王玉東
【關(guān)鍵詞】圖形與幾何;文圖轉(zhuǎn)譯能力;實(shí)物圖;三視圖;要素圖
【中圖分類號(hào)】G623.5【文獻(xiàn)標(biāo)志碼】A【文章編號(hào)】1005-6009(2020)17-0079-02
在六年級(jí)的一次數(shù)學(xué)測(cè)試中,有這樣一道題目:一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別是a、b、c分米,把高增加3分米,表面積增加(①)平方分米,體積增加(②)立方分米;如果把長(zhǎng)增加5分米,表面積增加(③)平方分米,體積增加(④)立方分米。筆者班里共56人,有37人出錯(cuò),錯(cuò)誤率高達(dá)66.07%。這四個(gè)填空,錯(cuò)誤人數(shù)及其占比情況如表1所示。
從表1中的數(shù)據(jù)可知:學(xué)生正確率最高的是填空②,正確率最低的是填空③。①③的錯(cuò)誤率比②④的錯(cuò)誤率高,說明學(xué)生對(duì)表面積的理解運(yùn)算水平比對(duì)體積要低。①②的錯(cuò)誤率比③④的錯(cuò)誤率低,說明學(xué)生對(duì)高增加引發(fā)原長(zhǎng)方體表面積、體積變化的理解水平比對(duì)長(zhǎng)的增加引發(fā)的相應(yīng)變化的理解水平要高。
筆者又對(duì)學(xué)生的錯(cuò)誤類型進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn):填空①錯(cuò)誤類型達(dá)到15種,占比前三位的是3a+3b、6ab、3ab;填空②錯(cuò)誤類型達(dá)到5種,占比前兩位的是3bc、3abc;填空③錯(cuò)誤類型達(dá)到16種,占比前三位的是5b+5c、5ab、10ab;填空④錯(cuò)誤類型達(dá)到9種,占比前三位的是5ab、10bc、3bc。據(jù)此,不難發(fā)現(xiàn)這兩個(gè)方面的原因:一是考慮不全面,高或長(zhǎng)增加,表面積都應(yīng)該增加4個(gè)面,不少學(xué)生認(rèn)為只增加了2個(gè)面;二是概念不清晰,學(xué)生對(duì)于什么是體積和表面積還不完全清楚。但從更深的層面去思考,學(xué)生錯(cuò)誤的原因則是:直觀想象的數(shù)學(xué)核心素養(yǎng)還沒養(yǎng)成,不能迅速將題目中的文字?jǐn)⑹鲛D(zhuǎn)譯成圖形來理解和分析問題。筆者檢查學(xué)生的解題過程發(fā)現(xiàn):有些學(xué)生沒有畫圖或者說不會(huì)畫圖;有些學(xué)生僅僅畫了一個(gè)長(zhǎng)方體,而沒有在圖上呈現(xiàn)高增加或長(zhǎng)增加;有些學(xué)生畫的圖基本表達(dá)了題目的意思,但是缺乏必要的數(shù)據(jù)或字母標(biāo)注。
數(shù)學(xué)中的點(diǎn)、線、面在現(xiàn)實(shí)生活中并不存在,因而對(duì)小學(xué)生來說比較抽象。根據(jù)學(xué)生的認(rèn)知規(guī)律,越是抽象的知識(shí)越需要形象的事物來支撐。事實(shí)上,在立體圖形教學(xué)中,教師對(duì)學(xué)生畫圖是比較重視的,甚至要求學(xué)生:只要是跟長(zhǎng)方體、正方體知識(shí)有關(guān)的題目,都必須畫圖。也許,教師根據(jù)題目中的文字來畫一個(gè)圖很容易,但對(duì)小學(xué)生而言并不容易。因此,在引導(dǎo)學(xué)生讀懂題目,進(jìn)而準(zhǔn)確地將文字表達(dá)轉(zhuǎn)化成圖形方面,教師必須花大力氣。循著學(xué)生的認(rèn)知規(guī)律,教師可以有層次地依托實(shí)物圖、三視圖和要素圖來提升學(xué)生的文圖轉(zhuǎn)譯能力。
1.實(shí)物圖——文圖轉(zhuǎn)譯能力的基礎(chǔ)。
“圖形與幾何”領(lǐng)域的知識(shí)一般比較抽象,學(xué)生必須積累相應(yīng)的生活經(jīng)驗(yàn)才能由文化圖、以圖促知。在教學(xué)中,教師可以提供操作材料讓學(xué)生現(xiàn)場(chǎng)操作,或者出示實(shí)物圖形讓學(xué)生仔細(xì)觀察,不斷積累相應(yīng)的經(jīng)驗(yàn)。如在研究“表面涂色的正方體”時(shí),可以讓學(xué)生自制學(xué)具,并把自制的三階、四階的正方體帶到課堂上來,通過師生、生生的討論和交流,促進(jìn)學(xué)生不斷明晰“三面涂色的正方體在頂點(diǎn)處,兩面涂色的正方體在棱上,一面涂色的正方體在面上”的知識(shí)點(diǎn)。
2.三視圖——文圖轉(zhuǎn)譯能力的關(guān)鍵。
三維透視圖是生活與數(shù)學(xué)的橋梁。一方面,它具有立體性和直觀形象性等特征,與實(shí)物有一定的相似性,能有效降低學(xué)生理解的難度;另一方面,它抽取了事物的物理屬性,僅僅關(guān)注事物的數(shù)和形,體現(xiàn)了數(shù)學(xué)的本質(zhì)。因此,在教學(xué)中,教師根據(jù)題目的意思示范畫三視圖,并指導(dǎo)學(xué)生畫三視圖,可以化繁為簡(jiǎn)、化隱為顯、化抽象為形象。如“一個(gè)長(zhǎng)方體正好可以切成3個(gè)一樣的小正方體,切開后每個(gè)小正方體的表面積是18平方分米,原來這個(gè)長(zhǎng)方體的表面積是多少平方分米?”這道題,如果僅僅憑借想象,對(duì)學(xué)生而言難度很大。但如果引導(dǎo)學(xué)生畫出三視圖(如圖1),就可以使許多隱藏的條件浮現(xiàn)出來,他們就容易發(fā)現(xiàn)長(zhǎng)方體的表面包括14個(gè)小正方形,進(jìn)而解題:18÷6×14=42(平方分米)。一般說來,對(duì)于長(zhǎng)方體或正方體中的切、拼、挖等問題,通過三視圖來幫助學(xué)生解決會(huì)簡(jiǎn)單很多。
3.要素圖——文圖轉(zhuǎn)譯能力的飛躍。
將一個(gè)文字表述的問題用空間形式,特別是圖形表達(dá)出來,有助于學(xué)生分析問題、解決問題。但對(duì)學(xué)生而言,用一個(gè)圖形完整地表述題意比較費(fèi)時(shí)。因此,教師可以引導(dǎo)學(xué)生抓住題目中的關(guān)鍵點(diǎn)或要素,將圖形的形態(tài)、變化和圖形之間的關(guān)系表達(dá)出來。用要素圖來表達(dá)文字問題的意思,既有利于學(xué)生直擊問題核心,也有助于發(fā)展學(xué)生的空間想象能力。如這個(gè)問題:牙膏盒長(zhǎng)15厘米,寬和高都是3厘米。現(xiàn)有一紙箱,尺寸為60厘米×30厘米×17厘米,這個(gè)紙箱中最多能放多少盒牙膏?借助圖形分析時(shí),學(xué)生只需呈現(xiàn)紙箱和牙膏盒的長(zhǎng)、寬、高的數(shù)量關(guān)系。下圖2所示的要素圖就可以清楚地表達(dá)題意,彰顯解題思路:沿著長(zhǎng)可以擺4盒牙膏,沿著寬可以擺10盒,沿著高最多可以擺5盒,這樣一共就可以擺4×10×5=200(盒)。當(dāng)然,也可以把牙膏盒的長(zhǎng)、寬、高分別沿著紙箱的寬、長(zhǎng)、高來擺,答案與前一種擺法一致。
需要指出的是,這三種圖雖然體現(xiàn)了思維的某種層次性,但在教學(xué)中是相輔相成、相互促進(jìn)的。另外,學(xué)生文圖轉(zhuǎn)譯能力的形成不是一蹴而就的,需要教師在教學(xué)中長(zhǎng)期有意識(shí)地培養(yǎng)。
(作者單位:江蘇省海安市明道小學(xué))