趙雯 徐宏治
摘 要 膠質(zhì)瘤是腦內(nèi)常見的侵襲性原發(fā)腫瘤,治療效果不理想,尋找有效的治療方法刻不容緩。已有研究證實,有些中藥有抗腦膠質(zhì)瘤作用,其中研究比較多的包括細辛醚、川芎嗪、當歸、芍藥苷、姜黃素、蛇床子素、類黃酮等,但這些藥物的抗腦膠質(zhì)瘤作用機制各異。全文綜述腦膠質(zhì)瘤的中藥治療現(xiàn)狀,為膠質(zhì)瘤的中藥治療提供參考。
關(guān)鍵詞 膠質(zhì)瘤;中藥;活性成分;機制
中圖分類號:R739.41 文獻標志碼:A 文章編號:1006-1533(2020)10-0003-05
Current Situation of traditional Chinese medicine in the treatment of glioma
ZHAO Wen1, XU Hongzhi2
(1. Department of Anaesthesiology of Huashan Hospital affiliated to Fudan University, Shanghai 200040, China; 2. Department of Neurosurgery of Huashan Hospital affiliated to Fudan University, Shanghai 200040, China)
ABSTRACT Glioblastoma(GBM) is the common and aggressive primary brain tumor in adults with poor prognosis, and the more effective GBM therapeutic options are urgently needed. A large number of studies show that traditional Chinese medicine is effective in the treatment of GBM, and among of them many researches, both domestic and foreign, focus on the study of active constituents of traditional Chinese medicine, including B-asarone, 2,3,5,6-tetramathylpyrazine(TMP), angelica sinensis, paeoniflorin(PF), curcumin, Osthol and flavonoids, which have multiple mechanisms of anti-glioma effects. This paper reviews recent researches on current situation of traditional Chinese medicine in the treatment of GBM, and provides the reference for traditional Chinese medicine in the treatment of GBM.
KEY WORDS glioma; traditional Chinese medicine; active constituent; mechanism
神經(jīng)膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)最常見的惡性腫瘤,起源于神經(jīng)膠質(zhì)細胞。占所有顱內(nèi)腫瘤的一半以上,高級別膠質(zhì)瘤生長迅速,術(shù)后復(fù)發(fā)快,死亡率高。目前,膠質(zhì)瘤的治療方法包括手術(shù)、化療和放療,基因治療和免疫治療也在積極研究中。但總體療效仍不理想,膠質(zhì)瘤發(fā)生、發(fā)展的生物學(xué)機制仍不清楚。隨著科研的進步,發(fā)現(xiàn)了幾種中藥可以抑制膠質(zhì)瘤發(fā)展。傳統(tǒng)醫(yī)學(xué)與現(xiàn)代科學(xué)方法相結(jié)合,為膠質(zhì)瘤的治療提供了新的研究方向。
1 細辛醚(B-asarone)
細辛醚是石菖蒲屬主要成分。細辛作為君藥,與丁香、瓜蒂、糯米、腦子、麝香配伍成透頂散,主治偏正頭風(fēng),夾腦風(fēng)。細辛醚可以通過血腦屏障,并主要分布在腦,影響中樞神經(jīng)系統(tǒng),保護神經(jīng)元。
2017年Wang等[1]的研究顯示,細辛醚可促進替莫唑胺(TMZ)進入膠質(zhì)瘤細胞,降低P糖蛋白(P-gp)和多種藥物抗性-1(MDR1)的表達。2018年Wang等[2]發(fā)現(xiàn),B-asarone能抑制膠質(zhì)瘤U251細胞生長,在GO/G1階段阻斷DNA循環(huán)。細辛醚可能通過P53/Bcl-2/bclin1和P53/AMPK/mTOR信號通路促進U251細胞的自噬。異質(zhì)性胞核核糖核蛋白A2/B1(hnRNP A2/B1)是一種與人膠質(zhì)瘤細胞生長密切相關(guān)的致癌蛋白,調(diào)控mRNA的剪接和轉(zhuǎn)運,參與生長調(diào)控和癌變。2018年Li等[3-4]的研究顯示,細辛醚通過調(diào)控hnRNP A2/B1相關(guān)信號通路,促進Bcl-x選擇性剪接,提高Bcl-xS/Bcl-xL的比例,調(diào)節(jié)p21、p27、Cdc25A、cyclin D、cyclin E和CDK2,誘導(dǎo)G1期細胞周期阻滯,誘導(dǎo)細胞凋亡和細胞周期阻滯,抑制了上皮間質(zhì)轉(zhuǎn)化(EMT)過程,阻斷了膠質(zhì)瘤U251細胞的遷移、侵襲和粘附。
2 川芎嗪(2,3,5,6-tetramathylpyrazine,TMP)
川芎(wallichi franchat)最早見于公元前200年的中醫(yī)著作《神農(nóng)本草經(jīng)》。川芎是君藥,與白芷、羌活、細辛、防風(fēng)、荊芥、薄荷、甘草等川芎茶調(diào)丸,作為治風(fēng)劑,具有疏風(fēng)止痛之功效。主治風(fēng)邪頭痛。其生物活性成分2,3,5,6-四甲基吡嗪(TMP),于1973年從川芎中提取,是Ca2+拮抗劑。
TMP主要通過其神經(jīng)保護作用被認為具有治療膠質(zhì)瘤的潛力。2013年Chen等[5]研究發(fā)現(xiàn),TMP通過下調(diào)在腫瘤發(fā)展中發(fā)揮關(guān)鍵作用的趨化因子受體CXCR4的表達,保護腦神經(jīng)細胞,抑制膠質(zhì)瘤。CXCR4在免疫系統(tǒng)中調(diào)控著免疫過程的多樣性,阻斷SDF1/CXCR4通路,增強特異性免疫殺滅腫瘤細胞。TMP有可能在體內(nèi)完善免疫系統(tǒng)CXCR4通路,發(fā)揮治療腫瘤和神經(jīng)保護的生物活性。對原代培養(yǎng)的腦神經(jīng)細胞與100 μmol/L TMP體外共培養(yǎng)14 d后,與對照組相比,TMP能有效促進神經(jīng)元存活,抑制過氧化氫誘導(dǎo)的腦神經(jīng)細胞Ca2+和谷氨酸釋放。在膠質(zhì)瘤-神經(jīng)元共培養(yǎng)系統(tǒng),進一步證實TMP在抑制膠質(zhì)瘤細胞和保護腦神經(jīng)細胞方面的生物活性。2012年Keming等[6]研究發(fā)現(xiàn),TMP介導(dǎo)的C6膠質(zhì)瘤的抑制和神經(jīng)保護涉及CXCR4表達的抑制,無論是單獨培養(yǎng)還是聯(lián)合培養(yǎng),趨化因子受體CXCR4在腦神經(jīng)細胞和C6膠質(zhì)瘤細胞中表達均顯著降低,與CXCR4拮抗劑AMD3100相比,TMP對膠質(zhì)瘤的抑制和神經(jīng)保護作用更有效。Chen等[5]認為TMP治療膠質(zhì)瘤的機制主要有:(1)能有效抑制腦神經(jīng)細胞中Ca2+的升高;(2)能有效抑制腦神經(jīng)細胞谷氨酸的釋放;(3)顯著降低C6膠質(zhì)瘤細胞的遷移和增殖;(4)介導(dǎo)的抑制C6膠質(zhì)瘤細胞,神經(jīng)保護包括降低CXCR4表達。2008年Fu等[7]研究TMP抑制膠質(zhì)瘤細胞活性和谷氨酸神經(jīng)興奮毒性,測試了TMP對神經(jīng)膠質(zhì)瘤細胞株和移植到大鼠腦中的神經(jīng)膠質(zhì)瘤,結(jié)果表明TMP可以抑制膠質(zhì)瘤的生長,保護神經(jīng)元免受膠質(zhì)瘤誘導(dǎo)的興奮性侵襲。
3 當歸
當歸(angelica sinensis,oliv)作為一種中藥,在中國已有2 000多年的歷史。作為君藥,與川芎、芍藥、熟地等,再輔以其他中草藥構(gòu)成加味四物湯。是補血、養(yǎng)血的經(jīng)典方劑,也是婦科最常用的藥物。當歸具有神經(jīng)保護、抗氧化、抗炎、免疫調(diào)節(jié)等多種治療作用。
當歸多糖(Aps)是當歸的生物活性成分。2017年Zhang等[8]利用人膠質(zhì)細胞瘤細胞系U251進行體外和體內(nèi)模型的研究,結(jié)果顯示Aps能明顯抑制U251細胞的生長和增殖,誘導(dǎo)其凋亡。Aps能有效降低細胞周期調(diào)節(jié)因子cycdlins D1、cycdlins B、cycdlins E的表達,下調(diào)凋亡抑制蛋白Bcl-2表達,促凋亡蛋白Bax和裂解的胱天蛋白酶3表達增加,抑制轉(zhuǎn)化生長因子-β(TGF-β)信號通路,刺激上皮細胞鈣粘蛋白(E-cadherin)表達,從而抑制細胞生長,促進細胞凋亡。
2006年Tsai等[9]從當歸中提取的天然化合物正丁苯酞(n-butylidenephthalide,BP)能抑制惡性腦瘤的生長。BP上調(diào)包括p21和p27在內(nèi)的Cyclin激酶抑制劑(CKI)的表達,降低成視網(wǎng)膜細胞瘤(RB)蛋白的磷酸化,下調(diào)細胞周期調(diào)控因子,致人膠質(zhì)母細胞瘤(GBM)細胞DBTRG-05MG系、大鼠GBM細胞RG2系在Go/G1期細胞阻滯。在DBTRG 05MG和RG2細胞中,BP均顯著上調(diào)并激活凋亡相關(guān)蛋白。體外實驗結(jié)果表明,BP可觸發(fā)p53依賴和獨立的凋亡通路。在體內(nèi),BP抑制了大鼠皮下和人腦腫瘤細胞的生長,降低原位GBM腫瘤體積,顯著延長生存時間。2005年Tsai等[10]觀察當歸氯仿提取物(AS-C)對GBM的作用,認為AS-C通過調(diào)控細胞周期和凋亡,抑制惡性腦腫瘤細胞生長。AS-C可以上調(diào)包括p21在內(nèi)的cdk抑制劑的表達,降低Rb蛋白的磷酸化,從而使DBTRG-05MG和RG2細胞在G0/ G1期發(fā)生細胞阻滯。凋亡相關(guān)蛋白在DBTRG-05MG細胞和RG2細胞顯著增加并活化。體外實驗顯示AS-C可觸發(fā)p53依賴和p53獨立的凋亡通路。在體內(nèi)研究中,AS-C不僅可以抑制大鼠和人源性惡性腦瘤的生長,還可以使原位GBM體積縮小,延長生存期。
4 芍藥苷(paeoniflorin,PF)
PF是傳統(tǒng)中草藥赤芍的主要成分,在中藥中應(yīng)用廣泛[11-16],具有修復(fù)損傷、保護神經(jīng)、抗炎、免疫調(diào)節(jié)等作用[17-19]。作為君藥,赤芍與生地黃、大黃、白茅根等同用,可治療血熱、吐血;與金銀花、天花粉、乳香等同用,可治療熱毒壅盛、癰腫瘡瘍;與當歸、川芎、延胡索等同用,可治療血滯經(jīng)閉、痛經(jīng)、癥瘕腹痛等癥。芍藥苷可以抑制腫瘤的生長、侵襲和轉(zhuǎn)移,被視為較有前途的抗膠質(zhì)瘤藥。2018年Ouyang等[20]認為芍藥苷通過滅活腫瘤細胞中S期激酶相關(guān)蛋白(Skp)2發(fā)揮抗腫瘤作用。Skp2已經(jīng)被證明可以調(diào)節(jié)腫瘤細胞的增殖、侵襲、遷移、衰老、糖酵解和Warburg效應(yīng)以及癌癥干細胞的自我更新和功能[21]。Skp2是膠質(zhì)瘤治療的潛在治療靶點。Ouyang等[20]發(fā)現(xiàn)PF可抑制膠質(zhì)瘤細胞的增殖、遷移和侵襲,誘導(dǎo)G2/M阻滯和凋亡。PF治療的膠質(zhì)瘤細胞Skp2表達下調(diào),Skp2過表達可消除PF的抗腫瘤作用。PF治療可抑制異種移植小鼠模型中U87腫瘤細胞生長,通過抑制膠質(zhì)瘤細胞中Skp2的表達部分發(fā)揮了抗腫瘤作用。此外,PF通過上調(diào)microRNA-16和抑制基質(zhì)金屬蛋白酶(MMP)-9抑制膠質(zhì)瘤細胞的增殖[18],通過促進信號傳感器和轉(zhuǎn)錄激活因子(STAT)3的降解抑制膠質(zhì)瘤的生長和增殖[19]。
5 姜黃素(curcumin)
姜黃素是印度植物姜黃中的主要成分,用于治療炎癥已有幾千年的歷史。姜黃素具有抑制膠質(zhì)瘤的增殖、誘導(dǎo)細胞凋亡、抑制侵襲轉(zhuǎn)移、減少血管生成等抗腫瘤特性[22-24],可以調(diào)節(jié)多種對腫瘤干細胞自我更新和生存重要的信號通路。2017年Gersey等[25]研究認為,姜黃素通過誘導(dǎo)活性氧(ROS)降低膠質(zhì)母細胞瘤干細胞的惡性特征。ROS是氧代謝形成的天然產(chǎn)物,在正常細胞信號轉(zhuǎn)導(dǎo)和體內(nèi)穩(wěn)態(tài)的調(diào)節(jié)中發(fā)揮著重要作用。ROS的失調(diào)與許多疾病有關(guān),如癡呆、心血管疾病以及癌癥[26-28]。目前的研究也表明,ROS對腫瘤干細胞(CSCs)具有抗腫瘤作用,這些作用是通過調(diào)節(jié)包括有絲分裂原活化蛋白激酶(MAPKs)和Janus kinas(JAK)-信號傳感器和STAT3信號級聯(lián)的幾個分子通路實現(xiàn)的[29-33]。MAPKs和JAK-STAT3通路的畸變已被證明在GBM的發(fā)生中起關(guān)鍵作用[34]。
2017年Gersey等[25]發(fā)現(xiàn)姜黃素通過誘導(dǎo)ROS下調(diào)STAT3活性靶向成膠質(zhì)細胞瘤干細胞。STAT3在GBM中的重要性已經(jīng)被明確[35],抑制STAT3信號通路會降低生殖干細胞(GSC)在培養(yǎng)和原位異種移植模型中的存活率。此外,STAT3下游靶蛋白Survivin水平與星形細胞瘤分級相關(guān),是患者預(yù)后不良的先兆。低劑量的姜黃素抑制GSC的自我更新,是化療后GBM復(fù)發(fā)的一個重要特征,姜黃素以劑量依賴方式降低GSC的生存能力,這些結(jié)果均表明姜黃素可能是一種安全的膠質(zhì)瘤化療藥物。2012年Thani等[36]研究發(fā)現(xiàn)姜黃素和chokeberry提取物均可通過誘導(dǎo)細胞凋亡和降低MMP基因表達抑制細胞侵襲發(fā)揮其抗癌作用。2010年P(guān)erry等[37]研究認為,姜黃素通過抑制膠質(zhì)母細胞瘤的腫瘤細胞生長和血管生成抑制腫瘤生長。
6 蛇床子素(Osthole)
蛇床子果實中含有豐富的Osthole,Osthole是從傘形科植物中分離得到的一種具有廣泛藥理作用的天然香豆素。常與山茱萸肉、南五味子、車前子配伍用于治療白帶因寒濕者,是中藥的常用成分。Osthole有對膠質(zhì)瘤等其他多種惡性腫瘤的治療作用。Osthole在大腦中保護神經(jīng)元的重要作用及穿透血腦屏障的能力表明,它可能成為腦腫瘤化療的未來藥物。
2015年,Lin等[38]將普通膠質(zhì)瘤細胞系U87分別在0、50、100、200 mmol/L濃度下進行Osthole處理,結(jié)果發(fā)現(xiàn)蛇床子通過上調(diào)miR-16表達和下調(diào)MMP-9表達可抑制U87細胞的增殖,加速其凋亡。2013年Ding等[39]研究了Osthole對C6大鼠膠質(zhì)瘤細胞的作用,認為蛇床子對膠質(zhì)瘤細胞具有抗癌作用,包括增殖抑制、凋亡誘導(dǎo)和遷移/侵襲抑制。在經(jīng)過Osthole處理的C6細胞中也觀察到PI3K/Akt和MAPK信號通路的抑制。PI3K/Akt信號通路主要通過觸發(fā)磷酸化水平,參與調(diào)控癌癥的進展。細胞周期蛋白D1表達增加與幾種癌癥有關(guān),Osthol可以減少DI的表達。2014年Lin等[40]提出Osthole通過阻斷PI3K/Akt通路抑制胰島素樣生長因子-1(IGF-1)誘導(dǎo)的EMT。EMT是腫瘤細胞發(fā)生轉(zhuǎn)移的關(guān)鍵步驟,多種生長因子均可誘導(dǎo)其發(fā)生轉(zhuǎn)移。IGF-1能夠誘導(dǎo)GBM8401細胞產(chǎn)生EMT。Osthole可逆轉(zhuǎn)IGF-1誘導(dǎo)的形態(tài)學(xué)改變,上調(diào)上皮標志物表達,下調(diào)間充質(zhì)標志物表達。傷口愈合實驗也表明,Osthole可抑制IGF-1誘導(dǎo)的GBM8401細胞遷移。Osthole降低了Akt和GSK3的磷酸化,恢復(fù)了GSK3p在抑制EMT轉(zhuǎn)錄因子Snail和Twist表達中的生物活性。
7 類黃酮(flavonoids)
類黃酮(flavonoids)是植物物種合成的一類多酚類化合物,具有多種生物活性,如抗氧化、抗炎、抗病毒和抗癌作用。最近,一些研究發(fā)現(xiàn)類黃酮具有對GSCs的治療潛力[41-42]。
2016年,Kim等[43]研究發(fā)現(xiàn),黃酮類化合物,特別是芹菜素和槲皮素,可以降低GBM干細胞的自我更新能力。黃酮類化合物通過調(diào)控GBM細胞的遷移和侵襲抑制GBM轉(zhuǎn)移。芹菜素對GSC的抑制作用可能是由c-Met信號通路下調(diào)引起的。芹菜素阻斷了c-Met及其下游效應(yīng)物、STAT3、AKT和絲分裂原活化蛋白激酶的磷酸化,從而降低了GSC標志物如CD133、Nanog和Sox2的表達水平。
8 結(jié)語
中醫(yī)藥博大精深,其在抗癌治療中的應(yīng)用仍有很多值得探索。中藥以多途徑、多靶點、多效性和少不良反應(yīng)等特點,相比于其他傳統(tǒng)化療藥物而言,應(yīng)用前景值得期待。膠質(zhì)瘤的發(fā)生、發(fā)展機制及病程特點因人而異,個體化綜合治療是未來膠質(zhì)瘤治療的趨勢,中藥活性成分的研究為增加治療手段和開展個體化治療奠定了一定基礎(chǔ)。但相信隨著更多研究的深入開展,中藥在治療膠質(zhì)瘤的治療上必定會添上濃墨重彩的一筆。
參考文獻
[1] Wang N, Zhang Q, Ning B, et al. β-Asarone promotes Temozolomides entry into glioma cells and decreases the expression of P-glycoprotein and MDR1[J]. Biomed Pharmacother, 2017, 90: 368-374.
[2] Wang N, Zhang Q, Luo L, et al. β-asarone inhibited cell growth and promoted autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/mTOR pathways in human glioma U251 cells[J]. J Cell Physiol, 2018, 233(3): 2434-2443.
[3] Li L, Wu M, Wang C, et al. β-asarone inhibits invasion and EMT in human glioma U251 cells by suppressing splicing factor HnRNP A2/B1[J]. Molecules, 2018, 233(3): E671.
[4] Li L, Yang Y, Wu M, et al. Β-asarone induces apoptosis and cell cycle arrest of human glioma U251 cells via suppression of HnRNP A2/B1-mediated pathway in vitro and in vivo[J]. Molecules, 2018, 23(5): E1072.
[5] Chen Z, Pan X, Georgakilas AG, et al. Tetramethylpyrazine(TMP) protects cerebral neurocytes and inhibits glioma by down regulating chemokine receptor CXCR4 expression[J]. Cancer Lett, 2013, 336(2): 281-289.
[6] Yu K, Chen Z, Pan X, et al. Tetramethylpyrazine-mediated suppression of C6 gliomas involves inhibition of chemokine receptor CXCR4 expression[J]. Oncol Rep, 2012, 28(3): 955-960.
[7] Fu YS, Lin YY, Chou SC, et al. Tetramethylpyrazine inhibits activities of glioma cells and glutamate neuro-excitotoxicity: potential therapeutic application for treatment of gliomas[J]. Neuro Oncol, 2008, 10(2): 139-152.
[8] Zhang WF, Yang Y, Li X, et al. Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo[J]. Phytomedicine, 2017, 33: 21-27.
[9] Tsai NM, Chen YL, Lee CC, et al. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo3[J]. J Neurochem, 2006, 99(4): 1251-1262.
[10] Tsai NM, Lin SZ, Lee CC, et al. The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo[J]. Clin Cancer Res, 2005, 11(9): 3475-3484.
[11] Ma Z, Chu L, Liu H, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats[J]. Sci Rep, 2017, 7: 44819.
[12] Zhang H, Qi Y, Yuan Y, et al. Paeoniflorin ameliorates experimental autoimmune encephalomyelitis via inhibition of dendritic cell function and th17 cell differentiation[J]. Sci Rep, 2017, 7: 41887.
[13] Chen YF, Wu KJ, Wood WG. Paeonia lactiflora extract attenuating cerebral ischemia and arterial intimal hyperplasia is mediated by paeoniflorin via modulation of vsmc migration and RAS/MEK/ERK signaling pathway[J]. Evid Based Complement and Alternat Med, 2013, 2013: 482428.
[14] Wang K, Zhu L, Zhu X, et al. Protective effect of paeoniflorin on Aβ25–35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction[J]. Cell Mol Neurobiol, 2014, 34(2): 227-234.
[15] Chen T, Fu LX, Zhang LW, et al. Paeoniflorin suppresses inflammatory response in imiquimod-induced psoriasis-like mice and peripheral blood mononuclear cells (PBMCs) from psoriasis patients[J]. Can J Physiol Pharmacol, 2016, 94(8): 888-894.
[16] Li J, Huang S, Huang W, et al. Paeoniflorin ameliorates interferon-alpha-induced neuroinflammation and depressivelike behaviors in mice[J]. Oncotarget, 2017, 8(5): 8264-8282.
[17] Lu JT, He W, Song SS, et al. Paeoniflorin inhibited the tumor invasion and metastasis in human hepatocellular carcinoma cells[J]. Bratisl Lek Listy, 2014, 115(7): 427-433.
[18] Li W, Qi Z, Wei Z, et al. Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation[J]. Mol Med Rep, 2015, 12(2): 2735-2740.
[19] Nie XH, Ou-yang J, Xing Y, et al. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitinproteasome pathway[J]. Drug Des Devel Ther, 2015, 9: 5611-5622.
[20] Ouyang J, Xu H, Li M, et al. Paeoniflorin exerts antitumor effects by inactivating S phase kinase-associated protein 2 in glioma cells[J]. Oncol Rep, 2018, 39(3): 1052-1062.
[21] Chan CH, Morrow JK, Li CF, et al. Pharmacological Inactivation of Skp2 SCF Ubiquitin Ligase Restricts Cancer Stem Cell Traits and Cancer Progression[J]. Cell, 2013,154(3): 556-568.
[22] Liao H, Wang Z, Deng Z, et al. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/ MMP2 pathway[J]. Int J Clin Exp Med, 2015, 8(6): 8948-8957.
[23] Sobolewski C, Muller F, Cerella C, et al. Celecoxib prevents curcumin-induced apoptosis in a hematopoietic cancer cell model[J]. Mol Carcinog, 2015, 54(10): 999-1013.
[24] Zhang X, Wang R, Chen G, et al. The Effects of Curcuminbased Compounds on Proliferation and Cell Death in Cervical Cancer Cells[J]. Anticancer Res, 2015, 35(10): 5293-5298.
[25] Gersey ZC, Rodriguez GA, Barbarite E, et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species[J]. BMC Cancer, 2017, 17(1): 99.
[26] Kaur U, Banerjee P, Bir A, et al. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimers disease: the NF-κB connection[J]. Curr Top Med Chem, 2015, 15(5): 446-457.
[27] Kornfeld OS, Hwang S, Disatnik MH, et al. Mitochondrial Reactive Oxygen Species at the Heart of the Matter[J]. Circ Res, 2015, 116(11): 1783-1799.
[28] Saito S, Lin YC, Tsai MH, et al. Emerging roles of hypoxiainducible factors and reactive oxygen species in cancer and pluripotent stem cells[J]. Kaohsiung J Med Sci, 2015, 31(6): 279-286.
[29] Chang Z, Xing J, Yu X. Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway[J]. Tumor Biol, 2014, 35(1): 753-758.
[30] Li PM, Li YL, Liu B, et al. Curcumin Inhibits MHCC97H Liver Cancer Cells by Activating ROS/TLR-4/Caspase Signaling Pathway[J]. Asian Pac J Cancer Prev, 2014, 15(5): 2329-2334.
[31] Li X, Wang K, Ren Y, et al. MAPK signaling mediates sinomenine hydrochloride-induced human breast cancer cell death via both reactive oxygen species-dependent and independent pathways: an in vitro and in vivo study[J]. Cell Death & Disease, 2014, 5(7): e1356-e1356.
[32] Jung SN, Shin DS, Kim HN, et al. Sugiol inhibits STAT3 activity via regulation of transketolase and ROS-mediated ERK activation in DU145 prostate carcinoma cells[J]. Biochem Pharmacol, 2015, 97(1): 38-50.
[33] Chae IG, Kim DH, Kundu J, et al. Generation of ROS by CAY10598 leads to inactivation of STAT3 signaling and induction of apoptosis in human colon cancer HCT116 cells[J]. Free Radic Res, 2014, 48(11): 1311-1321.
[34] Liu Z, Jiang Z, Huang J, et al. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways[J]. Int J Oncol, 2014, 44(5): 1571-1580.
[35] Kim JE, Patel M, Ruzevick J, et al. STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications[J]. Cancers(Basel), 2014, 6(1): 376-395.
[36] Abdullah Thani NA, Sallis B, Nuttall R, et al. Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin[J]. Oncol Rep, 2012, 28(4): 1435-1442.
[37] Perry MC, Demeule M, Régina A, et al. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts[J]. Mol Nutr Food Res, 2010, 54(8): 1192-1201.
[38] Lin K, Gao Z, Shang B, et al. Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9[J]. Mol Med Rep, 2015, 12(3): 4592-4597.
[39] Ding D, Wei S, Song Y, et al. Osthole exhibits anti-cancer property in rat glioma cells through inhibiting PI3K/Akt and MAPK signaling pathways[J]. Cell Physiol Biochem, 2013, 32(6): 1751-1760.
[40] Lin YC, Lin JC, Hung CM, et al. Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells[J]. J Agric Food Chem, 2014, 62(22): 5061-5071.
[41] Bae IH, Lee WS, Yun DH, et al. 3-Hydroxy-3′,4′-dimethoxyflavone suppresses Bcl-w-induced invasive potentials and stemness in glioblastoma multiforme[J]. Biochem Biophys Res Commun, 2014, 450(1): 704-710.
[42] Zhang Y, Wang SX, Ma JW, et al. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition[J]. J Neurooncol, 2015, 121(1): 41-52.
[43] Kim B, Jung N, Lee S, et al. Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling[J]. Phytother Res, 2016, 30(11): 1833-1840.