Nanning ?530004, China; 3Environmental Protection Research Institute of Guangxi, Nanning ?530022, China; 4Guangxi Academy of Agricultural Sciences, Nanning ?530007, China)

Abstract:【Objective】Exploring the effects of farmland organic resource input(no-tillage rice paddy green manure and silkworm excrement organic fertilizer) on the accumulation of soil organic carbon and the emission of CH4 and CO2,it could provide a theoretical basis for the sustainable utilization of farmland organic resource of soil carbon sequestration and reduce fertilizer and increase effectunder conservation tillage in paddy fields. 【Method】Based on the earlier stage of smash ridging and conventional tillage,the field non-tillage experiment was carried out continuously from 2018 to 2019. Under the same nutrient input conditions,two regional application modes of green manure,silkworm excrement and formula application of fertilizer were set up. The conventional application of chemical fertilizer was taken as the control,and the non fertilization blank control was set up simultaneously. In the second year of conservation tillage experiment,the se-parated static box meteorological chromatography was used to detect CH4 and CO2 emission fluxes of greenhouse gases in rice field,and 0-15 cm cultivated layer soil was collected in the rice returning to green,tillering,full heading and harves-ting periods. 【Result】Under the condition of no-tillage and smash ridging,the content of soil organic carbon in the ferti-lized layer of silkworm excrement and formula application of fertilizer increased 56% and 19% compared with the same fertilizing method of conventional no-tillage in the period of returning to green and tillering. Compared with the single application of chemical fertilizers,organic carbon content in soil in the green manure formula application treatments increased by 111%,30%,74% and 31% in four periods(regreening stage,tillering stage,full heading stahe and harvest stage) ,and increased by 90%,22%,58% and 22% compared with no fertilizer treatment. The silkworm excrement organic fertilizer and chemical fertilizer increased by 148%,90%,48% and 39% respectively compared with single fertilizer application,and increased by 113%,78%,35% and 29% compared with no fertilizer application. In the conventional no-tillage paddy field,compared with single fertilizer treatment, the CO2 cumulative emission flux of green manure organic fertilizer formula application treatment decreased by 16.9% and that of silkworm excrement organic fertilizer formula application treatment decreased by 15.1%. There were two peaks in CH4 emission flux,among which the highest value of CH4 emission flux of green manure organic fertilizer formula application treatment was 7.69 and 7.61 times as ?that of single use of chemical fertilizer in conventional no-tillage cultivation and smash ridging no-tillage cultivation,respectively. The combination of green manure and silkworm excrement and formula application of fertilizer reduced the cumulative CO2 emissions from the paddy soil and increased the cumulative CH4 emissions. 【Conclusion】The application of green manure and silkworm excrement organic fertilizer in paddy field under powder ridge no-tillage is beneficial to soil organic carbon accumulation and reduces CO2 greenhouse gas emissions. It can be used as a sustainable production application technology for paddy soil carbon fixation and emission reduction.

Key words: smash ridging; fertilizer formula application; no-tillage rice field; soil organic carbon; greenhouse gas

Foundation item: National Natural Science Foundation of China(41661074);Guangxi Science and Technology Project(Guikezhong 1598014-4, Guike AA17204087-2, Guike AD18281089)

0 引言

【研究意義】氣候變化影響人類可持續(xù)發(fā)展(秦大河,2014),響應(yīng)氣候變化,管控陸地碳循環(huán)變化倍受關(guān)注(Yang et al.,2003;Li et al.,2008)。農(nóng)田生態(tài)系統(tǒng)作為土壤生態(tài)系統(tǒng)中碳的源和匯雙重身份,在陸地碳循環(huán)中占有重要地位(孫文娟等,2008)?,F(xiàn)代稻作集約化生產(chǎn)中化肥過量施用,土壤環(huán)境和生態(tài)問題面臨嚴(yán)重挑戰(zhàn)(潘根興等,2011;Shen et al.,2018)。轉(zhuǎn)變農(nóng)業(yè)生產(chǎn)方式,研究稻田CH4和CO2的排放規(guī)律及土壤有機(jī)碳的動(dòng)態(tài)變化,對(duì)緩解土壤溫室氣體排放,促進(jìn)農(nóng)業(yè)綠色發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】土壤有機(jī)碳庫受“碳輸入—碳分解—碳固持”動(dòng)態(tài)平衡影響(孫國峰等,2010;Li et al.,2012;Zhang et al.,2017),作物根茬留田是農(nóng)田生態(tài)系統(tǒng)中有機(jī)物歸還的主要來源(蔡苗等,2013)。國內(nèi)外學(xué)者圍繞農(nóng)田有機(jī)資源投入對(duì)土壤的影響進(jìn)行了廣泛研究。陳曉萍等(2011)研究表明,有機(jī)肥可提高化肥的利用率,改善土壤質(zhì)量、提高土壤肥力;Wang等(2012)研究指出,生物碳投入農(nóng)田后參與土壤養(yǎng)分循環(huán)與土壤碳固持;吳建富等(2013)認(rèn)為秸稈還田影響土壤礦化,改變土壤碳素利用率;高嵩涓等(2015)認(rèn)為綠肥還田促進(jìn)了土壤有機(jī)物轉(zhuǎn)化;馬艷芹和黃國勤(2019)研究指出綠肥還田能影響土壤微生物量碳變化。譚英愛等(2020)研究表明,與冬閑田相比,種植綠肥不僅能增加土壤冬季覆蓋面積,還能提高土壤有機(jī)碳、氮含量,改善生態(tài)環(huán)境。本課題組前期研究發(fā)現(xiàn),快腐蠶沙促進(jìn)了水稻安全生長(zhǎng)與營養(yǎng)健康利用(胡鈞銘等,2017),綠肥壓青還田有助于調(diào)控土壤碳庫環(huán)境(鄭佳舜等,2019)。上述研究均表明,農(nóng)田有機(jī)資源投入是影響土壤有機(jī)質(zhì)與碳庫環(huán)境的重要手段。【本研究切入點(diǎn)】近年來,粉壟深旋耕技術(shù)因利于作物增產(chǎn)已得到廣泛應(yīng)用(韋本輝等,2012),但粉壟耕作打破犁底層,影響耕層有機(jī)碳變化是業(yè)界關(guān)注的焦點(diǎn)。而免耕保護(hù)性耕作有助于減少土層耕層擾動(dòng)(Pan et al.,2004),適宜的翻免結(jié)合有利于維持較高的農(nóng)田土壤有機(jī)碳儲(chǔ)量(胡鈞銘等,2018)。因此,需進(jìn)一步評(píng)估粉壟耕作免耕條件下農(nóng)業(yè)有機(jī)資源化肥耦合對(duì)稻田土壤碳庫平衡的影響?!緮M解決的關(guān)鍵問題】從土壤有機(jī)碳、CO2和CH4排放及溫室氣體累積和碳源增溫潛勢(shì)角度,探索保護(hù)性耕作稻田農(nóng)業(yè)有機(jī)資源投入對(duì)土壤有機(jī)碳積累及CO2和CH4排放的影響,以期為保護(hù)性耕作稻田土壤碳固持及稻田減肥增效的農(nóng)業(yè)有機(jī)資源可持續(xù)利用提供理論依據(jù)。

1 材料與方法

1. 1 試驗(yàn)地概況

試驗(yàn)在廣西農(nóng)業(yè)科學(xué)院典型南方雙季秈稻區(qū)定位試驗(yàn)基地進(jìn)行,該區(qū)域?qū)儆趤啛釒Ъ撅L(fēng)氣候,年均氣溫21.5 ℃,年均降水量1304.2 mm,相對(duì)濕度79%。供試土壤為黏性紅壤水稻土,在稻田施肥前5點(diǎn)取樣采集土壤樣品并測(cè)定土壤基礎(chǔ)理化性質(zhì),土壤背景值為有機(jī)質(zhì)24.50 g/kg,全氮1.80 g/kg,全磷0.92 g/kg,全鉀7.43 g/kg,水解性氮131.0 mg/kg,有效磷37.9 mg/kg,速效鉀97.8 mg/kg。

1. 2 試驗(yàn)材料

試驗(yàn)選用三系秈型超級(jí)稻特優(yōu)582;還田綠肥為紫云英,干基養(yǎng)分2.70%N、0.65%P2O5、2.50% K2O;蠶沙有機(jī)肥養(yǎng)分3.20%N、2.65%P2O5、4.91% K2O;化肥包括尿素(含N 46%)、過磷酸鈣(含P2O5 15%)、氯化鉀(含K2O 62.7%)和復(fù)合肥(15%N-15% P2O5-15%K2O)。

1. 3 試驗(yàn)方法

在前期稻田粉壟耕作與常規(guī)耕作試驗(yàn)基礎(chǔ)上,2018—2019年連續(xù)開展稻田免耕保護(hù)性耕作試驗(yàn)(分別記為粉壟免耕和常規(guī)免耕),按當(dāng)?shù)爻?jí)稻生產(chǎn)養(yǎng)分需求情況(N 240 kg/ha、P2O5 120 kg/ha、K2O 240 kg/ha)并參考課題組前期農(nóng)業(yè)有機(jī)資源田間投入量(胡鈞銘等,2017;鄭佳舜等,2019),在同等養(yǎng)分投入的基礎(chǔ)上,設(shè)綠肥、蠶沙有機(jī)肥與化肥不同配施處理,分別為100%化肥(復(fù)合肥800 kg/ha,尿素261 kg/ha,氯化鉀191 kg/ha)、綠肥配施化肥(綠肥35586.56 kg/ha,過磷酸鈣414.75 kg/ha,氯化鉀28.35 kg/ha)、蠶沙有機(jī)肥配施化肥(蠶沙有機(jī)肥6543.08 kg/ha,尿素203 kg/ha,氯化鉀24 kg/ha);以常規(guī)施用化肥為對(duì)照(C2和F2),同步設(shè)不施肥空白對(duì)照(C1和F1),試驗(yàn)共8個(gè)處理(表1),每處理3個(gè)重復(fù),小區(qū)面積46 m2。移栽株行距為12 cm×24 cm,每穴2苗,分2次施肥,水稻移栽前底肥和移栽返青肥各施50%,于底肥施入2 d后移栽水稻,水稻移栽后至分蘗盛期曬田前保持田面3~5 cm水層,其他田間管理按超級(jí)稻高產(chǎn)生產(chǎn)規(guī)范進(jìn)行。

1. 4 測(cè)定項(xiàng)目及方法

稻田CH4和CO2采集與測(cè)定采用靜態(tài)箱—?dú)庀嗌V法,分別在水稻移栽后5、8、11、15、20、30、40、50、60、70和80 d進(jìn)行氣體取樣,共采集11次,每處理3個(gè)重復(fù)。耕層土壤樣品分別在水稻返青期、分蘗期、齊穗期和收獲期采用“S”形五點(diǎn)取樣法采集,風(fēng)干過篩后采用重鉻酸鉀加熱法測(cè)定土壤有機(jī)碳含量(魯如坤,1999)。參考鄭佳舜等(2019)計(jì)算增溫潛勢(shì)(Carbon dioxide equivalent,CDE):

CDE(CO2)=fCO2×1

CDE(CH4)=fCH4×25

TCDE=CDE(CO2)+CDE(CH4)

式中,fCO2、fCH4為整個(gè)水稻生長(zhǎng)季CO2和CH4的累積排放量,單位為kg/ha,TCDE為CO2和CH4的碳源增溫潛勢(shì)(CO2 kg/ha),即CO2和CH4排放量的總CO2當(dāng)量。

1. 5 統(tǒng)計(jì)分析

采用Excel 2010進(jìn)行數(shù)據(jù)整理和制圖,以SPSS 19.0對(duì)不同處理間土壤有機(jī)碳、溫室氣體排放通量進(jìn)行顯著性方差分析,采用Duncans法進(jìn)行多重比較。

2 結(jié)果與分析

2. 1 綠肥、蠶沙有機(jī)肥配施化肥對(duì)稻田耕層土壤有機(jī)碳的影響

由圖1可看出,粉壟免耕模式下,稻田土壤有機(jī)碳含量各處理間表現(xiàn)為F4>F3>F1>F2;常規(guī)免耕模式下,稻田土壤有機(jī)碳含量均為C1處理最低,且水稻分蘗期和收獲期的土壤有機(jī)碳含量表現(xiàn)為C3和C4處理高于C1和C2處理。說明綠肥、蠶沙有機(jī)肥配施化肥能提高土壤有機(jī)碳含量。在相同施肥模式下,不同免耕模式的稻田土壤有機(jī)碳含量在水稻不同生育期表現(xiàn)不同。在返青期和齊穗期,綠肥配施化肥處理表現(xiàn)為F3>C3,而分蘗期和收獲期表現(xiàn)為C3>F3;蠶沙有機(jī)肥配施化肥處理返青期和分蘗期表現(xiàn)為F4>C4,齊穗期和收獲期表現(xiàn)為C4>F4。單一投入化肥條件下,常規(guī)免耕土壤有機(jī)碳含量高于粉壟免耕,表現(xiàn)為C2>F2,且在各生育關(guān)鍵時(shí)期存在顯著差異(P<0.05,下同)。粉壟免耕模式下,水稻生育前期蠶沙有機(jī)肥配施化肥處理的土壤有機(jī)碳含量最高,返青期和分蘗期分別為18.03和16.67 g/kg,較常規(guī)免耕稻田蠶沙有機(jī)肥配施化肥處理提高56%和19%。水稻返青期、分蘗期、齊穗期和收獲期粉壟免耕稻田綠肥配施化肥處理的土壤有機(jī)碳含量較單施化肥處理分別提高111%、30%、74%和31%,較不施肥處理分別提高90%、22%、58%和22%;蠶沙有機(jī)肥配施化肥處理較單施化肥處理分別提高148%、90%、48%和39%,較不施肥處理分別提高113%、78%、35%和29%。

2. 2 綠肥、蠶沙有機(jī)肥配施化肥對(duì)稻田溫室氣體CO2排放通量的影響

從圖2可看出,2種免耕模式不同施肥處理整個(gè)水稻生長(zhǎng)季土壤CO2排放通量變化趨勢(shì)基本一致。在水稻移栽初期,CO2排放緩慢,在移栽后15 d出現(xiàn)第1個(gè)小高峰,隨后開始緩慢下降,在曬田時(shí)(移栽后40 d)降至最低,曬田后CO2排放通量快速升高,常規(guī)免耕稻田在移栽后50 d CO2排放通量達(dá)第2個(gè)高峰,粉壟免耕稻田在移栽后60 d CO2排放通量達(dá)第2個(gè)高峰,然后隨著稻田復(fù)水,其變化趨勢(shì)均逐漸下降。

由圖2還可看出,相同施肥方式下,水稻移栽后0~15 d粉壟免耕稻田CO2排放通量整體上高于常規(guī)免耕稻田,15~40 d粉壟免耕稻田的CO2排放通量下降,常規(guī)免耕稻田C2、C3和C4處理的CO2排放通量逐漸下降,而C1處理表現(xiàn)為先上升再下降,且水稻生育早期排放較低時(shí)段同種免耕模式不同施肥處理的CO2排放通量差異不明顯。水稻移栽后50 d,C2處理的CO2排放通量[48.04 mg/(m2·h)]是F2處理CO2排放通量[26.54 mg/(m2·h)]的1.2倍。水稻生長(zhǎng)后期(移栽后60 d),此時(shí)CO2排放通量雖均已下降,但不同免耕模式下同一施肥處理CO2排放通量表現(xiàn)為F2處理[26.84 mg/(m2·h)]

2. 3 綠肥、蠶沙有機(jī)肥配施化肥對(duì)稻田溫室氣體CH4排放通量的影響

由圖3可看出,常規(guī)免耕和粉壟免耕稻田的CH4排放通量變化趨勢(shì)相似,其中綠肥配施化肥(C3和F3)處理的CH4排放通量明顯高于其他處理,所有處理的CH4排放通量在整個(gè)水稻生長(zhǎng)季基本呈2個(gè)高峰,即在移栽后15或20 d出現(xiàn)第1個(gè)小高峰,隨后開始下降,至第40 d曬田時(shí)降至最低點(diǎn),之后又逐漸上升,在移栽后70 d達(dá)第2個(gè)高峰,70 d后CH4排放通量開始轉(zhuǎn)為下降。對(duì)比圖3-A與圖3-B可知,粉壟免耕稻田在收獲前第80 d仍有CH4排放,而此時(shí)常規(guī)免耕稻田的CH4排放通量幾乎為零。在CH4排放通量達(dá)峰值時(shí),常規(guī)免耕稻田CH4排放通量表現(xiàn)為C3>C4>C1>C2,C3處理是C2處理的7.69倍;粉壟免耕稻田CH4排放通量表現(xiàn)為F3>F4>F2>F1,F(xiàn)3處理是F2處理的7.61倍。相同施肥處理下,CH4排放峰值表現(xiàn)為C3處理[6.62 mg/(m2·h)]>F3處理[6.47 mg/(m2·h)]、C2處理[0.86 mg/(m2·h)]>F2處理[0.85 mg/(m2·h)]。

2. 4 綠肥、蠶沙有機(jī)肥配施化肥對(duì)稻田碳源溫室氣體排放及增溫潛勢(shì)的影響

由圖4可看出,水稻生育期內(nèi)稻田CO2累積排放量高于CH4累積排放量,CO2在稻田土壤溫室氣體排放中處于主導(dǎo)地位。圖4-A顯示,同種施肥處理下,不同免耕模式的CO2累積排放量差異不顯著(P>0.05,下同)。常規(guī)免耕模式下,C2處理的CO2累積排放量(385.77 kg/ha)最高,顯著高于C1(177.07 kg/ha)和C3(137.31 kg/ha)處理;粉壟免耕模式下,不同施肥處理的CO2累積排放量表現(xiàn)為F1>F2>F4>F3,但差異不顯著。圖4-B顯示,F(xiàn)3處理CH4累積排放量最高(41.28 kg/ha),其次為C3處理(24.09 kg/ha),其余處理的CH4累積排放量相對(duì)較低且均差異不顯著;常規(guī)免耕稻田的CH4累積排放量表現(xiàn)為C3>C4>C2>C1,粉壟免耕稻田的CH4累積排放量表現(xiàn)為F3>F4>F2>F1??梢?,綠肥、蠶沙有機(jī)肥的投入會(huì)降低CO2累積排放量,但同時(shí)會(huì)增加CH4累積排放量。

由表2可知,水稻生育期同種免耕模式不同處理稻田碳源增溫潛勢(shì)(TCDE)表現(xiàn)為C3>C2>C4>C1,F(xiàn)3>F4>F2>F1,粉壟免耕稻田碳源增溫潛勢(shì)與CH4的累積排放量規(guī)律基本一致。與C2和F2處理相比,C3和F3的CO2增溫潛勢(shì)分別降低64.4%和16.9%,C4和F4的CO2增溫潛勢(shì)分別降低34.2%和15.1%。粉壟免耕模式下,與F2處理相比,F(xiàn)3處理的CO2累積排放量降低16.9%,F(xiàn)4處理降低15.1%。

3 討論

3. 1 綠肥、蠶沙有機(jī)肥配施化肥對(duì)免耕稻田土壤有機(jī)碳含量的影響

施用有機(jī)肥能促進(jìn)土壤微生物生長(zhǎng),增強(qiáng)土壤酶活性,提高土壤保水保肥能力,同時(shí)提高土壤有機(jī)碳含量(Tong et al., 2009)。適當(dāng)施用無機(jī)化肥也可促進(jìn)植物生長(zhǎng)并增加碳在根系和根際分泌物中的傳遞,但過量化學(xué)氮肥投入會(huì)消耗土壤有機(jī)和無機(jī)碳,影響土壤碳庫變化(Bhattacharyya et al.,2012)。而保護(hù)性耕作有利于提高0~10 cm表層土壤有機(jī)碳含量(姬強(qiáng)等,2014)。本研究發(fā)現(xiàn),在粉壟免耕稻田水稻的返青期、分蘗期、齊穗期和收獲期,蠶沙有機(jī)肥配施化肥處理的土壤有機(jī)碳含量較對(duì)照耕層土壤有所提高,與李蘋等(2015)研究認(rèn)為的蠶沙有機(jī)肥可提高土壤有機(jī)質(zhì)含量的結(jié)果相似,說明蠶沙有機(jī)肥與化肥配施既能提高稻田土壤肥力,又利于增加土壤有機(jī)碳含量。同時(shí)在水稻返青期,綠肥與化肥配施下粉壟免耕稻田土壤有機(jī)碳含量為15.41 mg/kg,是常規(guī)免耕稻田土壤有機(jī)碳含量(10.41 mg/kg)的1.48倍,可能與前期粉壟深旋耕土壤上、下層交互作用有關(guān),粉壟免耕下土壤耕層礦化微生物含量低,減少了有機(jī)碳礦化,使稻田耕層土壤有機(jī)碳含量增加??梢姡G肥、蠶沙有機(jī)肥與化肥配施有利于提高免耕保護(hù)性耕作稻田土壤固碳能力。

3. 2 綠肥、蠶沙有機(jī)肥配施化肥對(duì)免耕稻田CO2排放的影響

土壤有機(jī)碳是影響土壤呼吸強(qiáng)度的重要因素(謝軍飛和李玉娥,2002;張蕾等,2015)。本研究發(fā)現(xiàn),在2種免耕模式下,綠肥、蠶沙有機(jī)肥配施化肥較單施化肥處理稻田CO2排放量均有所降低,蠶沙有機(jī)肥配施化肥處理常規(guī)免耕稻田的CO2累積排放量(253.9 kg/ha)稍高于粉壟免耕稻田(239.33 kg/ha),而綠肥配施化肥處理常規(guī)免耕稻田的CO2累積排放量(137.31 kg/ha)明顯低于粉壟免耕稻田(234.22 kg/ha) 。稻田免耕保護(hù)性耕作能減緩?fù)寥牢⑸锝到猓瑴p緩CO2的排放(謝立勇等,2011)。常規(guī)免耕在CO2減排方面優(yōu)于粉壟免耕,可能是因?yàn)榍捌诜蹓鸥髟黾恿送寥罃_動(dòng),減緩了植物根系在土壤中的機(jī)械阻力,使其后茬免耕稻田土壤耕層深度及結(jié)構(gòu)疏松度高于常規(guī)免耕,有利于作物根系生長(zhǎng)和代謝,進(jìn)而增加了稻田CO2排放。本研究同時(shí)發(fā)現(xiàn),粉壟免耕稻田CO2排放峰值滯后,可能與綠肥、蠶沙有機(jī)肥在稻田穩(wěn)定轉(zhuǎn)化后對(duì)粉壟免耕稻田土壤微環(huán)境產(chǎn)生影響有關(guān),也可能受降水等氣候條件影響,溫度變低減緩了CO2排放。因此,綠肥、蠶沙有機(jī)肥與化肥配施能降低溫室氣體CO2增溫潛勢(shì),達(dá)到減排效果。

3. 3 綠肥、蠶沙有機(jī)肥配施化肥對(duì)免耕稻田CH4排放的影響

土壤有機(jī)碳提供的電子是甲烷菌重要的底物和能量來源(Kazunori et al.,2005;傅志強(qiáng)等,2009),農(nóng)業(yè)有機(jī)物料提供的外源有機(jī)碳和土壤有機(jī)碳是稻田CH4排放的主要來源(丁維新和蔡祖聰,2002)。本研究發(fā)現(xiàn),粉壟免耕稻田CH4呈雙峰排放,在水稻移栽第15~20 d達(dá)第1次排放高峰,第70 d達(dá)第2次排放高峰。從CH4排放的總體趨勢(shì)看,隨著稻田土壤有機(jī)碳含量的下降,其排放量也越來越少,而土壤有機(jī)碳含量在整個(gè)水稻生育期內(nèi)也逐漸減少,說明土壤有機(jī)碳可能是影響CH4排放的重要因素之一。本研究還發(fā)現(xiàn),與單施化肥處理相比,綠肥配施化肥處理促進(jìn)了稻田CH4的排放,可能是因?yàn)榫G肥腐解為稻田甲烷菌產(chǎn)生提供豐富的基質(zhì)養(yǎng)分,進(jìn)一步降低了土壤的氧化還原電位,利于CH4產(chǎn)生。同時(shí),綠肥和蠶沙有機(jī)肥處理也增加了稻田碳源增溫潛勢(shì),提高了CH4累積排放量。

4 結(jié)論

與單施化肥相比,施用綠肥、蠶沙有機(jī)肥利于粉壟免耕稻田土壤有機(jī)碳的積累,同時(shí)可減緩CO2溫室氣體的排放,是管控粉壟免耕稻田土壤碳庫的有效手段,可作為一種稻田土壤固碳減排綠色生產(chǎn)應(yīng)用技術(shù)。

參考文獻(xiàn):

蔡苗,董燕婕,李佰軍,周建斌. 2013. 不同施氮處理玉米根茬在土壤中礦化分解特性[J]. 生態(tài)學(xué)報(bào),33(14):4248-4256. [Cai M,Dong Y J,Li B J,Zhou J B. 2013. Decomposition characteristics of maize roots derived from different nitrogen fertilization fields under laboratory soil incubation conditions[J]. Acta Ecologica Sinica,33(14):4248-4256.]

陳曉萍,謝亞軍,羅光恩,石偉勇. 2011. 蠶沙有機(jī)肥的養(yǎng)分特性及其肥效[J]. 應(yīng)用生態(tài)學(xué)報(bào),22(7):1803-1809. [Chen X P,Xie Y J,Luo G E,Shi W Y. 2011. Silkworm excrement organic fertilizer:Its nutrient proper ties and application effect[J]. Chinese Journal of Applied Ecology,22(7):1803-1809.]

丁維新,蔡祖聰. 2002. 土壤有機(jī)質(zhì)和外源有機(jī)物對(duì)甲烷產(chǎn)生的影響[J]. 生態(tài)學(xué)報(bào),22(10):1672-1679. [Ding W X,Cai Z C. 2002. Effects of soil organic matter and exogenous organic materials on methane production in and emission ?from wetlands[J]. Acta Ecologica Sinica,22(10):1672-1679.]

傅志強(qiáng),黃璜,謝偉,何保良. 2009. 高產(chǎn)水稻品種及種植方式對(duì)稻田甲烷排放的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),20(12):3003-3008. [Fu Z Q,Huang H,Xie W,He B L. 2009. Effects of high-yielding rice cultivar and cultivation pattern on me thane emission from paddy field[J]. Chinese Journal of Applied Ecojogy,20(12):3003-3008.]

高嵩涓,曹衛(wèi)東,白金順,高菊生,黃晶,曾鬧華,常單娜,志水勝好. 2015. 長(zhǎng)期冬種綠肥改變紅壤稻田土壤微生物生物量特性[J]. 土壤學(xué)報(bào),52(4):902-910. [Gao S J,Cao W D,Bai J S,Gao J S,Huang J,Zeng N H,Chang D N,Shimizu K. 2015. Long-term application of winter green manures changed the soil microbial biomass properties in end paddy soil[J]. Acta Pedologica Sinica,52(4):902-910.]

胡鈞銘,陳勝男,韋翔華,夏旭,韋本輝. 2018. 耕作對(duì)健康耕層結(jié)構(gòu)的影響及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),35(2):95-103. [Hu J M,Chen S N,Wei X H,Xia X,Wei B H. 2018. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment,35(2):95-103.]

胡鈞銘,夏旭,張野,李婷婷,陸冰梅,呂相沛,何丹,韋翔華,何鐵光,李忠義. 2017. 快腐蠶沙對(duì)水稻生境及安全生長(zhǎng)的影響[J]. 廣西植物,37(8):993-999. [Hu J M,Xia X,Zhang Y,Li T T,Lu B M,Lü X P,He D,Wei X H,He T G,Li Z Y. 2017. Effects of silkworm excrement fast-rotting on rice habitat and security growth[J]. Guihaia,37(8):993-999.]

姬強(qiáng),孫漢印,Taraqqi A K,王旭東. 2014. 不同耕作措施對(duì)冬小麥—夏玉米復(fù)種連作系統(tǒng)土壤有機(jī)碳和水分利用效率的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),25(4):1029-1035. [Ji Q,Sun H Y,Taraqqi A K,Wang X D. 2014. Impact of di-fferent tillage practiceson soil organic carbon and water use efficiency under continuous wheat-maize binary cropping system[J]. Chinese Journal of Applied Ecology,25(4):1029-1035.]

李蘋,付弘婷,張發(fā)寶,逢玉萬,黃巧藝,唐拴虎. 2015. 蠶沙有機(jī)肥對(duì)作物產(chǎn)量、品質(zhì)及土壤性質(zhì)的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),46(7):1195-1199. [Li P,F(xiàn)u H T,Zhang F B,F(xiàn)eng Y W,Huang Q Y,Tang S H. 2015. Effects of silkworm excrement-derived organic fertilizer on yield and quality of crops and soil property[J]. Journal of Southern Agriculture,46(7):1195-1199 .]

魯如坤. 1999. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社. [Lu R K. 1999. Soil argrochemistry analysis protocoes[M]. Beijing:China Agriculture Science Press.]

馬艷芹,黃國勤. 2019. 紫云英還田配施氮肥對(duì)稻田土壤碳庫的影響[J]. 生態(tài)學(xué)雜志,38(1):129-135. [Ma Y Q,Huang G Q. 2019. Effects of combined application of Chinese milk vetch(Astragalus sinicus L.)and nitrogen fertilizer on paddy soil carbon pool[J].Chinese Journal of Ecology,38(1):129-135.]

潘根興,高民,胡國華,魏欽平,楊曉光,張文忠. 周廣勝,縐建文. 2011. 氣候變化對(duì)中國農(nóng)業(yè)生產(chǎn)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),30(9):1698-1706. [Pan G X,Gao M,Hu G H,Wei Q P,Yan X G,Zhang W Z,Zhou G S,Zou J W. 2011. Impacts of climate change on agricultural production of China[J]. Journal of Agro-Environment Scien-ce, 30(9):1698-1706.]

秦大河. 2014. 氣候變化科學(xué)與人類可持續(xù)發(fā)展[J]. 地理科學(xué)進(jìn)展,33(7):874-883. [Qin D H. 2014. Climate change science and sustainable development[J]. Progress in Geography,33(7):874-883.]

孫國峰,徐尚起,張海林,陳阜,肖小平. 2010. 輪耕對(duì)雙季稻田耕層土壤有機(jī)碳儲(chǔ)量的影響[J]. 中國農(nóng)業(yè)科學(xué),43(18):3776-3783. [Sun G F,Xu S Q,Zhang H L,Chen F,Xiao X P. 2010. Effects of rotational tillage in double rice cropping region on organic carbon storage of the arable paddy soil[J]. Scientia Agricultura Sinica,43(18):3776-3783.]

孫文娟,黃耀,張穩(wěn),于永強(qiáng). 2008. 農(nóng)田土壤固碳潛力研究的關(guān)鍵科學(xué)問題[J]. 地球科學(xué)進(jìn)展,23(9):996-1004. [Sun W J,Huang Y,Zhang W,Yu Y Q. 2008. Key Issues on soil carbon sequestration potential in agricultural soils[J]. Advance in Earth Sciences,23(9):996-1004.]

譚英愛,趙秋,田秀平,周麗平,寧曉光,張新建,岳露. 2020. 冬綠肥覆蓋翻壓對(duì)土壤碳、氮含量的影響[J]. 河南農(nóng)業(yè)科學(xué),49(5):81-87. [Tan Y A,Zhao Q,Tian X P,Zhou L P,Ning X G,Zhang X J,Yue L. 2020. Effect of winter green manure overturning on soil carbon and nitrogen content[J]. Journal of Henan Agricultural Sciences,49(5):81-87.]

韋本輝,劉斌,甘秀芹,申章佑,胡泊,李艷英,吳延勇,陸柳英. 2012. 粉壟栽培對(duì)水稻產(chǎn)量和品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),45(19):3946-3954. [Wei B H,Liu B,Gan X Q,Shen Z Y,Hu P,Li Y Y,Wu Y Y,Lu L Y. 2012. Effect of fenlong cultivation on yield and quality of rice[J]. Scientia Agricultura Sinica,45(19):3946-3954.]

吳建富,曾研華,潘曉華,石慶華,李濤,王蘇影. 2013. 稻草還田方式對(duì)雙季水稻產(chǎn)量和土壤碳庫管理指數(shù)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),24(6):1572-1578. [Wu J F,Zeng Y H,Pan X H,Shi Q H,Li T,Wang S Y. 2013. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double ricecropping system[J]. Chinese Journal of Applied Ecology,24(6):1572-1578.]

謝軍飛,李玉娥. 2002. 農(nóng)田土壤溫室氣體排放機(jī)理與影響因素研究進(jìn)展[J]. 中國農(nóng)業(yè)氣象,23(4):48-53. [Xie J F,Li Y E. 2002. A review of studies on mechanism of greenhouse gas(GHG)emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology,23(4):48-53.]

謝立勇,葉丹丹,張賀,郭李萍. 2011. 旱地土壤溫室氣體排放影響因子及減排增匯措施分析[J]. 中國農(nóng)業(yè)氣象,3(4):481-487. [Xie L Y,Ye D D,Zhang H,Guo L P. 2011. Review of influence factors on greenhouse gases emission from upland and relevant adjustment practices[J]. Chinese Journal of Agrometeorology,3(4):481-487.]

張蕾,尹力初,易亞男,高德才,付薇薇,王澤浩. 2015. 改變施肥管理后不同肥力稻田土壤CO2排放特征[J]. 生態(tài)學(xué)報(bào),35(5):1399-1406. [Zhang L,Yin L C,Yi Y N,Gao D C,F(xiàn)u W W,Wang Z H. 2015. Effects of fertilization reforming on the CO2 flux in paddy soils with different fertilities[J]. Acta Ecologica Sinica,35(5):1399-1406.]

鄭佳舜,胡鈞銘,韋翔華,黃太慶,李婷婷,黃嘉琪. 2019. 綠肥壓青粉壟保護(hù)性耕作對(duì)稻田土壤溫室氣體排放的影響[J]. 中國農(nóng)業(yè)氣象,40(1):15-24. [Zheng J S,Hu J M ,Wei X H,Huang T Q,Li T T,Huang J Q. 2019. Effect of conservation tillage with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J]. Chinese Journal of Agrometeorology,40(1):15-24.]

Bhattacharyya P,Roy K S,Neogi S,Adhya T K,Rao K S,Manna M C. 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon stora-ge in tropical flooded soil planted with rice[J]. Soil & Tillage Researc,124:119-130.

Kazunori M,Naoki S,Hisayoshi H. 2005. The effect of ammonium sulfate application on methane emission and soil carbon content of paddy field in Japan[J]. Agriculture Ecosystem and Environment,107(4):371-379.

Li J H,Jiao S M,Gao R Q,Bardgett R D. 2012. Differential effects of legume species on the recovery of soil microbial communities,and carbon and nitrogen contents,in abandoned fields of the Loess Plateau,China[J]. Environmental Management,50(6):1193-1203.

Li L,Wu F L,Zhang H L,Chen F. 2008. Organic carbon and carbon pool management index in soil under conversation till agein two-croppaddy field area[J]. Journal of Agro-Environment Science,27(1):248-253.

Pan G X,Li L Q,Wu L S,Zhang X U. 2004. Storage and sequestration potential of topsoil organic carbon in Chinas paddy soils[J]. Global Change Biology,10(1):79-92.

Shen J B,Zhang F S,Siddique K H M. 2018. Sustainable resource use in enhancing agricultural development in China[J]. Engineering,4(5):588-589.

Tong C L,Xiao H A,Tang G Y,Wang H Q,Huang T P,Xia H A,Keith S J,Li Y,Liu S L,Wu J S. 2009. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China[J]. Soil and Tillage Research,106:8-14.

Wang J Y,Pan X J,Liu Y L,Wang J Y,Pan X J,Liu Y L,Zhang X L,Xiong Z Q. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and Soil,360:287-298 .

Yang J C,Han X G,Huang J H,Pan Q M. 2003. The dyna-mics of soil organic matter in cropland responding to agricultural practices[J]. Acta Ecologica Sinica,23(4):787-795.

Zhang,M,Cheng,G,F(xiàn)eng H,Sun B H,Zhao Y,Chen H X,Chen J,Dyck,M,Wang X D,Zhang J G,Zhang A F. ?2017. Effects of straw and biochar amendments on aggregate stability,soil organic carbon,and enzyme activities in the Loess Plateau,China[J]. Environmental Science & Pollution Research,24 (11):10108-10120.

(責(zé)任編輯 王 暉)

收稿日期: 2020-01-16

基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(41661074);廣西科技計(jì)劃項(xiàng)目(桂科重1598014-4,桂科AA17204087-2,桂科AD18281089)

作者簡(jiǎn)介:*為通訊作者,胡鈞銘(1974-),博士,研究員,主要從事農(nóng)業(yè)有機(jī)資源利用與生境調(diào)控研究工作,E-mail:jmhu06@126.com。劉順翱(1993-),研究方向?yàn)檗r(nóng)業(yè)土壤環(huán)境生態(tài),E-mail:lsa1966469905@163.com

周至县| 明光市| 玉山县| 芜湖县| 宁安市| 潼关县| 嘉兴市| 离岛区| 公主岭市| 遂宁市| 屏边| 安新县| 天台县| 福泉市| 通州区| 通化县| 福清市| 九江市| 武夷山市| 新乡县| 嵊泗县| 巴彦县| 介休市| 白水县| 吉安市| 清水河县| 静乐县| 本溪| 阳谷县| 宾川县| 灌南县| 绥阳县| 台州市| 宁南县| 旅游| 尚义县| 绥棱县| 扎兰屯市| 鄂伦春自治旗| 驻马店市| 巨野县|