国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

利用RNA-Seq發(fā)掘玉米葉片形態(tài)建成相關(guān)的調(diào)控基因

2020-02-27 03:50郭書磊魯曉民齊建雙魏良明張新韓小花岳潤(rùn)清王振華鐵雙貴陳彥惠
中國農(nóng)業(yè)科學(xué) 2020年1期
關(guān)鍵詞:葉長(zhǎng)擬南芥發(fā)育

郭書磊,魯曉民,齊建雙,魏良明,張新,韓小花,岳潤(rùn)清,王振華,鐵雙貴,陳彥惠

利用RNA-Seq發(fā)掘玉米葉片形態(tài)建成相關(guān)的調(diào)控基因

郭書磊1,2,魯曉民1,齊建雙1,魏良明1,張新1,韓小花1,岳潤(rùn)清1,王振華1,鐵雙貴1,陳彥惠2

(1河南省農(nóng)業(yè)科學(xué)院糧食作物研究所/河南省玉米生物學(xué)重點(diǎn)實(shí)驗(yàn)室,鄭州 450002;2河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,鄭州 450046)

【】葉片寬度和長(zhǎng)度等葉形特性是決定植株形態(tài),進(jìn)而影響種植密度的重要農(nóng)藝性狀,通過轉(zhuǎn)錄組測(cè)序技術(shù)篩選并挖掘玉米葉片形態(tài)建成相關(guān)的代謝路徑及調(diào)控基因,為深入認(rèn)識(shí)葉片發(fā)育的分子機(jī)理和鑒定葉寬、葉長(zhǎng)候選基因奠定基礎(chǔ)。以極端窄葉自交系NL409和寬葉自交系WB665為材料,利用RNA-Seq技術(shù)鑒定7葉期第七片葉近基部的差異表達(dá)基因(DEGs),通過生物信息學(xué)分析,篩選與葉片發(fā)育密切相關(guān)的代謝通路,利用qRT-PCR驗(yàn)證不同激素路徑葉形相關(guān)基因的表達(dá)結(jié)果,并結(jié)合啟動(dòng)子區(qū)域的序列差異挖掘葉形功能基因。分析對(duì)照(WB665)和樣品(NL409)高通量測(cè)序結(jié)果,在葉寬形成關(guān)鍵部位共篩選出5 199個(gè)DEGs,其中,2 264(43.55%)個(gè)基因表達(dá)上調(diào),2 935(56.45%)個(gè)基因下調(diào)表達(dá),下調(diào)基因明顯多于上調(diào)基因;GO功能富集分析表明,差異基因主要富集在細(xì)胞膜相關(guān)的細(xì)胞組分中,涉及代謝過程和細(xì)胞響應(yīng)刺激;KEGG富集分析表明,差異基因主要參與到核糖體、植物激素信號(hào)轉(zhuǎn)導(dǎo)、苯丙烷類代謝、乙醛酸和二羧酸代謝等過程,其中核糖體、植物激素信號(hào)轉(zhuǎn)導(dǎo)、鞘脂類代謝下調(diào)表達(dá)基因較多的路徑與葉片發(fā)育密切相關(guān)。核糖體路徑富集到多個(gè)PRS(PRESSED FLOWER)基因,分析發(fā)現(xiàn)()可能在調(diào)控窄葉發(fā)育過程中發(fā)揮重要作用。鞘脂代謝路徑富集的基因幾乎全部下調(diào)表達(dá),引起抑制葉片發(fā)育的AP1(APETALA1)類和MAPK(Mitogen-Activated Protein Kinase)類基因上調(diào),以及促進(jìn)葉片發(fā)育的()下調(diào),與窄葉發(fā)育受抑制的表型一致。植物激素信號(hào)轉(zhuǎn)導(dǎo)路徑富集到的油菜素內(nèi)酯(BR)響應(yīng)基因和赤霉素(GA)代謝基因下調(diào),細(xì)胞分裂素(CTK)和大部分生長(zhǎng)素(Auxin)響應(yīng)基因上調(diào),與窄葉中DELLA蛋白基因上調(diào)表達(dá),抑制GA并促進(jìn)CTK基因表達(dá)的作用模式一致。通過qRT-PCR對(duì)18個(gè)葉片發(fā)育相關(guān)基因進(jìn)行分析,結(jié)果表明,其表達(dá)趨勢(shì)與轉(zhuǎn)錄組結(jié)果一致,分析發(fā)現(xiàn)BR相關(guān)的、Auxin相關(guān)的、e以及TCP類轉(zhuǎn)錄因子/等基因與窄葉的形成密切相關(guān)。明確了一些與玉米葉片發(fā)育密切相關(guān)的代謝路徑,還發(fā)現(xiàn)植物激素間的動(dòng)態(tài)平衡對(duì)葉片發(fā)育有著重要影響,尤其是生長(zhǎng)素與油菜素內(nèi)酯、細(xì)胞分裂素與赤霉素之間的相互作用對(duì)調(diào)控葉片形態(tài)可能發(fā)揮重要作用。

玉米;葉寬;葉長(zhǎng);RNA-Seq;形態(tài)建成;調(diào)控基因

0 引言

【研究意義】玉米作為增產(chǎn)潛力巨大的糧食作物,對(duì)于保障糧食安全,促進(jìn)農(nóng)業(yè)發(fā)展具有重要作用。近年來,中國玉米的種植密度維持在4.8—6.77萬株/hm2,與美國8.5—10.95萬株/hm2的種植密度存在顯著差距,提高玉米的耐密植特性,成為實(shí)現(xiàn)中國玉米高產(chǎn)突破的重要措施[1-2]。葉片是玉米進(jìn)行光合作用和抗逆作用的主要營(yíng)養(yǎng)器官,是耐密植理想株型的關(guān)鍵組成因素,對(duì)于植株干物質(zhì)的積累及抗逆性有非常重要的影響。對(duì)于大面積密植的農(nóng)作物,高密度條件下容易出現(xiàn)避蔭綜合癥(shade avoidance syndrome,SAS),迫使群體內(nèi)個(gè)體將能量重新分配,用于葉片和植株伸長(zhǎng)生長(zhǎng),從而獲得更多的陽光,盡管避蔭反應(yīng)對(duì)單個(gè)植株的適應(yīng)與生存是有利的,但是由于避蔭反應(yīng)會(huì)削弱植株葉片和儲(chǔ)藏器官的發(fā)育[3],對(duì)提高大面積種植的作物產(chǎn)量是不利的。高密度條件下,葉片寬大的群體冠層間通風(fēng)透氣性差,降低植株的抗病性,加劇病蟲害的發(fā)生,導(dǎo)致生物量和籽粒產(chǎn)量降低。玉米耐密植株型的合理葉寬、葉長(zhǎng)有利于改良理想株型,減少植株的避蔭反應(yīng),使個(gè)體間競(jìng)爭(zhēng)最小化,對(duì)提高種植密度具有重要的促進(jìn)作用。葉寬、葉長(zhǎng)等葉形特性是決定植株形態(tài)進(jìn)而影響種植密度的重要農(nóng)藝性狀,因此,選育適宜高密度種植的合理葉寬、葉長(zhǎng)玉米,是提高玉米產(chǎn)量的重要技術(shù)手段之一。雖然有大量研究揭示了玉米葉發(fā)育及形態(tài)建成的遺傳基礎(chǔ),但是鮮有關(guān)于葉寬、葉長(zhǎng)QTL克隆及調(diào)控網(wǎng)絡(luò)的研究結(jié)果[4],利用轉(zhuǎn)錄組(RNA-seq)篩選與葉寬、葉長(zhǎng)發(fā)育相關(guān)的調(diào)控基因,并發(fā)掘其可能的調(diào)控路徑,對(duì)葉寬、葉長(zhǎng)主效基因研究及耐密株型設(shè)計(jì)育種具有重要意義?!厩叭搜芯窟M(jìn)展】葉片的發(fā)育起始于莖頂端分生組織(shoot apical meristem,SAM)周邊的初始細(xì)胞,主要包括葉原基的形成和葉極性軸向的建立[5]。葉原基是由頂端分生組織中心“干細(xì)胞”在生長(zhǎng)素誘導(dǎo)下形成成簇分布的外緣葉原初生細(xì)胞;葉原基形成后在自身遺傳機(jī)制和環(huán)境因子作用下,建立基-頂軸(葉的基部-頂端)、腹-背軸(莖的近軸面-遠(yuǎn)軸面)、中-邊軸(葉的主脈-邊緣)3個(gè)極性軸向,這些過程中的發(fā)育異常將直接或間接影響葉片的發(fā)育和形態(tài)建成。玉米葉片的發(fā)育和形態(tài)建成是由多基因調(diào)控的復(fù)雜過程,主要由遺傳因素控制,同時(shí)受環(huán)境影響,葉寬的遺傳相比其他葉形性狀受環(huán)境影響較小,而且其具有易觀測(cè)的線性形態(tài),更有利于研究葉片發(fā)育過程的形態(tài)變化和細(xì)胞學(xué)特征,是研究葉寬最為理想的模式植物[4]。關(guān)于擬南芥、水稻、金魚草等植物葉片發(fā)育的研究,取得了一系列重要進(jìn)展,深入解析了葉片發(fā)育的調(diào)控機(jī)理,而玉米葉寬、葉長(zhǎng)的研究多為遺傳分析及QTL定位的報(bào)道,只有少數(shù)文獻(xiàn)關(guān)于葉發(fā)育基因、、、、、/、、、/和遺傳機(jī)理的分析[6-14],揭示了葉寬、葉長(zhǎng)發(fā)育形成的部分分子機(jī)理。高通量轉(zhuǎn)錄組測(cè)序技術(shù),不僅能夠檢測(cè)全基因組所有基因的轉(zhuǎn)錄信息,還可以獲得特定時(shí)期某一生物學(xué)過程顯著富集的基因,以及特定組織或細(xì)胞中的多種轉(zhuǎn)錄本和優(yōu)勢(shì)表達(dá)基因,對(duì)研究特定組織的生物學(xué)功能具有重要的指導(dǎo)意義,利用轉(zhuǎn)錄組發(fā)掘玉米葉片發(fā)育相關(guān)基因,為葉片遺傳機(jī)理的解析提供了新途徑[15-16]?!颈狙芯壳腥朦c(diǎn)】關(guān)于葉寬、葉長(zhǎng)等葉形主效基因克隆的研究相對(duì)有限,已有研究?jī)H揭示了葉形發(fā)育的部分分子機(jī)理,葉寬、葉長(zhǎng)候選基因及其調(diào)控路徑有待進(jìn)一步解析。【擬解決的關(guān)鍵問題】本研究通過RNA-seq測(cè)序探討葉寬差異極顯著自交系的轉(zhuǎn)錄表達(dá)特性,以期獲得與葉形發(fā)育相關(guān)的關(guān)鍵基因及轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),更好地理解玉米葉片發(fā)育的分子機(jī)理,增加對(duì)窄葉形成機(jī)制的認(rèn)識(shí),進(jìn)而為葉形候選基因的克隆及耐密分子育種提供參考。

1 材料與方法

1.1 植物材料

2017年夏極端窄葉自交系NL409(樣品)和寬葉自交系WB665(對(duì)照)種植于河南省農(nóng)業(yè)科學(xué)院現(xiàn)代農(nóng)業(yè)科技示范基地,在田間正常生長(zhǎng)至7葉期時(shí)(對(duì)生的葉耳包裹著新鮮的幼莖即將打開),取第7片葉近基部葉片(近基部1/3葉長(zhǎng)處,切取2.0 cm),為了消除個(gè)體間差異,將相同基因型的材料3株混合取樣,每個(gè)材料取3次生物學(xué)重復(fù),樣品經(jīng)液氮速凍后-80℃保存,用于RNA提取。極端窄葉自交系NL409是歐洲雜交種連續(xù)自交選育而來,寬葉自交系WB665是昌7-2改良系,兩者親緣關(guān)系較遠(yuǎn)。

1.2 RNA樣品的提取及轉(zhuǎn)錄組測(cè)序

委托北京安諾優(yōu)達(dá)基因科技有限公司完成RNA提取、文庫構(gòu)建和轉(zhuǎn)錄組測(cè)序。首先,采用酚/氯仿法提取Total RNA,通過NanoDrop 2000微量分光光度計(jì)、Agilent 2100 Bioanalyzer和Agilent RNA 6000 Nano Kit檢測(cè)RNA濃度、純度和完整性;其次,檢測(cè)合格樣品利用Oligo(dT)富集mRNA,并通過Fragmentation Buffer使其短片段化,以短片段mRNA合成雙鏈cDNA,純化后進(jìn)行末端修復(fù)、加堿基A、加測(cè)序接頭處理;最后進(jìn)行PCR擴(kuò)增完成測(cè)序文庫制備。采用Illumina NextSeq 550AR平臺(tái)進(jìn)行雙末端測(cè)序,并對(duì)獲得的原始序列(raw reads)進(jìn)行過濾,去除含接頭、低質(zhì)量(Q<30)、含N比例大于5%的序列,得到高質(zhì)量的Clean Reads用于后續(xù)分析。

1.3 基因表達(dá)數(shù)據(jù)分析

利用TopHat(v2.0.12)軟件,將6個(gè)樣本過濾后的Clean Reads比對(duì)到B73基因組(AGPv3 版本),通過FPKM(Fragments per Kilobase per Millon Mapped Fragments)對(duì)基因表達(dá)量進(jìn)行標(biāo)準(zhǔn)化,以FPKM>1為表達(dá)標(biāo)準(zhǔn),隨后根據(jù)極端窄葉與寬葉的比較,用DEseq(|log2FC(fold change)|≥1和-value/FDR<0.05)確定差異表達(dá)基因(differentially expressed genes,DEGs)[17]。利用Uniprot、Swissprot、COG、NR、GO和KEGG等數(shù)據(jù)庫對(duì)DEGs進(jìn)行功能注釋,通過GO富集分析顯示DEGs顯著富集的功能分類[18],用KEGG分析DEGs主要參與的代謝途徑和信號(hào)通路(kyoto encyclopedia of genes and genomes,KEGG)。

1.4 實(shí)時(shí)熒光定量PCR(qRT-PCR)分析

選擇與葉片發(fā)育相關(guān)的18個(gè)差異表達(dá)基因進(jìn)行qRT-PCR驗(yàn)證。將轉(zhuǎn)錄組測(cè)序用到的RNA,通過反轉(zhuǎn)錄試劑盒(GoScript Reverse Transcription Kit購于promega生物技術(shù)有限公司)合成cDNA第一鏈,以其為模板,利用GoTaq qPCR Master Mix Kit(購于promega生物技術(shù)有限公司)在Bio-Rad CFX96實(shí)時(shí)熒光定量?jī)x上進(jìn)行qRT-PCR。以玉米中的作為內(nèi)參基因,每個(gè)基因的定量分析設(shè)置3次生物學(xué)重復(fù),3次技術(shù)重復(fù),采用相對(duì)定量2-ΔΔCt法分析結(jié)果[19]。

2 結(jié)果

2.1 葉寬表型和RNA-Seq測(cè)序質(zhì)量分析

極端窄葉自交系NL409和寬葉自交系WB665葉寬形態(tài)穩(wěn)定時(shí)期(散粉后一周)的葉寬表型(圖1),以及第7葉期的葉寬達(dá)到極顯著差異(表1),在這兩個(gè)時(shí)期,NL409的葉寬、葉長(zhǎng)、葉面積均顯著小于WB665。6個(gè)RNA-Seq文庫原始測(cè)序過濾后分析結(jié)果(表2),各樣本生物學(xué)重復(fù)間的相關(guān)系數(shù)為0.984—0.995,其中約88%高質(zhì)量序列被比對(duì)到外顯子區(qū)域,表明測(cè)序結(jié)果良好,數(shù)據(jù)可用于進(jìn)一步分析。

表1 自交系NL409和WB665第7葉期以及穩(wěn)定時(shí)期的葉寬、葉長(zhǎng)、葉面積

1)7表示第7葉期,S表示穩(wěn)定時(shí)期。不同大寫字母表示在<0.01水平差異顯著

1)7 indicate the 7th leaf period, S indicate the stable period. different uppercase letters indicate significant differences at<0.01 levels

圖1 自交系NL409(左)和WB665(右)穩(wěn)定時(shí)期的葉片

2.2 基因表達(dá)數(shù)據(jù)分析

選取第7葉期窄葉自交系NL409(T7,樣品)和寬葉自交系WB665(C7,對(duì)照)葉片發(fā)育最寬處進(jìn)行轉(zhuǎn)錄組差異比較分析,發(fā)現(xiàn)5 199個(gè)差異表達(dá)基因,其中2 264(43.55%)個(gè)基因上調(diào)表達(dá),2 935(56.45%)個(gè)基因下調(diào)表達(dá)。上(下)調(diào)1—3倍(fold change)的基因分別占差異表達(dá)上(下)調(diào)基因總數(shù)的29.37%(665)和21.69%(756);上(下)調(diào)3—10倍的基因分別占43.86%(993)和29.24%(1 019);上(下)調(diào)10—60倍的基因分別占20.76%(470)和12.82%(447);上(下)調(diào)60倍以上的基因分別占6.01%(136)和24.29%(713)。從火山圖中可以直觀地看出對(duì)照組與比較樣本組之間的表達(dá)水平具有顯著差異,而且差異60倍以上的下調(diào)基因明顯多于上調(diào)基因(圖2)。

表2 樣品reads分布情況

1)71、72、73分別代表7葉期的第1、2、3個(gè)樣品

1)71, 72 and 73 indicate the first, second and third samples of the 7th leaf period respectively

GO功能分析表明,差異表達(dá)基因被注釋到24個(gè)生物過程、22個(gè)細(xì)胞組分、19個(gè)分子功能類別中,差異基因主要富集在細(xì)胞膜相關(guān)的細(xì)胞組分中。其中生物過程顯著富集在次生代謝、花粉雌蕊相互作用、花粉識(shí)別、防衛(wèi)反應(yīng)和細(xì)胞識(shí)別5個(gè)過程(圖3);細(xì)胞組分分析中差異基因顯著富集在細(xì)胞外緣、質(zhì)膜、細(xì)胞膜固有成分、細(xì)胞膜基本成分、膜部分、共質(zhì)體、胞間接合和胞間連絲等10個(gè)組分類別(圖4);分子功能顯著富集在單加氧酶活性、氧化還原活性、催化活性、纖維素合成酶活性、ADP結(jié)合、碳水化合物結(jié)合、鐵離子結(jié)合、葡糖基轉(zhuǎn)移酶活性等19個(gè)類別(圖5)。

橫坐標(biāo)為差異表達(dá)基因表達(dá)倍數(shù)變化,縱坐標(biāo)為表達(dá)量變化的統(tǒng)計(jì)學(xué)顯著程度

利用MapMan工具對(duì)差異表達(dá)基因進(jìn)行pathway富集分析,差異基因被注釋到125條代謝通路中,主要涉及生物合成、能量代謝、信號(hào)轉(zhuǎn)導(dǎo)及次生代謝。以-value≤0.05為篩選標(biāo)準(zhǔn),發(fā)現(xiàn)這些基因顯著富集到11條代謝路徑(表3),其中核糖體路徑富集差異基因數(shù)目最多達(dá)到83個(gè),37個(gè)基因表達(dá)上調(diào),46個(gè)基因下調(diào)表達(dá);其次,植物激素信號(hào)轉(zhuǎn)導(dǎo)通路富集57個(gè)差異基因,24個(gè)基因上調(diào),33個(gè)基因下調(diào);苯丙烷類代謝路徑18個(gè)基因上調(diào),15個(gè)基因下調(diào);乙醛酸和二羧酸代謝通路15個(gè)基因上調(diào),10個(gè)基因下調(diào);谷胱甘肽代謝路徑13個(gè)基因上調(diào),10個(gè)基因下調(diào);鞘脂類代謝路徑2個(gè)基因上調(diào),11個(gè)基因下調(diào)(表4);油菜素內(nèi)酯生物合成路徑4個(gè)基因上調(diào),3個(gè)基因下調(diào)(表5);類黃酮生物合成路徑6個(gè)基因上調(diào),2個(gè)基因下調(diào);苯并惡唑嗪類生物合成和苯乙烯類、二芳庚酸類、姜酚類生物合成通路也富集到較多差異基因,分別有7個(gè)和5個(gè)基因下調(diào)表達(dá)?;诓煌x通路中基因上下調(diào)比例,推斷核糖體、植物激素信號(hào)轉(zhuǎn)導(dǎo)、鞘脂類代謝這些基因下調(diào)表達(dá)較多的路徑可能與葉片發(fā)育,尤其是窄葉的形成密切相關(guān)。

Size代表圓點(diǎn)的大小,表示富集到該GO條目基因的數(shù)量,q-value表示該GO條目的富集程度,顏色越趨近于紅色表示富集程度越高。下同

圖4 差異表達(dá)基因顯著富集的細(xì)胞組分

表3 差異表達(dá)基因顯著富集的代謝通路

植物內(nèi)源激素廣泛參與到葉片發(fā)育過程,對(duì)葉片形態(tài)建成起到一定調(diào)節(jié)作用。進(jìn)一步分析植物激素信號(hào)轉(zhuǎn)導(dǎo)路徑發(fā)現(xiàn),在葉寬形成的關(guān)鍵部位檢測(cè)到大量參與激素信號(hào)響應(yīng)和轉(zhuǎn)導(dǎo)的差異基因,涉及生長(zhǎng)素、油菜素內(nèi)酯、細(xì)胞分裂素、赤霉素、脫落酸、乙烯、茉莉酸等多種激素(圖6)。分析不同響應(yīng)路徑(表5和圖6)發(fā)現(xiàn),生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)通路富集到18個(gè)差異基因,有12個(gè)響應(yīng)基因表達(dá)上調(diào);油菜素內(nèi)酯信號(hào)響應(yīng)路徑富集到6個(gè)差異基因,全部下調(diào)表達(dá);細(xì)胞分裂素響應(yīng)路徑富集的3個(gè)基因,表達(dá)均上調(diào);赤霉素和水楊酸響應(yīng)通路分別富集到1個(gè)差異基因,表達(dá)均上調(diào);脫落酸路徑富集到8個(gè)基因下調(diào)表達(dá),4個(gè)上調(diào)表達(dá)基因;乙烯路徑中4個(gè)基因上調(diào)表達(dá),4個(gè)基因下調(diào)表達(dá);茉莉酸路徑中1個(gè)基因上調(diào)表達(dá),7個(gè)基因下調(diào)表達(dá)。

表4 鞘脂類代謝路徑及其相關(guān)基因

FC:表達(dá)量差異倍數(shù)(NL409/WB665)

FC:Differential multiple of expression (NL409/WB665)

圖5 差異表達(dá)基因顯著富集的分子功能

2.3 熒光定量PCR驗(yàn)證RNA-Seq結(jié)果

研究表明多種轉(zhuǎn)錄因子參與葉細(xì)胞分化及葉片形態(tài)建成,如YABBY、MADS類轉(zhuǎn)錄因子決定葉原細(xì)胞命運(yùn)向不同方向分化形成不同組織,GRF類調(diào)控特定部位細(xì)胞的增殖和生長(zhǎng);ARF、SBP、TCP、Myb、HB類調(diào)控葉細(xì)胞的分化和維管的形成;同時(shí)ARF、ARR、GRAS類在葉片發(fā)育過程分別參與生長(zhǎng)素、細(xì)胞分裂素、赤霉素信號(hào)的響應(yīng)和生物合成,影響葉片形態(tài)建成。為了進(jìn)一步驗(yàn)證RNA-Seq結(jié)果的準(zhǔn)確性,選取與葉片發(fā)育密切相關(guān)的18個(gè)不同的基因進(jìn)行了qRT-PCR定量分析。對(duì)qRT-PCR與RNA-Seq結(jié)果進(jìn)行相關(guān)性分析,發(fā)現(xiàn)兩者的相關(guān)系數(shù)2=0.962,說明RNA-Seq結(jié)果良好。

3 討論

3.1 葉片發(fā)育密切相關(guān)的代謝通路

多條路徑顯著富集到大量與玉米葉片發(fā)育相關(guān)的基因。擬南芥()和()分別編碼不同亞族的核糖體蛋白(PRS),與rRNA形成蛋白復(fù)合物促進(jìn)葉片近軸組織的建立[20-21]。本文核糖體路徑顯著富集到多個(gè)和(電子附表1),并鑒定出玉米()啟動(dòng)子區(qū)域存在顯著差異(電子附圖1),其在窄葉中下調(diào)表達(dá)的作用模式(圖7)與擬南芥、缺失突變導(dǎo)致葉柄變長(zhǎng)、葉片變窄的作用機(jī)理相似。鞘脂類(Sphingolipid)是細(xì)胞膜骨架及脂蛋白的重要組成成分,鞘脂代謝在細(xì)胞生長(zhǎng)、不同功能細(xì)胞分化、細(xì)胞內(nèi)以及細(xì)胞間信號(hào)傳遞發(fā)揮重要作用,鞘脂合成紊亂含量較低時(shí),能夠激活MAPK(mitogen-activated protein kinase)路徑和轉(zhuǎn)錄因子AP1(APETALA1),進(jìn)而調(diào)控細(xì)胞增殖、分化[22-23]。抑制擬南芥花萼葉和莖葉形成,()能夠解除的抑制作用,促進(jìn)葉片發(fā)育[24]。本文鞘脂代謝路徑富集到的基因大部分下調(diào)表達(dá)(表4),類和MAPK類基因表達(dá)上調(diào)(表4),表達(dá)下調(diào)(表4),與窄葉發(fā)育受抑制的表型一致。研究人員分析葉片發(fā)育的動(dòng)態(tài)轉(zhuǎn)錄組學(xué),不僅發(fā)現(xiàn)大量激素信號(hào)基因,細(xì)胞壁合成前體、纖維素合成酶、蛋白酶體、翻譯后修飾基因也被大量檢測(cè)到[25]。Bolduc等[9]解析調(diào)控網(wǎng)絡(luò),不僅在葉片和分生組織中發(fā)現(xiàn)大量激素合成和響應(yīng)基因,而且富集到脂類代謝、次生代謝、細(xì)胞壁合成和調(diào)控RNA轉(zhuǎn)錄相關(guān)的基因。葉片發(fā)育過程不同部位、不同時(shí)期的蛋白質(zhì)組學(xué)分析,也富集到大量的尿苷二磷酸-葡糖基/葡聚糖轉(zhuǎn)移酶、細(xì)胞壁前體、細(xì)胞壁受體激酶、纖維素合成酶和RNA轉(zhuǎn)錄相關(guān)的基因[26],本文顯著富集的路徑與前人的研究結(jié)果一致。由此可知,上述顯著富集的代謝通路(表3)與葉片發(fā)育密切相關(guān),這些代謝路徑中的基因可能參與葉寬、葉長(zhǎng)的形態(tài)建成。

Tryptophan metabolism:色氨酸代謝;Auxin:生長(zhǎng)素;Ubiquitin mediated proteolysis:泛素介導(dǎo)的蛋白水解;Cell enlargement:細(xì)胞增大;Plant growth:植物生長(zhǎng);Zeatin biosynthesis:玉米素的生物合成;Cytokinine:細(xì)胞分裂素;Cell division:細(xì)胞分裂;Shoot initiation:根的起始;Diterpenoid biosynthesis:二萜類化合物的生物合成;Gibberellin:赤霉素;Stem growth:莖的生長(zhǎng);Induced germination:誘導(dǎo)萌發(fā);Carotenoid biosynthesis:類胡蘿卜素的生物合成;Abscisic acid:脫落酸;Stomatal closure:氣孔閉合;Seed dormancy:種子休眠;Cysteine and methionine metabolism:半胱氨酸和蛋氨酸代謝;Ethylene:乙烯;Endoplasmic reticulum(ER):內(nèi)質(zhì)網(wǎng);Fruit ripening:果實(shí)成熟;Senescence:衰老;Brassinosteroid biosynthesis:油菜素內(nèi)酯生物合成;Brassinosteroid:油菜素甾醇;Proteasomal degradation:蛋白酶體降解;Cell elongation:細(xì)胞伸長(zhǎng);Alpha-Linolenic acid metabolism:α-亞麻酸代謝;Jasmonic acid:茉莉酸;Monoterpenoid biosynthesis類單萜生物合成;Indole alkaloid biosynthesis:吲哚生物堿生物合成;Stress response:應(yīng)激反應(yīng);Phenylalanine metabolism:苯丙氨酸代謝;Salicylic acid:水楊酸;Disease resistance:抗病性。紅色表示富集到的差異基因表達(dá)上調(diào),綠色表示基因下調(diào)Red indicates that DEGs are up-regulated, and green indicates down-regulation of DEGs

表5 植物激素信號(hào)轉(zhuǎn)導(dǎo)路徑相關(guān)基因

FC:表達(dá)量差異倍數(shù)(NL409/WB665);BR:油菜素內(nèi)酯Brassinosteroid;CTK:細(xì)胞分裂素Cytokinine;GAs:赤霉素信號(hào)Gibberellin signaling;GAmrg:赤霉素代謝相關(guān)基因Gibberellin metabolism related genes

圖7 RNA-Seq與qRT-PCR結(jié)果比較

本研究發(fā)現(xiàn)油菜素內(nèi)酯信號(hào)轉(zhuǎn)導(dǎo)路徑顯著富集的基因全部下調(diào)(表5),不僅檢測(cè)到前人已研究表達(dá)量降低的BZR類和BRI類基因[9],還發(fā)現(xiàn)BR路徑中BSK類、TCH類基因也下調(diào)表達(dá)。生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)路徑富集到的基因大部分上調(diào)表達(dá)(表5),其中ARF(GRMZM2G078274、GRMZM2G030710和GRMZM5G874163)、AUX-IAA(GRMZM2G104176、GRMZM2G077356、GRMZM2G079957、GRMZM2G074427)和Auxin transporter(GRMZM2G127949)在調(diào)控葉片發(fā)育過程中發(fā)揮著重要作用[9]。此外,高表達(dá)時(shí),抑制GA信號(hào)及葉基部細(xì)胞的生長(zhǎng)[25],本文DELLA家族蛋白(GRMZM2G013016)在近基部窄葉中高表達(dá)(表5,圖6),且赤霉素代謝相關(guān)的基因幾乎全部下調(diào)表達(dá)(表5),這與窄葉發(fā)育受抑制的結(jié)果一致。由此推斷油菜素內(nèi)酯、生長(zhǎng)素、赤霉素在葉片發(fā)育過程發(fā)揮重要作用。

3.2 不同激素途徑發(fā)掘的葉形重要功能基因

植物器官發(fā)育過程中極性建立是器官形態(tài)建成的核心。葉片的發(fā)育起始于葉原基細(xì)胞的分裂增殖,伴隨著一系列特定基因的精確調(diào)控,葉原基建立多維空間的極性軸向,促使葉原基細(xì)胞朝特定的方向分化增殖,并最終影響葉片的形態(tài)和大小。

TCP類轉(zhuǎn)錄因子通過AUX、BR、GA、CTK等多種激素調(diào)控葉片、花發(fā)育以及植株形態(tài)建成等生長(zhǎng)過程。葉片發(fā)育過程可調(diào)控影響擬南芥葉片及植株形態(tài),而BRI是發(fā)揮功能所必需的;此外,多個(gè)負(fù)向調(diào)控葉片邊緣區(qū)細(xì)胞分化增殖,其中、分別負(fù)調(diào)控、和、影響生長(zhǎng)素分布及含量[9,27-28,31]。過量表達(dá)TCP II型基因()使西紅柿和擬南芥的葉片變小,或表現(xiàn)卷曲葉[27-28],擬南芥的同源基因/(AC205574.3_FG006)在窄葉中上調(diào)表達(dá)的作用模式(圖7,電子附表1)與前人研究結(jié)果一致。因此,推測(cè)/可能影響多種激素調(diào)控玉米葉片發(fā)育。

激素BR可影響玉米葉片形態(tài)建成。編碼一種細(xì)胞色素P450蛋白,作用于葉片縱向極性細(xì)胞的伸長(zhǎng)生長(zhǎng),其功能缺失影響擬南芥葉柄變短,葉片變大變寬[29],擬南芥BR合成相關(guān)的P450家族和突變后影響葉細(xì)胞變短變少[30-31]。(VIVIPAROUS1)、(VP1/ABI3-LIKE)、(Related to ABI3/VP1)、(Related to ABI3/ VP1-Like)分別編碼不同的B3結(jié)構(gòu)DNA結(jié)合蛋白,擬南芥缺失突變后影響葉片變小且赤霉素含量降低[32],作為BR受體負(fù)向調(diào)控?cái)M南芥蓮座葉的生長(zhǎng)[33],與本文中下調(diào)和表達(dá)上調(diào)(電子附表2),以及赤霉素路徑基因下調(diào)表達(dá)的結(jié)果一致(表5)。通過E-box(CACCTG/ CACGTG/CACATG)結(jié)合位點(diǎn)激活BR響應(yīng)和合成基因的表達(dá),維持BR平衡對(duì)生長(zhǎng)的調(diào)節(jié)作用[34-35],本文中BR響應(yīng)基因的啟動(dòng)子區(qū)域存在大量該元件(電子附圖4—9),說明植物激素BR與葉片發(fā)育密切相關(guān)。此外,(GRMZM2G143235)和(GRMZM2G344521)在葉寬形成的關(guān)鍵部位上調(diào)表達(dá)(圖7),且位于已定位的葉寬區(qū)間內(nèi)[36],同時(shí)啟動(dòng)子區(qū)域的序列差異(電子附圖2),表明和可能在葉長(zhǎng)和葉寬發(fā)育過程中發(fā)揮著重要作用,由此推測(cè)BR通過某種途徑影響玉米葉長(zhǎng)、葉寬的形成。

生長(zhǎng)素合成、分布異常影響葉片形態(tài)。玉米與水稻()和()同源,、、和編碼一種生長(zhǎng)素合成酶,調(diào)控葉原基的形成,其功能缺失突變影響葉細(xì)胞的分裂和維管束的形成,導(dǎo)致水稻葉片變窄[37-40],與本文在窄葉中下調(diào)表達(dá)(圖7)的作用模式一致。編碼一種AGO7型蛋白,是合成ta-siARF所必需的,通過ta-siARF調(diào)控的轉(zhuǎn)錄,影響玉米葉片腹背面生長(zhǎng)素分布,導(dǎo)致突變體葉片變窄卷曲[41]。此外,位于葉寬研究的熱點(diǎn)區(qū)域[4],而且其啟動(dòng)子區(qū)域序列存在顯著差異(電子附圖3)。由此可知,(GRMZM2G480386)、e(GRMZM5G892991)可能通過影響生長(zhǎng)素調(diào)控窄葉的形成。

玉米葉片發(fā)育過程大量與生長(zhǎng)素相關(guān)的基因參與其形成。玉米的ChIP分析富集大量生長(zhǎng)素AUX-IAA和ARF基因,轉(zhuǎn)錄組分析發(fā)現(xiàn)生長(zhǎng)素基因(、)在玉米葉細(xì)胞朝不同功能區(qū)生長(zhǎng)的過渡區(qū)上調(diào)表達(dá)[9],與本研究中、(圖7)表達(dá)結(jié)果一致。擬南芥受葉原基近軸端特異表達(dá)tasiR-ARF的抑制,在近軸端不表達(dá),在遠(yuǎn)軸端()與、相互作用的同時(shí),影響、和表達(dá)上調(diào),促進(jìn)葉原細(xì)胞的分化及遠(yuǎn)軸組織的形成[42-43];miR165/166抑制HD-ZIP lll類基因、在葉原基遠(yuǎn)軸端的表達(dá),促進(jìn)近軸組織的形成[44]。、和(圖7)位于已定位的葉寬位點(diǎn)內(nèi)[4,36]。此外,、、(圖7)分別受miR167、miR164、miR166調(diào)控并且與葉長(zhǎng)、葉寬位點(diǎn)顯著相關(guān)[36],由此可知(GRMZM2G017709)、(GRMZM5G874163)、(GRMZM2G175827)、(GRMZM2G078274)、(GRMZM2G055585)、(GRMZM2G029692)在葉片發(fā)育過程可能發(fā)揮特定作用。

植物激素間的的相互作用可調(diào)節(jié)葉片發(fā)育。BR信號(hào)路徑中的BIN2激酶能夠磷酸化ARF2,導(dǎo)致其結(jié)合Auxin響應(yīng)元件的功能喪失,影響擬南芥葉片等器官增大[45-46],同時(shí)BR能夠誘導(dǎo)BZR1靶基因的表達(dá)[47]。與相互作用促進(jìn)擬南芥下胚軸變長(zhǎng)[48]。Auxin能夠誘導(dǎo)擬南芥表達(dá),同時(shí)通過BR路徑促進(jìn)細(xì)胞分裂生長(zhǎng)[49]。此外,Auxin還可促進(jìn)表達(dá),加強(qiáng)BR信號(hào)轉(zhuǎn)導(dǎo),而擬南芥通過影響生長(zhǎng)素促進(jìn)細(xì)胞膨大生長(zhǎng)[27],ARF能夠特異結(jié)合Auxin響應(yīng)元件(TGTCTC)[50],本文BR響應(yīng)基因啟動(dòng)子富含該元件(電子附圖4—電子附圖9),而且BR響應(yīng)基因全部下調(diào),Auxin響應(yīng)基因上調(diào)(表5,圖7),這暗示本文中(GRMZM2G030710)、(GRMZM2G078274)(GRMZM2G065635)(GRMZM2G15877)(表5,電子附表1)可能介導(dǎo)Auxin和BR的平衡來調(diào)節(jié)植物器官以及葉片的發(fā)育。

HB類轉(zhuǎn)錄因子包含多個(gè)KNOX、bHLH和HD-ZIP lll基因。()和屬于KNOX家族,在頂端分生組織特定表達(dá),調(diào)控細(xì)胞分化向膨大生長(zhǎng)的過渡,影響葉片多維空間的發(fā)育,尤其在基部-末端軸向的形成過程中,與、、相互作用調(diào)控葉片發(fā)育[9]。KNOX蛋白能夠促進(jìn)細(xì)胞分裂素(CTK)合成基因上調(diào),同時(shí)抑制GA3和GA20氧化酶合成,促進(jìn)SAM細(xì)胞分裂形成葉原基[9,51-52];提高GA含量可以解除DELLA對(duì)葉片發(fā)育的抑制作用[52]。與本文中KNOX家族基因(和)(圖7)、CTK路徑基因(表5)、DELLA基因上調(diào)(表5),GA氧化酶基因下調(diào)(表5)影響葉片變窄的結(jié)果一致。GA可通過DELLA蛋白負(fù)向調(diào)控CTK響應(yīng)基因進(jìn)而影響CTK變化[53]。擬南芥GA信號(hào)的抑制因子SPY(SPINDLY)能夠正向調(diào)控CTK促進(jìn)植株及葉片的發(fā)育[54]。由此可知(GRMZM2G017709)和(GRMZM2G433591)可能通過影響細(xì)胞分裂素與赤霉素的平衡參與玉米窄葉的形成。

生長(zhǎng)調(diào)節(jié)因子GRF的互作因子AN3/GIF1作為葉片發(fā)育過程的調(diào)節(jié)開關(guān),主要影響葉細(xì)胞橫向分裂,分析其調(diào)控機(jī)理,在葉片基部分裂區(qū)富集到大量上調(diào)表達(dá)的GRF基因,在葉部伸長(zhǎng)區(qū)僅發(fā)現(xiàn)和高量表達(dá),其他GRF基因在葉部伸長(zhǎng)區(qū)表達(dá)量逐漸降低,過量表達(dá)和使玉米葉片變小[13-14],與本文中檢測(cè)到(GRMZM2G041223)和(GRMZM2G018414)在窄葉葉片發(fā)育的過渡區(qū)域上調(diào)表達(dá)(圖7)的趨勢(shì)一致,同時(shí)和位于葉寬研究的熱點(diǎn)區(qū)域[4]。(GRMZM2G143235)編碼一種TGA結(jié)合域的堿性亮氨酸拉鏈蛋白,主要在SAM和葉片與葉鞘連接處表達(dá),作用于葉基部葉耳、葉舌的形成,影響葉片的發(fā)育[55]。ZmARF2(GRMZM2G082836)是ADP核糖基化轉(zhuǎn)錄因子,能夠調(diào)控?cái)M南芥葉面積和株高[56]。由此推斷、、、(圖7)在玉米葉片發(fā)育以及葉寬形成過程中可能發(fā)揮重要作用。

4 結(jié)論

明確了一些與玉米葉片發(fā)育密切相關(guān)的代謝路徑,發(fā)現(xiàn)植物激素間的動(dòng)態(tài)平衡對(duì)葉片發(fā)育有著重要影響,尤其是Auxin與BR、CKT與GA之間的相互作用對(duì)調(diào)控葉片形態(tài)可能發(fā)揮重要作用。

[1] 明博, 謝瑞芝, 侯鵬, 李璐璐, 王克如, 李少昆. 2005—2016年中國玉米種植密度變化分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(11): 1960-1972.

MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China., 2017, 50(11): 1960-1972. (in Chinese)

[2] 郭書磊, 陳娜娜, 齊建雙, 岳潤(rùn)清, 韓小花, 燕樹鋒, 盧彩霞, 傅曉雷, 郭新海, 鐵雙貴. 不同密度下玉米倒伏相關(guān)性狀與產(chǎn)量的研究. 玉米科學(xué), 2018, 26(5): 71-77.

GUO S L, CHEN N N, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, GUO X H, TIE S G. Study on the relationship between yield and lodging traits of maize under different planting densities., 2018, 26(5): 71-77. (in Chinese)

[3] YANG C W, XIE F M, JIANG Y P, LI Z, HUANG X, LI L. Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability., 2018, 44(1): 29-41.

[4] 郭書磊, 張君, 齊建雙,岳潤(rùn)清, 韓小花, 燕樹鋒, 盧彩霞, 傅曉雷, 陳娜娜, 庫麗霞, 鐵雙貴. 玉米葉形相關(guān)性狀的Meta-QTL及候選基因分析. 植物學(xué)報(bào), 2018, 53(4): 487-501.

GUO S L, ZHANG J, QI J S,YUE R Q, HAN X H, YAN S F, LU C X, FU X L, CHEN N N, KU L X, TIE S G. Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize., 2018, 53(4): 487-501. (in Chinese)

[5] 崔曉峰, 黃海. 葉發(fā)育的遺傳調(diào)控機(jī)理研究進(jìn)展. 植物生理學(xué)報(bào), 2011, 47(7): 631-640.

CUI X F, HUANG H. Recent progresses from studies of leaf development., 2011, 47(7): 631-640. (in Chinese)

[6] MORENO M A, HARPER L C, KRUEGER R W, DELLAPORTA S L, FREELING M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis., 1997, 11(5): 616-628.

[7] WALSH J, WATERS C A, FREELING M. The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary., 1998, 12(2): 208-218.

[8] ZHANG X L, MADI S, BORSUK L, NETTLETON D, ELSHIRE R J, BUCKNER B, BUCKNER D J, BECK J, TIMMERMANS M, SCHNABLE P S, SCANLON M J. Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem., 2007, 3(6): 1040-1052.

[9] BOLDUC N, YILMAZ A, MEJIA-GUERRA M K, MOROHASHI K, O'CONNOR D, GROTEWOLD E, HAKE S. Unraveling the KNOTTED1 regulatory network in maize meristems., 2012, 26(15): 1685-1690.

[10] TIMMERMANS M C, SCHULTES N P, JANKOVSKY J P, NELSON T. Leafbladeless1 is required for dorsoventrality of lateral organs in maize., 1998, 125(15): 2813-2823.

[11] DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANS MARJA C P, SCANLON M J. Ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves., 2010, 22(5): 1441-1451.

[12] Candela H, Johnston R, Gerhold A, FOSTER T, HAKE S. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves., 2008, 20(8): 2073-2087.

[13] NELISSEN H, EECKHOUT D, DEMUYNCK K, PERSIAU G, WALTON A, BEL M V, VERVOORT M, CANDAELE J, BLOCK J D, AESAERT S, LIJSEBETTENS M V, GOORMACHTIG S, VANDEPOELE K, LEENE J V, MUSZYNSKI M, GEVAERT K, INZE D, JAEGER G D. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf., 2015, 27(6): 1605-1619.

[14] WU L, ZHANG D, XUE M, QIAN J J, HE Y, WANG S C. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height., 2014, 56(11): 1053-1063.

[15] 吳慶飛, 秦磊, 董雷, 丁澤紅, 李平華, 杜柏娟. 玉米光合突變體hcf136(high chlorophyll fluorescence 136)的轉(zhuǎn)錄組分析. 作物學(xué)報(bào), 2018, 44(4): 493-504.

WU Q F, QIN L, DONG L, DING Z H, LI P H, DU B J. Transcriptome analysis on a maize photosynthetic mutant hcf136 (high chlorophyll fluorescence 136)., 2018, 44(4): 493-504. (in Chinese)

[16] 邱化榮, 周茜茜, 何曉文, 張宗營(yíng), 張世忠, 陳學(xué)森, 吳樹敬. 基于轉(zhuǎn)錄組分析蘋果水楊酸特異響應(yīng)基因MdWRKY40的啟動(dòng)子鑒定. 中國農(nóng)業(yè)科學(xué), 2017, 50(20): 3970-3990.

QIU H R, ZHOU Q Q, HE X W, ZHANG Z Y, ZHANG S Z, CHEN X S, WU S J. Identification of MdWRKY40 promoter specific response to salicylic acid by transcriptome sequencing., 2017, 50(20): 3970-3990. (in Chinese)

[17] TRAPNELL C, WILLAMS B A, PERTEA G, MORTAZAVI A, KWAN G, BAREN M J, SALZBERG S L, WOLD B JHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., 2010, 28(5): 511-515.

[18] WANG L K, FENG Z X, WANG X, WANG X W, ZHANG X G. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data., 2009, 26(1): 136-138.

[19] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod., 2001, 25(4): 402-408.

[20] SCHIPPERS J H M, MUELLER-ROEBER B. Ribosomal composition and control of leaf development., 2010, 179(4): 307-315.

[21] YAO Y, LING Q H, WANG H, HUANG H. Ribosomal proteins promote leaf adaxial identity., 2008, 135(7): 1325-1334.

[22] SPIEGEL S, MERRILL Jr A H. Sphingolipid metabolism and cell growth regulation., 1996, 10(12): 1388-1397.

[23] MERRILL Jr A H, SANDHOFF K. Sphingolipids: Metabolism and cell signaling//.Amsterdam, Elsevier Science Press, 2002, 373-407.

[24] MONNIAUX M, MCKIM S M, CARTOLANO M, THEVENON E, PARCY F, MILTANTIS T, HAY A. Conservation vs divergence in LEAFY and APETALA1 functions betweenand., 2017, 216(2): 549-561.

[25] LI P H, PONNALA L, GANDOTRA N, WANG L, SI Y Q, TAUSTA S L, KEBROM T H, PROVART N, PATEL R, MYERS C R, REIDEL E J, TURGEON R, LIU P, SUN Q, NELSON T, Brutnell T P. The developmental dynamics of the maize leaf transcriptome., 2010, 42(12): 1060-1067.

[26] FACETTE M R, SHEN Z X, Bj?rnsdóttir F R, BRIGGS S P, SMITH L G. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development., 2013: 2798-2812.

[27] NICOLAS M, CUBAS P. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture//:,. Cambridge, MA: Academic Press, 2016: 249-267.

[28] MANASSERO N G U, VIOLA I L, WELCHEN E, GONZALEZ D H. TCP transcription factors: architectures of plant form., 2013, 4(2): 111-127.

[29] KIM G T, TSUKAYA H, UCHIMIYA H. The ROTUNDIFOLIA3 gene ofencodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells., 1998, 12(15): 2381-2391.

[30] FUJIOKA S, LI J, CHOI Y H, SETO H, TAKATSUTO S, NOGUCHI T, WATANABE T, Kuriyama H, YOKOT T, CHORY J, SAKURAI A. Thedeetiolated2 mutant is blocked early in brassinosteroid biosynthesis., 1997, 9(11): 1951-1962.

[31] GUO Z, FUJIOKA S, BLANCAFLOR E B, MIAO S, GOU X P, LI J. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in., 2010, 22(4): 1161-1173.

[32] SUZUK M, WANG H H Y, MCCARTY D R. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes., 2007, 143(2): 902-911.

[33] HU Y X, WANG Y H, LIU X F, LI J Y.RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development., 2004, 14(1): 8.

[34] YUAN W Y, LUO X, LI Z C, YANG W N, WANG Y Z, LIU R, DU J M, HE Y H. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in., 2016, 48(12): 1527-1534.

[35] JE B I, PIAO H L, PARK S J,PARK S H, KIM C M, XUAN Y H, PARK S H, HUANG J, CHOI Y D, AN G, WONG H L, FUJIOKA S, KIM M C, SHIMAMOTO K, HAN C. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice., 2010, 22(6): 1777-1791.

[36] TIAN F, BRADBURY P J, BROWN P J, HUNG H Y, SUN Q, FLINT-GARCIN S, ROCHEFORD T R, MCMULLEN M D, HOLLAND J B, BUCKLER E S. Genome-wide association study of leaf architecture in the maize nested association mapping population., 2011, 43(2): 159-165.

[37] Ishiwata A, Ozawa M, Nagasaki H, KATO M, NODA Y, YAMAGUCHI T, NOSAKA M, SHIMIZU-SATO S,NAGASAKI A,MAEKAWA M,HIRANO H Y,SATO Y. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice., 2013, 54(5): 779-792.

[38] KUBO F C, YASUI Y, KUMAMARU T, SATO Y, HIRANO H Y. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number., 2016, 91(4): 235-240.

[39] JIANG D, FANG J J, LOU L, ZHAO J F, YUAN S J, YIN L, SUN W, PENG L X, GUO B T, LI X Y. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division., 2015, 10(2): e0118169.

[40] FUJINO K, MATSUDA Y, OZAWA K, NISHIMURA T, KOSHIBA T, FRAAIJE M W, SEKIGUCHI H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice., 2008, 279(5): 499-507.

[41] DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANSM C P, SCANLON M J.ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves., 2010: 1441-1451.

[42] DOTTO M C, PETSCH K A, AUKERMAN M J, BEATTY M, HAMMELL M, TIMMERMANS M C P. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development., 2014, 10(12): e1004826.

[43] XIE Y, STRAUB D, EGUEN T, BRANDT R, STAHL M, Jaime F. MARTINEZ-GAECIA J F, WENKEL S. Meta-analysis ofKANADI1 direct target genes identifies a basic growth-promoting module acting upstream of hormonal signaling pathways., 2015, 169(2): 1240-1253.

[44] EMERY J F, FLOYD S K, AIVAREZ J, ESHED Y, HAWKER N P, IZHAKI A, BAUM S F, BOWMAN J L. Radial patterning ofshoots by class III HD-ZIP and KANADI genes., 2003, 13(20): 1768-1774.

[45] OKUSHIMA Y, MITINA I, QUACH H L, THEOLOGIS A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator., 2005, 43(1): 29-46.

[46] SCHRUFF M C, SPIELMAN M, TIWARI S, ADAMS S, FENBY N, SCOTT R J. The AUXIN RESPONSE FACTOR 2 gene oflinks auxin signalling, cell division, and the size of seeds and other organs., 2006, 133(2): 251-261.

[47] TIAN H Y, LV B S, DING T T, BAI M Y, DING Z J. Auxin-BR interaction regulates plant growth and development., 2018, 8: 2256.

[48] OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y. Cell elongation is regulated through a central circuit of interacting transcription factors in thehypocotyl., 2014, 3: e03031.

[49] CHUNG Y, MAHARJAN P M, LEE O, FUJIOKA S, JANG S, KIM B, TAKATSUTO S, TSUJIMOTO M, KIM H, CHO S, PARK T, CHO H, HWANG I, CHOE S. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in., 2011, 66(4): 564-578.

[50] SAKAMOTO T, MORINAKA Y, INUKAI Y, KITANO H, FUJIOKA S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice., 2013, 73(4): 676-688.

[51] JASINSKI S, PIAZZA P, CRAFT J, HAY A, WOOLLEY L, RIEU I, PHILLIPS A, HEDDEN P, TSIANTIS M. KNOX action inis mediated by coordinate regulation of cytokinin and gibberellin activities., 2005, 15(17): 1560-1565.

[52] NELISSEN H, RYMEN B, JIKUMARU Y, DEMUYNCK K, LIJSEBETTENS M V, KAMIYA Y, INZE D, BEEMSTER G T S. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division., 2012, 22(13): 1183-1187.

[53] FONOUNI-FARDE C, KISIALA A, BRAULT M, EMERY R J N, ANOUCK D, FLORIAN F. DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation., 2017, 175(4): 1795-1806.

[54] GREENBOIM-WAINBERG Y, MAYMON I, BOROCHOV R, ALVAREZ J, OLSZEWSKI N, ORI N, ESHED Y, WEISS D. Cross talk between gibberellin and cytokinin: theGA response inhibitor SPINDLY plays a positive role in cytokinin signaling., 2005, 17(1): 92-102.

[55] WALSH J, WATERS C A, FREELING M. The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary., 1998, 12(2): 208-218.

[56] WANG Q L, XUE X J, LI Y L, DONG Y B, ZHANG L, ZHOU Q, DENG F, MA Z Y, QIAO D H, HU C H, REN Y L. A maize ADP-ribosylation factor ZmArf2 increases organ and seed size by promoting cell expansion in., 2016, 156(1): 97-107.

Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq

GUO ShuLei1,2, LU XiaoMin1, QI JianShuang1, WEI LiangMing1, ZHANG Xin1, HAN XiaoHua1, YUE RunQing1, WANG ZhenHua1, TIE ShuangGui1, CHEN YanHui2

(1Cereal Crops Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Lab of Maize Biology, Zhengzhou 450002;2College of Agronomy, Henan Agricultural University, Zhengzhou 450046)

【】Leaf shape characteristics are one of important agronomic traits that determine plant morphology and affect planting density. However, the molecular mechanism related to leaf shape remain unknown in maize. Here, transcriptome sequencing technology was used to screen and explore genome-wide analysis of regulatory genes and metabolic pathways involved in leaf morphogenesis. This study will lay the foundation for further understanding the regulator mechanism of leaf development in plant and identifying candidate genes of leaf shapes, such as leaf width and leaf length.【】Extreme narrow-leaf inbred line NL409 and wide-leaf line WB665 were selected as the experimental materials. By RNA-Seq technology, the differentially expressed genes (DEGs) of the seventh leaf base between these two lines were identified during the 7th leaf stage. Furthermore, metabolic pathways closely related to leaf development were also analyzed using a series of bioinformatics analysis. qRT-PCR was used to validate the expression level of DEGs in different hormone pathways, and the further promoter analysis were performed to explore leaf-shape functional genes.【】By analyzing the high-throughput sequencing in WB665 and NL409, a total of 5 199 DEGs were obtained at the primary section of leaf width formation. Of which, 2 264 (43.55%) genes were up-regulated, whereas down-regulated genes were significantly more than up-regulated genes with 2 935 (56.45%) decreased genes. GO enrichment analysis showed that these DEGs were mainly enriched in cell membrane-associated function terms of cellular components, including metabolic process and cell stimulus response. KEGG enrichment analysis showed that these DEGs were mainly involved in ribosome, plant hormone signal transduction, sphingolipid metabolism pathways, phenylpropanoid biosynthesis, glyoxylate and dicarboxylate metabolism and other processes. among which ribosome, plant hormone signal transduction, sphingolipid metabolism pathways with more down-regulated genes were closely related to leaf development. One of PRS (PRESSED FLOWER) family genes, which were enriched in the ribosomal pathway in this study,PRS13 (PFL2) was identified to participate in regulating the development of narrow leaves. The expression pattern of genes enriched in sphingolipid metabolism pathway and its related MAP kinase, AP1-like, and LFY-like were consistent with the result of the inhibited development of narrow leaves. Notably, all of BR (Brassinosteroid) response genes and most of GA (Gibberellin) metabolic genes were down-regulated in plant hormone signal transduction pathway, while the expression level of all the CTK (Cytokinine) response genes and Auxin genes are mostly increased. The action of up-regulated expression of DELLA protein gene affecting the GA and CTK pathways was consistent with the phenotypic result of narrow leaves. Eighteen genes were validated by qRT-PCR. The result showed that the expression trend was consistent with the transcriptome data. Moreover, the BR-related, auxin-related,and TCP-like transcription factorswere identified to be closely associated with the formation of narrow leaves.【】Summarily, this study unveils several metabolic pathways closely related to leaf development in maize, and find the dynamic balance between plant hormones plays an important role in leaf development, especially the interaction between Auxin and BR as well as CTK and GA.

maize (); leaf width; leaf length; RNA-Seq; morphogenesis; regulatory gene

10.3864/j.issn.0578-1752.2020.01.001

2019-05-20;

2019-07-11

中國博士后科學(xué)基金(2017M612404)、河南省科技攻關(guān)計(jì)劃項(xiàng)目(182102110122)、河南省農(nóng)業(yè)科學(xué)院優(yōu)秀青年科技基金

郭書磊,E-mail:guosl1309@163.com。通信作者王振華,E-mail:wzh201@126.com。通信作者鐵雙貴,E-mail:tieshuangg@126.com。通信作者陳彥惠,E-mail:chy9890@163.com

(責(zé)任編輯 李莉)

猜你喜歡
葉長(zhǎng)擬南芥發(fā)育
幾種因素對(duì)烤煙不同部位抗拉力的影響
青春期乳房發(fā)育困惑咨詢——做決定
擬南芥栽培關(guān)鍵技術(shù)研究
馬奶子葡萄葉面積評(píng)估模型的建立
青春期乳房發(fā)育困惑咨詢探究
基于支持向量機(jī)的水稻葉面積測(cè)定
洛陽市13種綠化樹種葉面積的回歸測(cè)算
擬南芥
冰川是發(fā)育而來的
口水暴露了身份
屏南县| 抚宁县| 筠连县| 喀什市| 小金县| 大英县| 彭泽县| 金沙县| 呼伦贝尔市| 灌南县| 额敏县| 中阳县| 宣城市| 四川省| 贞丰县| 和硕县| 翼城县| 兴山县| 安顺市| 凤山县| 安阳县| 南乐县| 夏邑县| 金寨县| 宝应县| 永昌县| 清新县| 奉贤区| 保德县| 万盛区| 溧阳市| 苍梧县| 藁城市| 高要市| 饶阳县| 罗源县| 南宁市| 龙山县| 东方市| 宜都市| 南乐县|