楊莎,張竹青,陳文超,劉周斌,周書棟,鄒學(xué)校,馬艷青*
辣椒葉色黃化突變體的遺傳及生理特性
楊莎1,2,張竹青1,陳文超1,劉周斌3,周書棟1,鄒學(xué)校2,馬艷青1*
(1.湖南省蔬菜研究所,湖南 長沙 410125;2.湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,湖南 長沙 410128;3.湖南大學(xué)研究生院隆平分院,湖南 長沙 410125)
以野生型辣椒6421經(jīng)60Co–γ輻射誘變產(chǎn)生的葉色黃化突變體R24–12–6為材料,比較辣椒葉色黃化突變體與野生型農(nóng)藝性狀、葉綠體超微結(jié)構(gòu)、生理生化特性的差異。結(jié)果表明:辣椒葉色黃化突變體黃化性狀受隱性單基因的細(xì)胞核遺傳;R24–12–6果長比6421增加 2.06 cm,果寬、坐果數(shù)和單果質(zhì)量均低于野生型的,其中坐果數(shù)與6421有顯著差異;葉綠素含量、葉綠素a、葉綠素b、類胡蘿卜素含量較野生型降低,差異顯著;R24–12–6的凈光合速率、蒸騰速率、氣孔導(dǎo)度、胞間CO2濃度分別為6421的84.80%、87.96%、98.16%和80.51%,但差異無統(tǒng)計(jì)學(xué)意義;透射電鏡掃描發(fā)現(xiàn)辣椒葉色黃化突變體葉綠體數(shù)量減少,基粒片層結(jié)構(gòu)減少且排列不整齊。
辣椒;葉色黃化突變體;遺傳;生理特性
由于長期的人工選擇,使得辣椒種內(nèi)遺傳基礎(chǔ)即含有相應(yīng)基因的種質(zhì)資源和變異類型日趨狹窄,限制了對(duì)辣椒某些特殊性狀的遺傳改良,如高效光能利用、對(duì)保護(hù)地的適應(yīng)性等。作物葉色標(biāo)記利用黃化遺傳標(biāo)記,易觀察,易穩(wěn)定,已在水稻[1]、小麥[2]、大豆[3]、油菜[4]、黃瓜[5]、甜瓜[6]、番茄[7]等作物中獲得并鑒定出一些葉色突變體,但是辣椒葉色突變體研究較少且其變異的機(jī)理尚不明確。筆者以辣椒優(yōu)良自交系6421(以下簡稱6421)的60Co–γ突變體庫中葉色黃化突變體R24–12–6為材料,分析其葉色遺傳特征及生物學(xué)特性,旨在揭示辣椒葉色黃化突變機(jī)理,為辣椒雜種優(yōu)勢利用提供依據(jù)。
辣椒葉色黃化突變體R24–12–6由野生型6421材料經(jīng)60Co–γ輻射誘變而來,由湖南省蔬菜研究所辣椒課題組提供。
1.2.1辣椒黃化突變體葉色黃化性狀的調(diào)查
用R24–12–6與6421進(jìn)行正反交,獲得F1代種子;F1代自交獲得F2代,構(gòu)建葉色黃化突變體的F2代群體。調(diào)查F2代群體苗期(四葉一心)的綠色植株和黃化植株的單株數(shù)量,計(jì)算分離比,采用卡平方(c2)方法檢驗(yàn)理論分離比例。
1.2.2農(nóng)藝性狀測定
分別在苗期(四葉一心)、初花期(移栽25 d)、盛果期(移栽60 d)測量R24–12–6以及6421的株高、莖粗,觀察記載盛果期果實(shí)的果長、果寬、坐果數(shù)、單果質(zhì)量等性狀。
1.2.3葉片光合色素含量測定
在苗期、初花期、盛果期對(duì)R24–12–6和6421的自上而下第3片葉片進(jìn)行葉綠素a、葉綠素b、類胡蘿卜素的測定。色素測定參照ARNON[8]的方法,并按照LICHTENTHALER[9]方法進(jìn)行修正。
1.2.4光合作用參數(shù)的測定
利用Li–6400 型便攜式氣體交換系統(tǒng),在晴天9:00測定R24–12–6以及6421葉片的凈光合速率、氣孔導(dǎo)度、胞間CO2濃度和蒸騰速率,光照強(qiáng)度1 200 μmol/(m2·s),CO2濃度為400 μmol/mol。
1.2.5葉綠體投射電鏡觀察
參照ZHAO的方法[10],取盛果期自上而下第3片葉,大小約1 mm×1 mm×1 mm,在透射電子顯微鏡下觀察葉綠體的超微結(jié)構(gòu)。
與6421相比, R24–12–6葉片全生育期都表現(xiàn)為黃色(圖1)。R24–12–6與6421進(jìn)行正反交,F(xiàn)1代植株葉片均表現(xiàn)為綠色,表明葉片黃化為細(xì)胞核遺傳。播種F2代植株600株,F(xiàn)2群體中綠色植株462株,黃色植株138株,綠色和黃色分離比為3∶1。經(jīng)卡平方檢測,得到c2=1.28,小于c20.05=3.841,=0.25,推測R24–12– 6葉色黃化受單個(gè)隱性基因控制。
圖1 辣椒葉色突變體的田間表型
從表1可看出,R24–12–6苗期株高比6421的高0.61 cm,但差異不顯著;初花期和盛果期的株高則均比6421的矮,分別降低了5.47%和14.46%,初花期差異不顯著,盛果期差異達(dá)到顯著水平。苗期、初花期和盛果期R24–12–6的莖粗比6421分別降低了10.34%、2.93%、13.30%,其中苗期和盛果期差異顯著。R24–12–6的果實(shí)顏色綠色偏淺,6421的果實(shí)為綠色;R24–12–6的果長比6421增加了 2.06 cm,差異顯著。果寬、坐果數(shù)和單果質(zhì)量均下降,分別降低了10.90%,43.24%和12.83%。
表1 R24–12–6的農(nóng)藝性狀
“*”和“**”分別表示同列數(shù)據(jù)差異顯著(<0.05)和極顯著(<0.01)。
辣椒光合色素含量測定結(jié)果(表2)表明,R24–12–6的葉綠素a、葉綠素b、類胡蘿卜素、總?cè)~綠素含量在苗期、初花期、盛果期均比6421下降,且差異顯著。在苗期,黃化突變體的葉綠素a、葉綠素b、類胡蘿卜素、總?cè)~綠素含量分別為野生型的40.73%、33.39%、56.36%、38.74%。在初花期,黃化突變體的葉綠素a、葉綠素b、類胡蘿卜素、總?cè)~綠素含量分別為野生型的49.28%、32.81%、54.76%和44.06%。在盛果期,黃化突變體的葉綠素a、葉綠素b、類胡蘿卜素、總?cè)~綠素含量分別為野生型的53.79%、69.93%、53.66%和56.99%。
表2 R24–12–6光合色素含量
“*”表示同列數(shù)據(jù)差異顯著(<0.05)。
初花期辣椒葉色黃化突變體的光合作用參數(shù)測定結(jié)果(表3)表明, R24–12–6的凈光合速率、蒸騰速率、胞間CO2濃度、氣孔導(dǎo)度分別為6421的84.80%、87.96%、98.16%和80.51%,突變體和野生型之間光合作用參數(shù)的差異無統(tǒng)計(jì)學(xué)意義。
表3 R24–12–6光合作用參數(shù)
對(duì)盛果期黃化突變體及野生型葉片進(jìn)行透射電鏡觀察。結(jié)果發(fā)現(xiàn):黃化突變體中葉綠體數(shù)量減少,類囊體片層結(jié)構(gòu)也減少,且基粒垛疊排列模糊不整齊,并出現(xiàn)了質(zhì)體小球結(jié)構(gòu)(圖2–1、圖2–2);野生型的葉綠體數(shù)量多,類囊體豐富,基粒垛疊排列整齊(圖2–3、圖2–4);突變體和野生型葉綠體都有明顯的淀粉粒。
1 R24–12–6(10 μm);2 R24–12–6(2 μm);3 6421(10 μm);4 6421(2 μm)。
葉色黃化突變體是開展光合系統(tǒng)結(jié)構(gòu)和功能、葉綠素生物合成及其調(diào)控機(jī)制研究的理想材料。采用誘變的方法構(gòu)建辣椒突變體庫是在短時(shí)間內(nèi)創(chuàng)制辣椒新種質(zhì)和開展遺傳研究的有效途徑[11]。辣椒葉色黃化突變體R24–12–6是經(jīng)過輻射誘變得到的經(jīng)過多代自交、能穩(wěn)定遺傳且全生育期為黃色的葉色突變體,推測R24–12–6的葉色黃化性狀受1對(duì)隱性核基因控制,這與水稻[12]、番茄[13]、甘藍(lán)[14]等的黃化突變體遺傳特性一致。葉色變異的類型有很多,遺傳規(guī)律也不相同,除細(xì)胞核隱性基因遺傳外,還有不完全顯性基因、細(xì)胞質(zhì)遺傳、核質(zhì)基因互作等類型,如CONATANTIN等[15]和WILLIAMSD等[16]研究報(bào)道了由單基因控制的缺綠型突變體;張琨等[17]通過小孢子培養(yǎng)的再生DH系中,發(fā)現(xiàn)了1個(gè)能穩(wěn)定遺傳的青梗菜黃化突變體,其黃化性狀受2對(duì)隱性重疊基因(和)互作控制。在擬南芥[18]、番茄[13]、甘藍(lán)[14]、黃瓜[19]、棉花[20]等作物上也發(fā)現(xiàn)核隱性基因突變控制的葉色黃化突變體。在西瓜[21]、玉米[22]中發(fā)現(xiàn)黃葉色性狀是受1對(duì)不完全顯性基因控制,在大豆[23]、小麥[24]、煙草[25]等作物上有細(xì)胞質(zhì)遺傳的相關(guān)報(bào)道。
R24–12–6較野生型光合色素組成沒有發(fā)生變化,但葉綠素總含量明顯降低,葉綠素a、葉綠素b、類胡蘿卜素含量顯著低于野生型。葉綠素含量的降低,會(huì)造成光合作用能力下降,但是凈光合速率、蒸騰速率、氣孔導(dǎo)度、胞間CO2濃度與野生型相比,差異并不顯著;突變體葉綠體的超微結(jié)構(gòu)發(fā)生了變化,R24–12–6的葉綠體數(shù)量明顯減少,基粒片層減少且排列不整齊,這與肖華貴等[26]、常青山等[27]的研究結(jié)果一致。
[1] 邵繼榮,王玉忠,劉永勝,等.水稻溫敏型突變體葉片間斷失綠的超微結(jié)構(gòu)[J].植物學(xué)報(bào),1999,41(1):20–24.
SHAO J R,WANG Y Z,LIU Y S,et al. Ultrastructurel observation on chloroplast of the thermo-sensitive green-yellow banded leaf mutant in rice (ssp. Indica)[J]. Acta Botanica Sinica,1999,41(1):20–24.
[2] 蘇小靜,汪沛洪.小麥突變體返白系返白機(jī)理的研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),1990,18(2):73–77.
SU X J,WANG P H.Study on the mechanism of albinism in wheat mutants[J].Journal of Northwest A&F University(Natural Science Edition),1990,18(2):73–77.
[3] KECK R W,DILLEY R A,ALLEN C F,et al. Chloroplast composition and structure differences in a soybean mutant[J].Plant Physiology,1970,46(5):692–698.
[4] 董遵,劉敬陽.甘藍(lán)型油菜黃花(苗)突變體的葉綠素含量及超微結(jié)構(gòu)[J].中國油料作物學(xué)報(bào),2000,22(3):27–29.
DONG Z,LIU J Y.The chlorophyll content and ultrastructure of yellow mutant inL.[J]. Chinese Journal of Oil Crop Sciences, 2000,22(3):27–29.
[5] 國艷梅,顧興芳,張春震,等.黃瓜葉色突變體遺傳機(jī)制的研究[J].園藝學(xué)報(bào),2003,30(4):409–412. GUO Y M,GU X F,ZHANG C Z,et al.Genetic mechanism of cucumber leaf mutant[J]. Acta Horticulturae Sinica,2003,30(4):409–412.
[6] 邵勤,于澤源,李興國,等.葉色黃化突變體甜瓜葉片內(nèi)部生理生化變化的研究[J].中國蔬菜,2013(7):59–65.
SHAO Q,YU Z Y,LI X G,et al.Studies on internal physiological and biochemical changes of xantha mutant in melon leaves[J].China Vegetables,2013(7):59–65.
[7] 姚建剛,張賀,許向陽,等.番茄葉色突變體的弱光耐受性研究[J].中國蔬菜,2010,1(4):31–35.
YAO J G,ZHANG H,XU X Y,et al.Studies on weak light tolerance of tomato leaf color mutant [J].China Vegetables,2010,1(4):31–35.
[8] ARNON D I.Copper enzymes in isolated chloroplasts: phenoloxidases in beta vulgaris[J].Plant Physiology,1949,24 (1):1–15.
[9] LICHTENTHALER H K.Chlorophyll and carotenoids:pigments of photosynthetic biomembranes[J].Methods in Enzymology,1987,148(1):350–382.
[10] ZHAO H,YU L,HUAI Z X ,et al.Mapping and candidate gene identification defining BnChd1–1,a locus involved in chlorophyll biosynthesis in[J]. Acta Physiologiae Plantarum,2014,36(4):859–870.
[11] 周書棟,楊博智,歐立軍,等.辣椒突變體庫的構(gòu)建及突變?nèi)后w表型變異分析[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,43(1):31–36.
ZHOU S D,YANG B Z,OU L J,et al.Construction of mutant library and research on phenotypic variation of mutant population in the pepper(L.)[J].Journal of Hunan Agricultural University (Natural Sciences),2017,43(1):31–36.
[12] 施勇烽,賀彥,郭丹,等.水稻淡綠葉突變體HM133的遺傳分析與基因定位[J].中國水稻科學(xué),2016,30 (6):603–610.
SHI Y F,HE Y,GUO D,et al.Genetic analysis and gene mapping of a pale green leaf mutant HM133 in rice[J].Chinese Journal of Rice Science,2016,30 (6):603–610.
[13] 郭明,張賀,李景富.番茄葉色黃化突變體的遺傳分析及SSR分子標(biāo)記[J].中國蔬菜,2010(14):31–35.
GUO M,ZHANG H,Li J F.Genetic analysis and SSR molecule marker on tomato yellow leaf mutant[J].China Vegetables,2010(14):31–35.
[14] 楊沖.甘藍(lán)葉色黃化突變體YL–1的形態(tài)、生理、遺傳和分子標(biāo)記的研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2014.
YANG C.Morphology,physiology,heredity and molecular marker of yellow leaf mutant YL-1in cabbage (L. var.) [D]. Beijing:Chinese Academy of Agricultural Sciences,2014.
[15] CONSTANTIN M J,NILAN R A.Chromosome aberration assays in barley() a report of the US environmental protection agency Gene-Tox program[J].Mutation Research/Reviews in Genetic Toxicology,1982,99(1):13–36.
[16] WILLIAMS N D ,JOPPA L R ,DUYSEN M E ,et al. Inheritance of three chlorophyll-deficient mutants of common wheat[J].Crop Science,1985,25(6):1023–1025.
[17] 張琨,劉志勇,單曉菲,等.青梗菜黃化突變體pylm遺傳特性分析[J].沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(1):1–8.
ZHANG K,LIU Z Y,SHAN X F,et al.Genetic analysis of a yellow mutant pylm in Pak-choi[J].Journal of Shenyang Agricultural University,2017,48(1):1–8.
[18] 平步云,趙軍,安麗君.?dāng)M南芥葉色突變體F03–06的篩選及突變基因的克隆[J].湖北農(nóng)業(yè)科學(xué),2016,55(21):5664–5667.
PING B Y,ZHAO J,AN L J.Genetic screening and isolation of a leaf color mutant F03-06 in[J]. Hubei Agricultural Sciences,2016,55(21):5664–5667.
[19] LUN Y Y,WANG X ,ZHANG C Z,et al. ACsYcf54 variant conferring light green coloration in cucumber[J]. Euphytica,2016,208(3):509–517.
[20] ZHU J K,CHEN J D,GAO F K,et al. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies[J].Journal of Experimental Botany,2017,68(15):4125–4135.
[21] 張建農(nóng),滿艷萍,燕麗萍.黃化西瓜葉片葉綠體結(jié)構(gòu)與光合作用特性[J].果樹學(xué)報(bào),2004,21(1):50–53.
ZHANG J N,MAN Y P,YAN L P.Chloroplast structure and photosynthesis characteristics of leaves in the chlorophyll-deficient watermelon plant[J].Journal of Fruit Science,2004,21(1):50–53.
[22] SAWERS R J H,VINEY J,F(xiàn)ARMER P R,et al.The maize oil yellow1 (oy1) gene encodes the I subunit of magnesium chelatase[J].Plant Molecular Biology,2006,60(1):95–106.
[23] 馬國榮,劉佑斌,蓋鈞鎰.大豆細(xì)胞質(zhì)遺傳芽黃突變體的發(fā)現(xiàn)[J].作物學(xué)報(bào),1994,20(3):334–338.
MA G R,LIU Y B,GAI J Y.Discovery of cytoplasmic bud yellow mutant in soybean[J].Acta Agronomica Sinica,1994,20(3):334–338.
[24] ALLEN K D.Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat[J].The Journal of Cell Biology,1988,107(3):907–919.
[25] BARAK S,HEIMER Y,NEJIDAT A,et al.The peroxisomal glycolate oxidase gene is differentially expressed in yellow and white sectors of the DP1 variegated tobacco mutant[J].Physiologia Plantarum,2000,110(1):120–126.
[26] 肖華貴,楊煥文,饒勇,等.甘藍(lán)型油菜黃化突變體的葉綠體超微結(jié)構(gòu),氣孔特征參數(shù)及光合特性[J].中國農(nóng)業(yè)科學(xué),2013,46(4):715–727.
XIAO H G,YANG H W,RAO Y,et al.Analysis of chloroplast ultrastructure,stomatal characteristic para- meters and photosynthetic characteristics of chlorophyll- reduced mutant inL.[J]. Scientia Agricultura Sinica,2013,46(4):715–727.
[27] 常青山,張利霞,陳煜,等.菊花黃綠葉突變體的光合與類囊體膜光譜[J] .林業(yè)科學(xué),2013,49(2):72–78.
CHANG Q S,ZHANG L X,CHEN Y,et al. Characteristics of photosynthesis and spectra properties of thylakoid membranes in the yellow-green leaf mutant of chrysanthemum[J].Scientia Silvae Sinica,2013,49(2): 72–78.
Genetic analysis and physiological characteristics of yellow leaf mutant in pepper
YANG Sha1,2, ZHANG Zhuqing1, CHEN Wenchao1, LIU Zhoubin3, ZHOU Shudong1, ZOU Xuexiao2, MA Yanqing1*
(1.Hunan Vegetable Research Institutite, Changsha, Hunan 410125, China; 2.College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China; 3.Longping Branch of Hunan University, Changsha, Hunan 410125, China)
Themutant R24-12-6 with a leaf yellow which induced by60Co - γ radiation from pepper wild type 6421was used as the material to compare the differences of agronomic characters, chloroplast ultrastructure, physiological and biochemical characteristics between the mutant and the wild type pepper 6421. The results showed that mutant R24-12-6 was inherited by recessive single gene. The fruit length of mutant R24-12-6 was 2.06 cm higher than that of the wild type 6421. The fruit width, fruit number and single fruit quality of mutant R24-12-6 were lower than those of the wild type, among then fruit number showed significant difference. The contents of chlorophyll, chlorophyll a, chlorophyll b and carotenoid decreased significantly compared with wild type 6421. The net photosynthetic rate, transpiration rate, stomatal conductance and inter-cellular CO2concentration of mutant R24-12-6 were lower than those of the wild type, which accounted 84.80%, 87.96%, 98.16% and 80.51% of those of the wild type of 6421, respectively, but with no significant differences.Transmission electron microscopy showed that the number of chloroplasts decreased and the lamellar structure of basal grains decreased in leaf yellow mutant.
pepper; yellow leaf mutant; genetic; physiological characteristic
10.13,331/j.cnki.jhau.2020.01.008
S641.301
A
1007-1032(2020)01-0048-05
2019–05–07
2019–11–05
湖南省自然科學(xué)基金項(xiàng)目(2018JJ3303)
楊莎(1988—),女,湖南益陽人,碩士,助理研究員,主要從事辣椒遺傳育種研究,yangsha112@126.com;
,馬艷青,博士,研究員,主要從事辣椒遺傳育種研究,yanqingmahn@163.com
楊莎,張竹青,陳文超,劉周斌,周書棟,鄒學(xué)校,馬艷青.辣椒葉色黃化突變體的遺傳及生理特性[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,46(1):48–52.
YANG S,ZHANG Z Q,CHEN W C, LIU Z B, ZHOU S D, ZOU X X, MA Y Q. Genetic analysis and physiological characteristics of yellow leaf mutant in pepper[J].Journal of Hunan Agricultural University(Natural Sciences), 2020, 46(1): 48–52.
http://xb.hunau.edu.cn
責(zé)任編輯:羅慧敏
英文編輯:羅維
湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)2020年1期