劉原華,馮琳芳,牛新亮
GNSS-R海面風場數(shù)據(jù)處理技術探討
劉原華1,馮琳芳1,牛新亮2
(1. 西安郵電大學 通信與信息工程學院,西安 710121;2. 中國空間技術研究院 西安分院,西安 710000)
為進一步提高海面風速反演精度,提出1種基于GNSS-R的海面風場數(shù)據(jù)處理技術:指出需要進行功率校準的原因是由于接收機增益隨溫度變化,使接收到的信號功率(校準前)受溫度影響,導致在不同溫度環(huán)境下,反演風速不一致;給出接收到的信號功率、噪聲功率以及當載荷信號源變?yōu)槎素撦d時的噪聲功率隨溫度的變化規(guī)律,分析利用3者之間的關系,可消除溫度對功率的影響,從而實現(xiàn)功率校準。實驗結果表明,星載條件下應用該功率校準過程的反演精度可提高4.5158 m/s,能夠有效消除溫度對風速反演結果的影響。
全球衛(wèi)星導航系統(tǒng)反射信號;風速反演;功率校準;噪聲功率
全球衛(wèi)星導航系統(tǒng)反射信號(global navigation satellite system-reflection, GNSS-R)技術是利用導航衛(wèi)星的反射信號,提取出反射面特征要素的技術。自20世紀90年代以來,國內外學者及研究機構已成功將GNSS-R技術應用到多個領域,如海洋鹽度探測[1]、土壤濕度探測[2-3]、海面風場探測[4-6]等。
文獻[7]于1998年進行了機載平臺下的海風探測實驗。2002年,文獻[8]首次在星載平臺上探測到全球衛(wèi)星導航系統(tǒng)(global navigation satellite system, GNSS)反射信號。2014年發(fā)射升空的TDS-1衛(wèi)星上搭載了SGR-ReSI(remote sensing instrument)型號的GNSS遙感接收機,用于生成大量的延遲多普勒圖(delay-Doppler map, DDM)[9]。2016年12月,美國國家航空航天局(The National Aeronautics and Space Administration, NASA)部署了由8顆微衛(wèi)星組成的旋風全球衛(wèi)星導航系統(tǒng)(cyclone global navigation satellite system, CYGNSS)。文獻[10]利用CYGNSS數(shù)據(jù)進行星載平臺下GNSS-R海面高風速反演的研究。
GNSS-R海面風場反演理論是通過研究海面統(tǒng)計特性(以海面粗糙度為核心)、海面散射模型、能量譜模型及散射信號相關功率模型等建立海面風場與海面散射信號功率之間的關系[11]。由此可知,散射信號功率是影響海面風場反演結果的重要參數(shù)。國內外現(xiàn)有的研究主要基于風速反演的方法及模型[10,12-17],對信號功率的研究相對較少。
本文結合星載條件下的實測數(shù)據(jù),分析進行功率校準的原因;對功率校準的具體過程進行研究,分析了接收到的信號功率、噪聲功率以及當載荷的信號源變?yōu)槎素撦d時的噪聲功率隨溫度的變化規(guī)律;最后實行了功率校準。
本文使用捕風一號衛(wèi)星地面測試階段數(shù)據(jù),利用散射信號相關功率模型,將散射信號功率轉換為歸一化雙基雷達橫截面(normalized bi-static radar cross section, NBRCS),并從中計算出反演所用可觀測量,通過回歸分析,為可觀測量建立起經驗地球物理學模型函數(shù)(geophysical model function, GMF)來進行海面風速反演[17]。
風速反演的結果如圖1所示,風速反演誤差如圖2所示。從圖1及圖2可以看出,反演的風速趨向于2條不重合的反比例函數(shù)曲線,反演風速的均方根誤差(root mean square error, RMSE)為7.0286 m/s。
圖1 風速反演結果
圖2 反演誤差
散射信號功率與風速反演的結果密切相關,而接收機接收到的散射信號功率包含在接收到的總功率之中。在星載平臺下,每個航天器都帶有載荷,能夠定位和跟蹤地球表面上的GNSS反射信號,并在一系列時間延遲和多普勒頻率上繪制信號功率。
由載荷生成的DDM的每個像素都是未經校準的原始數(shù)據(jù)。除了海面散射GNSS信號外,總信號功率還包括來自地球和載荷本身產生的熱輻射的貢獻??傂盘柟β适撬休斎胄盘柟β实暮驮俪艘越邮諜C的增益[18],即有
圖3 接收到的總功率值C值
根據(jù)上述分析可以得出:隨溫度的升高而減小,導致高低溫環(huán)境下值的不一致。因此需要對接收到的總信號功率進行校準。
圖4 增益G與溫度的關系
天線背景噪聲功率一般可以表示為
定標負載的噪聲功率為
由載荷生成的DDM包括許多不存在信號功率的延遲單元,這些單元提供了DDM中噪聲功率的估計值,即
圖5 不同溫度環(huán)境下的和
由式(6)和式(7)得到估算的接收機增益為
將捕風一號衛(wèi)星的DDM進行功率校準,利用校準后的功率再次對風速進行反演,得到的反演結果如圖7所示,反演誤差如圖8所示。與圖1、圖2(未進行功率校準)相比:經過功率校準后,高溫和低溫環(huán)境下反演風速趨向于2條不重合反比例函數(shù)曲線這一現(xiàn)象消失;反演風速的均方根誤差為2.5128 m/s,與功率校準前相比,反演精度提高了4.5158 m/s。
圖6 功率校準流程
圖7 風速反演結果
圖8 反演誤差
[1] KAINULAINEN J, RAUTIAINEN K, LEMMETYINEN J, et al. Detection of a sea surface salinity gradient using data sets of airborne synthetic aperture radiometer HUT-2-D and a GNSS-R instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4561-4571.
[2] RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al. Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(11): 3616-3624.
[3] MIRONOV V L, MUZALEVSKIY K V. The new algorithm for retrieval of soil moisture and surface roughness from GNSS reflectometry[C]//The Institute of Electrical and Electronic Engineers(IEEE). IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Münich: IEEE, 2012: 7530-7532.
[4] SCHIAVULLI D, GHAVIDEL A, CAMPS A, et al. GNSS-R wind-dependent polarimetric signature over the ocean[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2374-2378.
[5] RODRIGUEZ-ALVAREZ N, AKOS D M , ZAVOROTNY V U, et al. Airborne GNSS-R wind retrievals using delay-
Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 626-641.
[6] ZAVOROTNY V U, VORONOVICH A G. GNSS-R delay-Doppler maps of ocean surface at weak winds[C]//The Institute of Electrical and Electronic Engineers(IEEE). IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Forth Worth, Texas: IEEE, 2017: 2664-2666.
[7] GARRISON J L , KATZBERG S J , HILL M I. Effect of sea roughness on bistatically scattered range coded signals from the global positioning system[J]. Geophysical Research Letters, 1998, 25(13): 2257-2260.
[8] LOWE S T, LABRECQUE J L, ZUFFADA C, et al.First spaceborne observation of an Earth-reflected GPS signal[J]. Radio Science, 2002, 37(1): 1-28.
[9] Surry Satellite Technology LTD. Mission description-GNSS reflectometry on TDS-1 with the SGR-ReSI[EB/OL]. [2019-12-27]. http: //merrbys. co. uk/wp-content/uploads/2017/07/TDS-1-GNSS-R-Mission-Description. pdf.
[10] CYGNSS Science Team. CYGNSS mission [EB/OL].[2019-12-27]. http://clasp-research.engin.umich.edu/ missions/cygnss/.
[11] 楊東凱, 張其善. GNSS反射信號處理基礎與實踐[M]. 北京: 電子工業(yè)出版社, 2012: 164-174.
[12] WANG Xin, SUN Qiang, ZHANG Xunxie, et al. First China ocean reflection experiment using coastal GNSS-R[J]. Chinese Science Bulletin, 2008, 53(7): 1117-1120.
[13] RODRIGUEZ-ALVAREZ N, GARRISON J L. Generalized linear observables for ocean wind retrieval from calibrated GNSS-R delay-doppler maps[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 54(2): 1142-1155.
[14] WANG Feng, YANG Dongkai, ZHANG Bo, et al. Wind speed retrieval using coastal ocean-scattered GNSS signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(11): 5272-5283.
[15] 楊東凱, 張益強, 張其善, 等. 基于GPS散射信號的機載海面風場反演系統(tǒng)[J]. 航空學報, 2006, 27(2): 310-313.
[16] YANG Dongkai, ZHANG Yiqiang, LU Yong, et al. GPS reflections for sea surface wind speed measurement[J]. IEEE Geoscience & Remote Sensing Letters, 2008, 5(4): 569-572.
[17] CLARIZIA M P, RUF C S. Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4419-4432.
[18] GLEASON S, RUF C S, CLARIZIA M P, et al. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(5): 2495-2509.
Discussion on GNSS-R sea surface wind field data processing technology
LIU Yuanhua1, FENG Linfang1, NIU Xinliang2
(1. College of Communications & Information Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China;2. Xi’an Branch of China Academy of Space Technology, Xi’an 710000, China)
In order to further improve the inversion accuracy of sea surface wind speed, the paper proposed a sea surface wind field data processing technology based on GNSS-R: the reason for the power calibration was indicated that the receiver gain changed with temperature to make the received signal power (before being calibrated) affected by temperature, leading to the inconsistent inversion of wind speed under different temperature environments; and the change rule among the temperature and three parameters of the received signal power, the noise power and the noise power when the signal source of load becomes a calibration load was given, then it was analyzed that the influence of the temperature on the power could be eliminated by utilizing the relationship among the three parameters, to realize the power calibration finally. Experimental result showed that under spaceborne conditions, the inversion accuracy using the proposed method would be improved by 4.5158 m/s, illustrating that the effect of temperature on wind speed inversion results could be effectively eliminated.
global navigation satellite system-reflection (GNSS-R); wind speed inversion; power calibration; noise power
P228
A
2095-4999(2020)03-0076-80
劉原華,馮琳芳,牛新亮. GNSS-R海面風場數(shù)據(jù)處理技術探討[J]. 導航定位學報, 2020, 8(3): 76-80.(LIU Yuanhua, FENG Linfang, NIU Xinliang. Discussion on GNSS-R sea surface wind field data processing technology[J]. Journal of Navigation and Positioning, 2020, 8(3): 76-80.)
10.16547/j.cnki.10-1096.20200312.
2019-01-09
西安市科技計劃項目(GXYD17.1)。
劉原華(1983—),女,陜西西安人,博士,副教授,碩士生導師,研究方向為衛(wèi)星通信、導航和遙感。
馮琳芳(1991—),女,陜西西安人,碩士研究生,研究方向為衛(wèi)星通信、海面風場反演。