国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

拔節(jié)期干旱脅迫下冬小麥品種間產(chǎn)量及生理響應(yīng)的差異*

2020-02-28 02:24黃桂榮王雅靜張欣瑩鐘秀麗
中國農(nóng)業(yè)氣象 2020年1期
關(guān)鍵詞:導(dǎo)度抗旱性氣孔

封 富,黃桂榮,王雅靜,張欣瑩,王 濤,鐘秀麗

拔節(jié)期干旱脅迫下冬小麥品種間產(chǎn)量及生理響應(yīng)的差異*

封 富,黃桂榮,王雅靜,張欣瑩,王 濤,鐘秀麗**

(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所/農(nóng)業(yè)部旱作節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,北京 100081)

拔節(jié)期干旱是影響冬小麥產(chǎn)量的重要災(zāi)害,揭示不同品種對(duì)干旱脅迫生理響應(yīng)的差異,可為鑒選與培育抗旱品種提供指導(dǎo)。選取黃淮海平原不同冬麥區(qū)種植面積較大的晉麥47、洛旱2號(hào)、石家莊8號(hào)、豫麥18和鄭麥9023共5個(gè)品種和1個(gè)抗逆性較弱的品種偃麥20,利用防雨棚開展盆栽試驗(yàn)研究。從籽粒產(chǎn)量以及氣孔特性、膜穩(wěn)定性和滲透調(diào)節(jié)特性等方面,分析拔節(jié)期受水分脅迫后,各品種抗旱性和干旱脅迫響應(yīng)途徑的差異。結(jié)果表明:(1)灌溉條件下,晉麥47、洛旱2號(hào)和石家莊8號(hào)產(chǎn)量較高,豫麥18和偃麥20產(chǎn)量較低。拔節(jié)期受干旱脅迫后,晉麥47、洛旱2號(hào)和豫麥18產(chǎn)量較高,石家莊8號(hào)和偃麥20產(chǎn)量較低??梢姡宰蚜.a(chǎn)量為抗旱性評(píng)價(jià)的核心指標(biāo),晉麥47、洛旱2號(hào)和豫麥18抗旱性較強(qiáng),石家莊8號(hào)和偃麥20抗旱性較弱,鄭麥9023抗旱性居中。(2)3個(gè)抗旱品種間干旱脅迫響應(yīng)途徑并不一致。與抗旱性較弱的石家莊8號(hào)和偃麥20相比,拔節(jié)期干旱脅迫下,豫麥18氣孔導(dǎo)度較低,氣孔調(diào)節(jié)能力強(qiáng);洛旱2號(hào)細(xì)胞滲透勢(shì)較低,滲透調(diào)節(jié)能力較強(qiáng);洛旱2號(hào)膜離子滲漏率較低,膜穩(wěn)定性較強(qiáng);晉麥47在氣孔調(diào)節(jié)、滲透調(diào)節(jié)和膜穩(wěn)定性調(diào)節(jié)方面與抗旱性較弱的品種無顯著差異。研究結(jié)果說明,冬小麥品種間響應(yīng)干旱脅迫的關(guān)鍵途徑存在差異。因而品種的抗旱性難以通過單一生理指標(biāo)科學(xué)評(píng)價(jià),需要多指標(biāo)聯(lián)合鑒定。

冬小麥;產(chǎn)量;抗旱性;氣孔調(diào)節(jié);滲透調(diào)節(jié);膜穩(wěn)定性調(diào)節(jié)

小麥(L.)是世界上廣為種植的糧食作物,為中國第二大作物[1]。干旱缺水已成為制約中國小麥持續(xù)增產(chǎn)的關(guān)鍵因素[2]。小麥拔節(jié)期,干旱發(fā)生頻繁,對(duì)產(chǎn)量的危害較重。提高小麥品種的抗旱性是突破雨養(yǎng)地區(qū)小麥產(chǎn)量的有效途徑之一。揭示品種之間對(duì)干旱脅迫生理響應(yīng)的差異,可以為品種的抗旱性評(píng)價(jià)與遺傳改良提供依據(jù)。

迄今為止,研究者開展了大量關(guān)于植物響應(yīng)干旱脅迫的生理與分子機(jī)理的研究。植物受到干旱脅迫后,早期的響應(yīng)表現(xiàn)為ABA水平迅速上升,誘導(dǎo)葉片氣孔導(dǎo)度下降,從而抑制蒸騰作用,減少水分喪失[3?4]。ABA水平升高同時(shí)還激活多種細(xì)胞與生理響應(yīng)[5],表現(xiàn)為脯氨酸、甜菜堿、可溶性糖等滲透調(diào)節(jié)物質(zhì)大量積累[6],降低細(xì)胞滲透勢(shì),緩解水分虧缺狀態(tài)下細(xì)胞原生質(zhì)以及胞內(nèi)功能蛋白的脫水脅迫[7]。光合作用隨氣孔導(dǎo)度減小以及光合酶類活性的降低而下降[8]。光合作用與正常呼吸作用因受到干旱脅迫的抑制引起活性氧大量產(chǎn)生,對(duì)DNA、蛋白質(zhì)以及生物膜脂質(zhì)產(chǎn)生氧化損傷[9]。大量膜脂的過氧化引起生物膜的流動(dòng)性和穩(wěn)定性下降,離子大量外滲,打破細(xì)胞內(nèi)離子平衡,細(xì)胞正常代謝被破壞。植物已經(jīng)進(jìn)化出應(yīng)對(duì)過氧化損傷的策略,如降低光合作用、產(chǎn)生抗壞血酸、谷胱甘肽等抗氧化劑以及過氧化物酶、超氧化物歧化酶等抗氧化酶類清除活性氧[6,10],維持生物膜的穩(wěn)定性。

植物的抗旱性是多基因控制的數(shù)量性狀,植物對(duì)干旱脅迫的適應(yīng)也是多途徑的。但不同作物種類以及同種作物的不同品種之間,在干旱脅迫響應(yīng)的關(guān)鍵途徑方面可能存在差異。本研究選取黃淮海平原不同冬麥區(qū)種植面積較大的5個(gè)品種和1個(gè)抗逆性較弱的品種開展研究,從籽粒產(chǎn)量以及氣孔特性、膜穩(wěn)定性和滲透調(diào)節(jié)特性3個(gè)方面,分析拔節(jié)期受水分脅迫后,抗旱性與干旱脅迫響應(yīng)途徑之間的差異,以期為利用生理指標(biāo)進(jìn)行抗旱性評(píng)價(jià)和耐旱品種鑒選提供指導(dǎo)。

1 材料與方法

1.1 材料

選用晉麥47、洛旱2號(hào)、豫麥18、石家莊8號(hào)、鄭9023和偃麥20共6個(gè)冬小麥品種為材料,各品種特性見表1。在2017年10月?2018年6月,于中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所順義科學(xué)實(shí)驗(yàn)站,采用盆栽方法開展實(shí)驗(yàn)。塑料盆直徑36cm,高30cm,底直徑28cm,盆底留直徑1cm的排出孔。取耕層土壤,與有機(jī)肥充分混合,先用5mm篩子過篩,再混勻。土壤總氮0.109g×kg?1,有效磷24.5mg×kg?1,速效鉀106mg×kg?1,pH為7.7。每盆先裝土17.0kg,播種后再覆土1.0kg。于2017年10月1日播種,每盆均勻點(diǎn)播40粒種子。出苗后30d第一次間苗,去除長勢(shì)弱小幼苗5株。返青后第二次間苗,每盆定苗30株。入冬前將盆體埋入土中越冬,春季氣溫回升后取出。

1.2 水分處理

每個(gè)品種均設(shè)置兩種水分處理,充分灌溉(WW)和干旱脅迫(DS),土壤含水量分別為最大田間持水量(FC)的75%和45%。FC按如下方法測(cè)定:取過篩后混合均勻的土壤適量,裝入3個(gè)鋁盒中,帶回實(shí)驗(yàn)室,用烘干法測(cè)定土壤含水量。另取3個(gè)塑料盆,各裝入18kg土壤,測(cè)定土壤最大田間持水量(FC)。具體方法為,先將土壤澆透水,用塑料膜覆蓋盆口防止表面蒸發(fā)失水。讓過量的水從盆底排水孔流出,至排水孔不再有水分滲出,即盆中土壤重量不再變化,此時(shí)土壤含水量即為土壤FC。按照FC的75%和45%計(jì)算WW和DS處理的初始重量。

表1 試驗(yàn)品種名稱及特性

采用稱重法控制土壤水分,每天日落后1~2h澆水,至各處理的初始重量??厮畷r(shí)間從2018年4月5日冬小麥進(jìn)入拔節(jié)期開始,至4月25日冬小麥拔節(jié)末期結(jié)束。其余時(shí)間正常管理。盆栽小麥置于塑料防雨棚內(nèi),降雨時(shí)放下防雨棚遮蔽雨水,晴天將雨棚卷起,讓植物接受自然光照,并在開放環(huán)境下生長。每個(gè)品種均進(jìn)行兩個(gè)水分處理,每處理6個(gè)重復(fù)。

1.3 項(xiàng)目測(cè)定

氣孔導(dǎo)度測(cè)定:分別于干旱脅迫5d、10d、15d后,利用便攜式近紅外氣體分析儀(LI-COR,美國)測(cè)定葉片氣孔導(dǎo)度。取主莖上部第一片完全展開葉,每盆測(cè)3片,取均值。

飽和滲透勢(shì)測(cè)定:將3片小麥葉片置于裝有去離子水的自封袋中,吸水8h,使其達(dá)到飽和狀態(tài)(RWC=100%);取出,用吸水紙吸干表面水分,密封后迅速放入低溫冰箱中冷凍。測(cè)定前取出,室溫下融化30min,榨取汁液,取10μL用冰點(diǎn)滲透壓計(jì)(美國)測(cè)量滲透摩爾濃度。計(jì)算飽和滲透勢(shì),即

膜離子滲漏率的測(cè)定:參照Welti等[11]的方法利用電導(dǎo)儀測(cè)定。取3枚小麥葉片,置于25mL去離子水中,在23℃水浴下輕微振蕩1h,測(cè)定初電導(dǎo)值;溶液在100℃下煮沸10min,冷卻至23℃,測(cè)定總電導(dǎo)值。

離子滲漏率=初電導(dǎo)值/總電導(dǎo)值 (2)

籽粒產(chǎn)量:成熟后,將各盆內(nèi)植株收獲,裝于網(wǎng)袋,自然曬干后人工脫粒,用電子秤(美國,精確到0.01g)稱重。

單株籽粒產(chǎn)量=總產(chǎn)量/株數(shù) (3)

1.4 數(shù)據(jù)處理

采用Microsoft Excel 2013作圖,用Origin 2018 64bit軟件統(tǒng)計(jì)分析數(shù)據(jù)。

2 結(jié)果與分析

2.1 不同品種冬小麥產(chǎn)量對(duì)拔節(jié)期干旱脅迫的響應(yīng)

由圖1可見,在充分灌溉條件下(WW),晉麥47、洛旱2號(hào)、石家莊8號(hào)產(chǎn)量較高,顯著高于豫麥18和偃麥20(P<0.05),鄭麥9023產(chǎn)量居中。拔節(jié)期受干旱脅迫(DS),與WW處理相比,各品種產(chǎn)量均顯著降低。晉麥47、洛旱2號(hào)和豫麥18降低幅度較小,分別是57.7%、57.6%和53.5%。鄭麥9023、石家莊8號(hào)和偃展20降低幅度較大,分別為58.6%、65.3%和60.1%。導(dǎo)致干旱脅迫下各品種的產(chǎn)量排序發(fā)生變化,晉麥47、洛旱2號(hào)和豫麥18產(chǎn)量較高,顯著高于石家莊8號(hào)和偃麥20(P<0.05),鄭麥9023居中??梢?,晉麥47和洛旱2號(hào)在灌溉條件下能夠充分利用水分,獲得高產(chǎn),在干旱條件下,也能夠抵御干旱,獲得較高產(chǎn)量。石家莊8號(hào)在灌溉條件下,產(chǎn)量與晉麥47和洛旱2號(hào)無顯著差異,但在干旱條件下,產(chǎn)量顯著低于這2個(gè)品種。豫麥18與石家莊8號(hào)的表現(xiàn)相反,在干旱脅迫下,其產(chǎn)量與晉麥47和洛旱2號(hào)無差異,但在灌溉條件下,產(chǎn)量顯著低于晉麥47和洛旱2號(hào)。偃麥20在灌溉條件和干旱條件下產(chǎn)量均較低。鄭麥9023在兩種水分條件下均屬于中等產(chǎn)量品種。以產(chǎn)量為抗旱性核心評(píng)價(jià)指標(biāo)來看,6個(gè)試驗(yàn)品種中,晉麥47、洛旱2號(hào)和豫麥18抗旱性較強(qiáng),石家莊8號(hào)和偃麥20抗旱性較弱,鄭麥9023抗旱性居中。

圖1 拔節(jié)期灌溉(WW)和干旱(DS)條件下不同冬小麥品種單株籽粒產(chǎn)量的比較

注:小寫字母表示干旱條件下品種間的差異顯著性,大寫字母表示充分灌溉條件下品種間的差異顯著性。短線表示均方差。下同。

Note:Lowercase indicates the difference significance among treatments under DS condition, and capital letter indicates the difference significance among treatments under WW condition. The bar means square error. The same as below.

2.2 不同品種冬小麥葉片氣孔導(dǎo)度對(duì)拔節(jié)期干旱脅迫的響應(yīng)

從圖2可以看出,充分灌溉條件下(WW),無干旱脅迫發(fā)生時(shí),品種間氣孔導(dǎo)度存在顯著差異。晉麥47、洛旱2號(hào)和石家莊8號(hào)的氣孔導(dǎo)度較高,顯著高于豫麥18、偃麥20和鄭麥9023(P<0.05)。結(jié)合圖1還可知,充分灌溉條件下,品種間氣孔導(dǎo)度的差異與品種間產(chǎn)量的差異趨勢(shì)相近。統(tǒng)計(jì)分析結(jié)果表明,二者之間存在極顯著正相關(guān)性(R2=0.89)。干旱脅迫下(DS),不同品種葉片氣孔導(dǎo)度均顯著下降,但品種間下降幅度不同,導(dǎo)致品種間氣孔導(dǎo)度存在顯著差異(P<0.05)。干旱脅迫5d,抗旱性較強(qiáng)的洛旱2號(hào)和豫麥18氣孔導(dǎo)度較低,顯著低于抗旱性弱的石家莊8號(hào)和偃麥20,晉麥47和抗旱性中等的鄭麥9023氣孔導(dǎo)度居中。但隨著脅迫時(shí)間延長至10d,豫麥18 氣孔導(dǎo)度最低,顯著低于鄭麥9023和偃麥20(P<0.05),晉麥47、洛旱2號(hào)和石家莊8號(hào)居中。脅迫至15d,豫麥18氣孔導(dǎo)度依然最低,顯著低于晉麥47。洛旱2號(hào)、石家莊8號(hào)、鄭麥9023和偃麥20居中。總體來看,隨著干旱脅迫時(shí)間延長,3個(gè)抗旱品種僅豫麥18氣孔導(dǎo)度保持最低,而晉麥47和洛旱2號(hào)與抗旱性弱的石家莊8號(hào)和偃麥20無顯著差異。

圖2 兩種水分處理(WW和DS)5d、10d和15d后不同冬小麥品種葉片氣孔導(dǎo)度的比較

2.3 不同品種冬小麥葉片細(xì)胞滲透勢(shì)對(duì)拔節(jié)期干旱脅迫的響應(yīng)

在灌溉條件下(WW),無干旱脅迫發(fā)生時(shí),6個(gè)試驗(yàn)品種的飽和滲透勢(shì)存在顯著差異(表2)。洛旱2號(hào)和石家莊8號(hào)較低,豫麥18較高(P<0.05)。干旱脅迫下(DS),6個(gè)品種均發(fā)生滲透調(diào)節(jié)響應(yīng),飽和滲透勢(shì)較灌溉條件下顯著下降。干旱脅迫持續(xù)10d,各品種的飽和滲透勢(shì)與灌溉條件下的差異達(dá)到最大。但脅迫持續(xù)15d后,處理間的差異并未持續(xù)升高,反而低于脅迫10d的差異。表明脅迫時(shí)間過長,損傷嚴(yán)重時(shí),滲透調(diào)節(jié)能力下降。由表2還可知,品種間對(duì)干旱脅迫的滲透調(diào)節(jié)響應(yīng)存在顯著差異(P<0.05)。抗旱品種洛旱2號(hào)在脅迫15d內(nèi)飽和滲透勢(shì)一直最低,表明該品種的滲透調(diào)節(jié)能力顯著高于其它品種。但是,抗旱性強(qiáng)的晉麥47和豫麥18的飽和滲透勢(shì)并未降至與洛旱2號(hào)相近的水平,只是達(dá)到與抗旱性較弱的品種石家莊8號(hào)和偃麥20無顯著差異的水平。

表2 兩種水分處理(WW和DS)5d、10d和15d后6個(gè)品種葉片細(xì)胞滲透勢(shì)比較

2.4 不同品種冬小麥葉片細(xì)胞膜穩(wěn)定性對(duì)拔節(jié)期干旱脅迫的響應(yīng)

由圖3可以看出,灌溉條件下(WW),沒有干旱脅迫發(fā)生時(shí),品種間膜離子滲漏率存在顯著差異(P<0.05)。洛旱2號(hào)和石家莊8號(hào)較低,顯著低于晉麥47、豫麥18、鄭麥9023和偃麥20。在干旱脅迫15d后,6個(gè)品種膜離子滲漏率均顯著上升,但品種間升高幅度不同??购敌匀醯氖仪f8號(hào)、偃麥20和抗旱性居中的鄭麥9023升幅均較大,抗旱性強(qiáng)的洛旱2號(hào)和豫麥18升幅較小,洛旱2號(hào)的膜離子滲漏率最低。抗旱品種晉麥47,無論是干旱脅迫下還是灌溉條件下,其膜離子滲漏率升高的幅度,均與抗旱性較弱的石家莊8號(hào)和偃麥20無顯著差異。

圖3 兩種水分處理(WW和DS)15d后不同品種細(xì)胞膜離子滲透率的比較

3 結(jié)論與討論

6個(gè)試驗(yàn)品種對(duì)水分條件的產(chǎn)量響應(yīng)存在差異。灌溉條件下,晉麥47、洛旱2號(hào)和石家莊8號(hào)產(chǎn)量較高,豫麥18和偃麥20產(chǎn)量較低,鄭麥9023居中。拔節(jié)期受干旱脅迫后,晉麥47、洛旱2號(hào)和豫麥18產(chǎn)量較高,石家莊8號(hào)和偃麥20產(chǎn)量較低,鄭麥9023居中。晉麥47 和洛旱2號(hào)在灌溉條件下能夠充分利用水分,獲得高產(chǎn),在干旱條件下,也能夠抵御干旱,獲得較高產(chǎn)量。在灌溉條件下,石家莊8號(hào)產(chǎn)量與晉麥47和洛旱2號(hào)無顯著差異,為豐產(chǎn)品種,但在干旱條件下,其產(chǎn)量顯著低于這2個(gè)品種,因而不適于在降水偏少、又不具備灌溉條件的雨養(yǎng)地區(qū)種植。豫麥18在干旱脅迫下產(chǎn)量與晉麥47和洛旱2號(hào)無顯著差異,在灌溉條件有限或較干旱地區(qū)能夠獲得較高產(chǎn)量,但在灌溉條件下,其產(chǎn)量顯著低于晉麥47和洛旱2號(hào),因而不適宜在降水充沛或者灌溉條件良好的地區(qū)種植。偃麥20在灌溉條件和干旱條件下產(chǎn)量均較低。鄭麥9023屬于兩種水分條件下均偏中等的品種。因此,明確品種對(duì)不同水分條件的產(chǎn)量響應(yīng)特性,結(jié)合地區(qū)水分條件科學(xué)選用品種是提高作物產(chǎn)量的有效途徑。

以籽粒產(chǎn)量為抗旱性核心評(píng)價(jià)指標(biāo),晉麥47、洛旱2號(hào)和豫麥18抗旱性較強(qiáng),石家莊8號(hào)和偃麥20抗旱性較弱,鄭麥9023抗旱性居中。但不同抗旱品種對(duì)干旱脅迫響應(yīng)的途徑并不一致。氣孔調(diào)節(jié)是陸地植物適應(yīng)脅迫環(huán)境的重要機(jī)制[12]。植物遭受土壤干旱[13?15]、大氣干旱[16?19]和鹽脅迫[20]等逆境均會(huì)降低氣孔導(dǎo)度,減少蒸騰失水。但是品種間氣孔響應(yīng)敏感性[21]、下降幅度[22?23]以及隨脅迫時(shí)間下降的規(guī)律存在差異[16]。本試驗(yàn)6個(gè)品種在干旱脅迫下氣孔導(dǎo)度均下降。但是抗旱性強(qiáng)的品種僅豫麥18氣孔導(dǎo)度較低,而洛旱2號(hào)和晉麥47的氣孔導(dǎo)度與抗旱性弱的石家莊8號(hào)和偃麥20并無顯著差異。滲透調(diào)節(jié)也是植物適應(yīng)干旱環(huán)境的重要途徑[24?26]。干旱脅迫下,植物大量合成滲透調(diào)節(jié)物質(zhì),包括脯氨酸、甜菜堿、可溶性糖(甘露醇、山梨醇、海藻糖等)、有機(jī)酸等[6,24]。這些滲透調(diào)節(jié)物質(zhì)能夠降低細(xì)胞滲透勢(shì),減緩原生質(zhì)的脫水脅迫[7,25?26]。本試驗(yàn)中,3個(gè)抗旱性較強(qiáng)的品種,僅洛旱2號(hào)滲透勢(shì)最低,晉麥47和豫麥18滲透勢(shì)與抗旱性弱的石家莊8號(hào)和偃麥20無顯著差異。逆境脅迫下細(xì)胞代謝產(chǎn)生的活性氧會(huì)對(duì)細(xì)胞膜造成氧化損傷,引起細(xì)胞膜流動(dòng)性和穩(wěn)定性下降,胞內(nèi)離子大量外滲[27?29]。本試驗(yàn)中,抗旱性較強(qiáng)的品種僅洛旱2號(hào)在干旱脅迫15d后膜離子滲漏率較低,保持較高的膜穩(wěn)定性。晉麥47和豫麥18的膜離子滲漏率與抗旱性弱的石家莊8號(hào)和偃麥20無顯著差異。

干旱脅迫下,抗旱品種豫麥18大幅度降低氣孔導(dǎo)度,而晉麥47和洛旱2號(hào)降低幅度較小,即維持相對(duì)較高的氣孔導(dǎo)度。Bota等[30?32]的研究也發(fā)現(xiàn),抗旱性較強(qiáng)的品種在脅迫下維持較高的氣孔導(dǎo)度和蒸騰速率以及光合CO2固定能力。Halder等[33?36]將此現(xiàn)象歸因于水分脅迫下氣孔開度減小,蒸騰作用下降,加劇葉綠體光氧化損傷以及葉溫升高導(dǎo)致的高溫?fù)p傷。然而,從本研究結(jié)果可見,晉麥47和洛旱2號(hào)等強(qiáng)抗旱品種在干旱脅迫下氣孔導(dǎo)度降低幅度相對(duì)較小,是因?yàn)檫@些品種不以氣孔調(diào)節(jié)作為關(guān)鍵的干旱響應(yīng)途徑。洛旱2號(hào)氣孔導(dǎo)度與敏感品種無差異,但是干旱條件下細(xì)胞滲透勢(shì)顯著降低,通過加強(qiáng)滲透調(diào)節(jié)作用減緩原生質(zhì)的脫水脅迫。同時(shí)加強(qiáng)了細(xì)胞膜穩(wěn)定性的調(diào)節(jié)。晉麥47在干旱脅迫下氣孔導(dǎo)度、細(xì)胞滲透勢(shì)以及細(xì)胞膜穩(wěn)定性與敏感品種均無顯著差異。但Wang等[37]開展了干旱脅迫下晉麥47蛋白質(zhì)組學(xué)分析,發(fā)現(xiàn)抗氧化系統(tǒng)等代謝途徑上的蛋白表達(dá)僅微弱上調(diào),但LEA蛋白家族成員和分子伴侶顯著上調(diào),表明干旱脅迫下晉麥47加強(qiáng)脫水保護(hù)蛋白的合成以減緩原生質(zhì)的脫水和維持蛋白質(zhì)結(jié)構(gòu)與功能是其干旱響應(yīng)的主要途徑。

農(nóng)作物以收獲籽粒產(chǎn)量為目標(biāo),以產(chǎn)量為核心指標(biāo)的抗旱指數(shù)法鑒定抗旱性可信度最高。但是,其費(fèi)時(shí)費(fèi)工,不適合大批量品種的鑒定與篩選,因而需要探討可用于大量品種鑒定的可信度高的生理指標(biāo)。但是,從本研究結(jié)果可以看出,不同抗旱品種對(duì)干旱脅迫的關(guān)鍵響應(yīng)途徑存在顯著差異。因而,依靠單一生理指標(biāo),難以提高抗旱材料鑒選效率和可靠性。因此,需要深入研究品種間干旱脅迫響應(yīng)的差異及機(jī)理,發(fā)現(xiàn)可靠的生理指標(biāo),建立多指標(biāo)聯(lián)合鑒選體系,發(fā)掘優(yōu)秀抗旱材料。

[1] Sui N,Li M,Tian J C,et al.Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period[J].Agricultural Sciences in China,2010,9(3):346-354.

[2] 呂妍,王讓會(huì),蔡子穎.我國干旱半干旱地區(qū)氣候變化及其影響[J].干旱區(qū)資源與環(huán)境,2009,23(11):65-71.

Lv Y,Wang R H,Cai Z Y.Climatic change and influence in arid and semi-arid area of China[J].Journal of Arid Land Resources and Environment,2009,23(11):65-71.(in Chinese)

[3] Wilkinson S,Davies W J.Drought,ozone,ABA and ethylene: new insights from cell to plant to community[J]. Plant Cell & Environment,2010,33(4):510-525.

[4] Lee S C,Luan S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J].Plant,Cell and Environment, 2012,35(1):53-60.

[5] Hossain Z,Nouri M Z,Komatsu S,et al.Plant cell organelle proteomics in response to abiotic stress[J].Journal of Proteome Research,2012,11(1):37-48.

[6] Chaves M M,Maroco J P,Pereira J S,et al.Understanding plant responses to drought:from genes to the whole plant[J]. Functional Plant Biology,2003,30(3):239-264.

[7] Hare P.Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Environ,1998,21(6):535-553.

[8] Reddy A R,Chaitanya K V,Vivekanandan M,et al.Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology, 2004,161(11):1189-1202.

[9] Mittler R.Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.

[10] Mittler R.Abiotic stress,the field environment and stress combination[J].Trends in Plant Science,2006,11(1):15-19.

[11] Welti R,Li W,Li M,et al.Profiling membrane lipids in plant stress responses:role of phospholipase D alpha in freezing- induced lipid changes in Arabidopsis[J].J Biol Chem, 2002,277:31994-32002.

[12] Hetherington A M,Woodward F I.The role of stomata in sensing and driving environmental change[J].Nature (London),2003,424(6951):901-908.

[13] Belko N,Zaman-Allah M,Cisse N,et al.Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea[J]. Functional Plant Biology,2012,39(4):306-325.

[14] Kholova J,Hash C T,Kakkera A,et al.Constitutive water- conserving mechanisms are correlated with the terminal drought tolerance of pearl millet[(L.) R.Br.][J].Journal of Experimental Botany,2010,61(2):369-377.

[15] Kholova J,Hash C T,Kumar P L,et al.Terminal drought-tolerant pearl millet[(L.)R.Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit[J].Journal of Experimental Botany,2010, 61(5):1431-1440.

[16] Devi M J,Sinclair T R,Vadez V,et al.Genotypic variation in peanut for transpiration response to vapor pressure deficit [J].Crop Science,2010,50(1):191-196.

[17] Merilo E,Yarmolinsky D,Jalakas P,et al.Stomatal VPD response:there is more to the story than ABA[J].Plant Physiology,2018,176 (1):851-864.

[18] Suzuki M,Umeda H,Matsuo S,et al.Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production[J].Scientia Horticulturae, 2015,187:44-49.

[19] Talbott L D,Rahveh E,Zeiger E,et al.Relative humidity is a key factor in the acclimation of the stomatal response to CO2[J].Journal of Experimental Botany,2003,54(390): 2141-2147.

[20] Haque M S,Alexandra D S,Cristiano S,et al.Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance[J].Frontiers in Plant Science,2017,8:1602-1615.

[21] Schultz H R.Leaf absorptance of visible radiation inL.:stimates of age and shade effects with a simple field method[J].Scientia Horticulturae(Amsterdam),1996, 66(1-2):93-102.

[22] Condon A G,Richards R A,Rebetzke G J,et al.Improving intrinsic water-use efficiency and crop yield[J].Crop Science, 2002,42(1):122-131.

[23] Lee J C.The stabilization of proteins by sucrose[J].Journal of Biological Chemistry,1981,256(14):7193-7201.

[24] Nambara E,Kawaide H,Kamiya Y,et al.Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation:ABA-dependent and ABA-independent accumulation of free amino acids during dehydration[J]. Plant & Cell Physiology,1998,39(8):853-858.

[25] Berglund A H,Norberg P,Quartacci M F,et al.Properties of plant plasma membrane lipid models-bilayer permeability and monolayer behaviour of glucosylceramide and phosphatidic acid in phospholipid mixtures[J].Physiologia Plantarum,2010,109(2):117-122.

[26] Cooke D T,Burden R S.Lipid modulation of plasma membrane-bound ATPases[J].Physiologia Plantarum,1990, 78(1):153-159.

[27] Liljenberg C,Kates M.Changes in lipid composition of oat root membranes as a function of water-deficit stress[J]. Biochemistry and Cell Biology,1985,63(2):77-84.

[28] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48(12):909-930.

[29] Jiang M.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J].Journal of Experimental Botany,2002,53 (379):2401-2410.

[30] Bota J,Flexas J,Medrano H,et al.Genetic variability of photosynthesis and water use in Balearic grapevine cultivars [J].Annals of Applied Biology,2001,138(3):353-361.

[31] Saeidi M,Abdoli M.Effect of drought stress during grain filling on yield and its components,gas exchange variables, and some physiological traits of wheat cultivars[J].Journal of Agricultural Science and Technology,2015,17(4):885-898.

[32] Ratnayaka I,B?ga M,Fowler D B,et al.Construction and characterization of a BAC library of a cold-tolerant hexaploid wheat cultivar[J].Crop Science,2005,45(4): 1571-1577.

[33] Turan,Ekmekci Y.Activities of photosystem II and antioxidant enzymes in chickpea(L.) cultivars exposed to chilling temperatures[J].Acta Physiologiae Plantarum,2011,33(1):67-78.

[34] Zhang J,Kirkham M B.Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J].Plant and Cell Physiology,1994,35(5): 785-791.

[35] 毛浩田,陳夢(mèng)瑩,吳楠,等.干旱脅迫對(duì)不同倍性小麥和八倍體小黑麥苗期光合能力與抗氧化系統(tǒng)的影響[J].麥類作物學(xué)報(bào),2018,38(10):114-122.

Mao H T,Chen M Y,Wu N,et al.Effects of drought stress on photosynthetic capacity and antioxidant system in wheat with different ploidy levels and octoploid triticale at seedling stage[J].Journal of Triticeae Crops,2018,38(10): 114-122.(in Chinese)

[36] Halder K P,Burrage S W.Drought stress effects on water relations of rice grown in nutrient film technique[J].Pakistan Journal of Biological Sciences,2003,6(5):441-444.

[37] Wang Y,Zhang X,Huang G,et al.iTRAQ:based quantitative analysis of responsive proteins under peg-induced drought stress in wheat leaves[J].International Journal of Molecular Sciences,2019,20(11):2621-1640.

Cultivar Differences in Yield and Physiological Response of Winter Wheat after Exposed to Drought Stress at Jointing Stage

FENG Fu, HUANG Gui-rong, WANG Ya-jing, ZHANG Xin-ying, WANG Tao, ZHONG Xiu-li

(Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China)

Drought stress occurring at jointing stage has been restricted winter wheat production severely. This study explored the genotypic difference in physiological response to drought, aiming at providing informative guidance for selection and breeding of drought tolerant cultivars. Five cultivars, which were planted in larger areas in different regions of the North China Plain, and one stress sensitive cultivar were selected as materials. Pot cultivation and rain-shelter were adopted to carry out the experiment. In terms of grain yield, as well as stomatal traits, cellular membrane stability, and osmoregulation traits, genotypic difference in drought tolerance along with the drought response pathways after suffering drought stress at jointing stage were compared and analyzed. Under well-watered condition, winter wheat cultivars Jinmai 47, Luohan 2, and Shijiazhuang yielded higher, while Yuami 18 and Yanmai 20 yielded lower, with Zhengmai 9023 moderately yielding. Encountering drought stress at jointing stage, Jinmai 47, Luohan 2, and Yumai 18 yielded higher, in comparison, Shijiazhuang 8 and Yanmai 20 yielded lower, with Zhengmai 9023 moderately yielding. Being evaluated drought tolerance in term of yield after suffering from drought stress, Jinmai 47, Luohan 2, and Yumai 18 were cultivars of higher drought tolerance, while Shijiazhuang 8 and Yanmai 20, lower drought tolerance, and Zhengmai 9023, moderate drought tolerance. The 3 drought tolerant cultivars markedly differed in the key pathways of physiological responses to drought stress. Compared with lower drought tolerant cultivars, Shijiazhuang 8 and Yanmai 20, after exposed to drought stress at jointing stage, Yumai 18 showed significantly lower stomatal conductance, indicating its higher stomatal regulation ability; Luohan 2 had lower cellular osmotic potential, indicating its higher osmotic adjustment capability; Luohan 2 also had lower membrane ion leakage, showing stronger membrane stability; Jinmai 47 showed no significant difference from the lower drought tolerant cultivars in stomatal regulation, osmotic adjustment, and membrane stability. The significant difference among cultivars in the critical pathways of physiological response to drought stress suggested that drought tolerance of wheat cultivars can not be scientifically evaluated through sole physiological index, but through multiple indices.

Winter wheat; Yield; Drought tolerance; Stomatal regulation; Cellular osmotic adjustment; Membrane stability

10.3969/j.issn.1000-6362.2020.01.005

封富,黃桂榮,王雅靜,等.拔節(jié)期干旱脅迫下冬小麥品種間產(chǎn)量及生理響應(yīng)的差異[J].中國農(nóng)業(yè)氣象,2020,41(1):43-50

2019?07?08

鐘秀麗,E-mail:zhongxiuli@caas.cn

國家十三五重點(diǎn)研發(fā)計(jì)劃課題“化肥減施增效共性技術(shù)與評(píng)價(jià)研究”(2017YFD0201702)

封富,E-mail:82101176076@caas.cn

猜你喜歡
導(dǎo)度抗旱性氣孔
云南小麥品種(系)萌發(fā)期抗旱性評(píng)價(jià)
孔內(nèi)壓力對(duì)規(guī)則多孔Cu-1.3Cr合金氣孔形貌的影響
貴州火龍果的氣孔特征及其日變化規(guī)律
南方丘陵區(qū)油茶氣孔導(dǎo)度模型修正
玉米葉氣孔特征對(duì)氮素和水分的響應(yīng)及其與葉氣體交換的關(guān)系
考慮植被類型的冠層氣孔導(dǎo)度模型
不同玉米品種萌發(fā)期和苗期抗旱性鑒定與評(píng)價(jià)
蓄水坑灌下蘋果樹冠層導(dǎo)度日變化及影響因子研究
阿克蘇地區(qū)成齡棗樹氣孔導(dǎo)度對(duì)氣象因子的響應(yīng)
KD490:一種軟包鋰離子電池及其制作工藝
朝阳市| 巴林右旗| 买车| 兴仁县| 米泉市| 抚宁县| 广南县| 台前县| 保定市| 临泽县| 平乡县| 新巴尔虎左旗| 雅安市| 文山县| 长海县| 苏州市| 桃江县| 稻城县| 睢宁县| 高要市| 台湾省| 乌恰县| 江孜县| 霍山县| 侯马市| 门源| 出国| 垫江县| 尉氏县| 逊克县| 昭苏县| 泰兴市| 蓝田县| 诸城市| 汉中市| 法库县| 东源县| 博湖县| 灵台县| 固镇县| 利津县|