熊咸玉 戴俊
摘?要:為了對滿堂支架進(jìn)行具體的設(shè)計和簡化驗算,以西安地鐵五號線大跨度現(xiàn)澆連續(xù)箱梁施工為例,采用經(jīng)典結(jié)構(gòu)力學(xué)理論對滿堂支架結(jié)構(gòu)進(jìn)行穩(wěn)定性分析,其中箱梁梁體及其上部荷載計算單元運用切割法進(jìn)行劃分,并采用Midas的數(shù)值模擬驗證切割計算方法的準(zhǔn)確性,進(jìn)一步提出滿堂支架施工的控制要點。結(jié)果表明:滿堂支架竹膠板、縱橫向方木強(qiáng)度、剛度、立桿穩(wěn)定性及地基承載力均在允許范圍之內(nèi),其橫向方木的最大應(yīng)力為1.164~1.49 MPa,最大撓度為0.011~0.023 mm,縱向方木的最大應(yīng)力為
5.567~5.57 MPa,最大撓度為0.025~0.026 mm,立桿的最大應(yīng)力值為102.278~115.98 MPa,滿堂支架的整體抗傾覆系數(shù)為11.2~37.5,滿足規(guī)范的要求,且數(shù)值模擬的結(jié)果與理論分析基本吻合,說明滿堂支架具有較好穩(wěn)定性,切割計算方法
較為準(zhǔn)確,具有計算快捷、計算靈活等優(yōu)點,可為類似工程支架設(shè)計、驗算及施工提供參考和借鑒。
關(guān)鍵詞:滿堂支架;大跨度現(xiàn)澆連續(xù)箱梁;理論計算;數(shù)值模擬;穩(wěn)定性分析
中圖分類號:U 445;U 445.4
文獻(xiàn)標(biāo)志碼:A
文章編號:1672-9315(2020)02-0268-07
DOI:10.13800/j.cnki.xakjdxxb.2020.0211開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Stability analysis and evaluation of full-frame support structure
for long-span cast-in-situ continuous box girder
XIONG Xian-yu,DAI Jun
(College of Civil and ArchitecturalEngineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:In order to design and simplify the checking calculation of the full-frame support,taking the construction of large-span Cast-in-situ Continuous Box Girder of Xian Metro Line 5 as an example,the stability analysis of the full-frame support structure is carried out by using classical structural mechanics theory.The box girder and its upper load calculation unit are divided by cutting method,Midas numerical simulation is used to verify the accuracy of the cutting calculation method,and the control points of full support construction are further proposed.The results show that the strength,stiffness,stability of vertical and transverse timber and bearing capacity of foundation are all within the allowable range.The maximum stress of transverse timber is 1.164~1.49 MPa,the maximum deflection is 0.011~0.023 mm,the maximum stress of longitudinal timber is 5.567~5.57 MPa,and the maximum deflection is 0.025~0.026 mm.The maximum stress value of the vertical pole is 102.278~115.98 MPa,and the overall anti-overturning coefficient of the full support is 11.2~37.5,which meets the requirements of the code.The results of numerical simulation are basically consistent with the theoretical analysis,which shows that the full-frame support are good in stability,accurate in cutting calculation method,
fast and flexible in calculation as well as
other advantages.It can provide reference for similar engineering support design,checking calculation and construction.
Key words:full-frame support;large span cast-in-situ continuous box girder;theoretical calculation;numerical simulation;stability analysis
0?引?言
滿堂支架法在鐵路、公路橋梁中現(xiàn)廣泛用于現(xiàn)澆連續(xù)梁的施工,其特點是工期短、搭設(shè)方便、便于控制、易于拆除[1-4]。對于不同的橋梁施工滿堂支架設(shè)計有所不同,特別是在大跨度現(xiàn)澆連續(xù)梁施工中,滿堂支架穩(wěn)定性要求更高[5-6]。
滿堂支架作為現(xiàn)澆混凝土結(jié)構(gòu)施工的重要承載部件和施工作業(yè)平臺,承擔(dān)著上部傳來的各類施工荷載,其穩(wěn)定性受到竹膠板、橫向方木、縱向方木、立桿的強(qiáng)度、剛度影響,且與地基承載力有關(guān)[7-8]。因此,支架結(jié)構(gòu)的穩(wěn)定性及地基承載能力直接影響橋梁的施工安全和工程質(zhì)量。在實際工程中對滿堂支架體系進(jìn)行整體穩(wěn)定性分析及評價至關(guān)重要。
滿堂支架體系的設(shè)計必須嚴(yán)格按照國家規(guī)范的標(biāo)準(zhǔn)執(zhí)行,其穩(wěn)定性的分析與評價主要采用理論計算或有限元進(jìn)行分析,國內(nèi)外學(xué)者進(jìn)行了大量的研究[9-11],但結(jié)論并不統(tǒng)一。張鵬等研究了滿堂支架設(shè)計計算方法,通過引入“混凝土為理想流體材料,材料顆粒之間不存在剪應(yīng)力”假定,提出了滿堂支架設(shè)計計算的內(nèi)容、方法和步驟,來規(guī)范滿堂支架的設(shè)計計算[12];蘇衛(wèi)國等采用有限元方法,研究了高支模滿堂支架的力學(xué)及變形行為,并驗證了支架系統(tǒng)的安全性和數(shù)值的可靠性[13];孟再生、張春鳳等研究了滿堂支架穩(wěn)定性及參數(shù)化建模,考慮了多因素對承載力的影響,從材料和結(jié)構(gòu)方面推導(dǎo)了壓桿的彈簧剛度公式,根據(jù)修正公式快速的計算支架穩(wěn)定荷載,通過實測與理論對比分析得出了參數(shù)化建模的可靠性[14-15];張東山、朱小京等研究了滿堂支架地基處理與承載力,都對地基進(jìn)行了驗算分析[16-17];梁巖等對2種支架體系進(jìn)行了力學(xué)性能、結(jié)構(gòu)安全性和經(jīng)濟(jì)性對比,根據(jù)具體施工條件優(yōu)選了盤扣式滿堂支架[18];韓江水等采用Midas有限元軟件對斜拉橋的動力特性和地震響應(yīng)進(jìn)行了空間非線性時程反應(yīng)分析,考慮樁和土的相互作用,對支座參數(shù)進(jìn)行優(yōu)化,得出阻尼支座具有隔震效果[19];雷自學(xué)等研究了掃地桿對支架穩(wěn)定性的影響,運用Sap 2000有限元建模分析掃地桿對支架的影響,并對屈曲分析結(jié)果進(jìn)行對比分析,得出了掃地桿對支架穩(wěn)定性有很大的作用,并得出掃地桿的合理設(shè)置位置[20];劉金輝等根據(jù)施工現(xiàn)場設(shè)計了碗扣式支架,并對其進(jìn)行了強(qiáng)度穩(wěn)定性和地基承載力進(jìn)行了驗算,驗算得出其滿足規(guī)范要求[21];衛(wèi)建軍通過分析混凝土收縮徐變效應(yīng)的主要影響因素,揭示了混凝土收縮徐變對橋梁變形和內(nèi)力的影響規(guī)律[22];Lu P Z,Zhou C,Kim H J等研究了橋梁的承載力性能,并對其鋼結(jié)構(gòu)進(jìn)行了有限元分析[23-25]。
文中結(jié)合新頒布的《建筑施工碗扣式鋼管腳手架安全技術(shù)規(guī)范》JGJ166—2016,以西安市地鐵五號線某橋梁工程為例,采用經(jīng)典結(jié)構(gòu)力學(xué)理論及數(shù)值模擬對滿堂支架的穩(wěn)定性進(jìn)行分析,可為類似橋梁工程滿堂支架的設(shè)計、計算及施工提供指導(dǎo)。
1?設(shè)計方案及參數(shù)選取
西安市地鐵五號線某橋上部結(jié)構(gòu)為(45+75+75+45)m連續(xù)梁,梁體截面為單箱單室等高度截面,縱向分為9對梁段,縱向分段長度分別為6個3 m和3個4 m,邊跨現(xiàn)澆段長6.4 m,合攏段為2 m;梁頂寬為10 m,梁底寬為4.7 m,支點截面梁高4.5 m,跨中截面梁高2.5 m,梁高按1.8次拋物線變化,頂板厚0.3 m,腹板厚由0.45 m漸變至0.7 m,底板厚由0.3 m漸變至0.5 m.
施工過程中,邊跨現(xiàn)澆段支架采用碗扣鋼管腳手架,連續(xù)梁現(xiàn)澆段滿堂鋼管支架搭設(shè)平均高度3 m,支架結(jié)構(gòu)按照0.6 m步距進(jìn)行三向布置,在腹板主承重位置橫向步距設(shè)置為0.3 m,以此保證立桿的穩(wěn)定性。根據(jù)最新規(guī)范[23]中3.3.1條規(guī)定鋼管宜采用公稱直徑為48.3×3.5 mm的鋼管,在縱向、橫向、豎向主桿件搭設(shè)完成后,安裝斜向加強(qiáng)桿。在頂托上部放置0.1 m×0.1 m縱橫向方木,間距30 cm.模板采用1.5 cm厚竹膠板,現(xiàn)澆段滿堂支架如圖1所示。
2?基于理論計算的滿堂支架穩(wěn)定性分析
2.1?荷載參數(shù)選取
根據(jù)規(guī)范《鐵路混凝土梁支架法現(xiàn)澆施工技術(shù)規(guī)程》TB10110—2011,模板、支架的設(shè)計應(yīng)考慮下列各項荷載,并按下表1進(jìn)行荷載組合。①作用于支架的新澆筑梁體重力;②支架結(jié)構(gòu)(含防護(hù)設(shè)施和附加構(gòu)件)自重;③施工人員、材料及施工機(jī)具荷載;④振搗混凝土?xí)r產(chǎn)生的荷載;⑤澆筑混凝土?xí)r產(chǎn)生的沖擊荷載;⑥新澆筑混凝土對模板側(cè)面的壓力;⑦風(fēng)荷載;⑧水流荷載;⑨船舶及漂流物沖擊荷載;⑩其他荷載,如雪荷載、冬季施工保溫設(shè)施荷載等。
2.2?梁體計算范圍
箱梁橫向結(jié)構(gòu)分為翼緣、腹板以及腹板之間3部分,在澆筑混凝土?xí)r,梁底支架所承受的荷載呈不均勻分布,腹板荷載最大,翼緣荷載最小,腹板與翼緣之間的荷載介于其間。因此,只對其腹板范圍內(nèi)各桿件的穩(wěn)定性進(jìn)行分析。由于支架在箱梁橫向結(jié)構(gòu)上的支架密度是布置相同的,所以計算取荷載較大部分進(jìn)行簡化分析驗算。假定混凝土為理想流體材料,材料顆粒之間不存在剪應(yīng)力。
根據(jù)此假定,截面計算范圍按圖2所示的計算區(qū)間。
2.2.1?竹膠板、橫向方木及縱向方木計算
由于竹膠板下部支點為規(guī)則排列的橫向方木,因此底模內(nèi)力和撓度可以按照均布線荷載作用下3跨連續(xù)梁計算,橫向方木與縱向方木也按連續(xù)梁計算,內(nèi)力系數(shù)如圖3所示。
應(yīng)力與彎曲撓度計算采用
式中?σmax為計算最大應(yīng)力值,MPa;
Mmax為最大荷載組合值,kN·m;W為截面抵抗彎矩,cm3;ω為彎曲撓度計算值,mm;[σ]為相應(yīng)材料的最大應(yīng)力允許值,MPa;[ω]為允許的最大彎曲撓度值,mm;
b為截面寬度,取1 m;h為截面厚度,cm.
2.2.2?立桿計算
立桿驗算主要包括2個部分:豎向承載力及抗傾覆計算。豎向承載力計算公式
σd=NA≤fg(5)
式中?N為立桿傳至基礎(chǔ)頂面的軸力設(shè)計值,kN;fg為地基承載力特征值,根據(jù)實測確定,kPa;A為立桿基礎(chǔ)底面積,cm2,A=B*D,B=e+2j*tanα,D=d+2j*tanα,其中j為基礎(chǔ)墊層厚度;e,d為立桿底座長和寬,cm;α為應(yīng)力擴(kuò)散角,其值應(yīng)根據(jù)不同墊層材料按相關(guān)規(guī)定確定,本工程取值45°;B,D為計算值不應(yīng)大于相鄰立桿間距,否則取相鄰立桿間距,cm.
抗傾覆計算公式
K=MkMq
(6)
式中?K為結(jié)構(gòu)抗傾覆穩(wěn)定系數(shù),K不小于1.5;Mk為結(jié)構(gòu)抗傾覆力矩,由模板體系和支架結(jié)構(gòu)重力荷載對傾覆支點取矩,MPa;Mq為結(jié)構(gòu)傾覆力矩,由作用在支架結(jié)構(gòu)和模板體系上的風(fēng)荷載共同對傾覆支點取矩,MPa.
2.3?滿堂支架計算結(jié)果及穩(wěn)定性評價
西安市地鐵五號線大跨度橋梁滿堂支架各桿件根據(jù)荷載參數(shù)的選取及公式(1)~(6)進(jìn)行計算,得出竹膠板、方木強(qiáng)度、剛度、立桿抗傾覆系數(shù)及地基承載力特征值見表2,與國家規(guī)范允許值相比在都合理范圍內(nèi),說明該滿堂支架的穩(wěn)定性較好,切割法具有計算快捷、計算靈活等優(yōu)點。
3?基于數(shù)值模擬滿堂支架穩(wěn)定性分析評價
以西安地鐵五號線大跨度橋梁為背景,采用有限元軟件MIDAS/Civil建立滿堂支架計算模型,對其穩(wěn)定性進(jìn)行分析及評價。
3.1?橫向方木應(yīng)力與位移分析
r
圖4為橫向方木應(yīng)力與位移分布云圖,從圖中可以看出,其最大應(yīng)力為1.49 MPa,最大位移為0.023 mm,都在允許范圍內(nèi)。
3.2?縱向方木應(yīng)力與位移分析
圖5為縱方木應(yīng)力與位移分布云圖,從圖中可以看出,其最大應(yīng)力為5.57 MPa,最大撓度為0.026 mm,都在允許范圍內(nèi)。
3.3?立桿的應(yīng)力分析
圖6為立桿應(yīng)力分布云圖,從圖中可以看出,其最大應(yīng)力值為115.98 MPa,小于允許應(yīng)力205 MPa.
3.4?支架整體穩(wěn)定分析
圖7為支架整體穩(wěn)定性分析云圖,從圖中可以看出,支架整體抗傾覆系數(shù)為11.2,大于1.5,說明整體抗傾覆能力較好。
從上述分析可知,橫縱向方木、立桿的強(qiáng)度、剛度及支架整體抗傾覆系數(shù)滿足規(guī)范要求,且與理論計算結(jié)果基本吻合,說明該滿堂支架具有良好的穩(wěn)定性,切割計算方法較為準(zhǔn)確。
4?滿堂支架施工控制要點
1)滿堂支架箱梁腹板及底板下應(yīng)加密方木的布置間距。加密間距一般采用30 cm即可保證方木的剛度。
2)根據(jù)最新規(guī)范和現(xiàn)場實際情況,應(yīng)布設(shè)縱橫立面及剪刀撐的搭設(shè)與支架同步進(jìn)行,以提高支架的整體穩(wěn)定性。
3)支架立桿應(yīng)采用軸心受壓構(gòu)件,對接接頭不得設(shè)置在同一層相鄰2個橫桿歩距內(nèi)即不在同一豎向歩距高度內(nèi),而應(yīng)錯開設(shè)置。
4)為避免支架不均勻沉降,澆筑混凝土前需進(jìn)行預(yù)壓,預(yù)壓可以采用沙袋、水箱、混凝土塊等重物,以消除支架的變形。
5?結(jié)?論
1)為了保證滿堂支架結(jié)構(gòu)的整體穩(wěn)定性,在設(shè)計時,竹膠板厚度采用1.5 cm,竹膠板底部設(shè)置10 cm×10 cm橫向方木小楞,縱向間距30 cm;橫向小楞下設(shè)置10 cm×10 cm縱向方木大楞,橫向間距腹板下30 cm,橫向間距箱室下60 cm;豎桿橫向間距腹板下30 cm,箱室范圍60 cm,縱向間距60 cm.
2)滿堂支架的竹膠板、方木、立桿及地基承載力計算結(jié)果在規(guī)范的允許范圍內(nèi),其橫向方木的最大應(yīng)力為1.164~1.49 MPa,最大撓度為0.011~0.023 mm,縱向方木的最大應(yīng)力為5.567~5.57 MPa,最大撓度為0.025~0.026 mm,立桿的最大應(yīng)力值為102.278~115.98 MPa,小于允許強(qiáng)度205 MPa,滿堂支架的整體抗傾覆系數(shù)為11.2~37.5,大于1.5,滿足規(guī)范的要求,說明該滿堂支架具有良好穩(wěn)定性。
3)切割法分配箱梁梁體自重荷載方法計算的結(jié)果與數(shù)值模擬的計算結(jié)果較為吻合,說明切割法較為準(zhǔn)確,且具有計算方便、應(yīng)用靈活等優(yōu)點。
4)從滿堂支架結(jié)構(gòu)整體設(shè)計來看,縱橫向方木強(qiáng)度、剛度偏大,有近一步優(yōu)化的空間,可以適當(dāng)增大其間距。
參考文獻(xiàn)(References):
[1]
李海東,陳舜東.橋梁現(xiàn)澆施工碗扣式滿堂支架穩(wěn)定性計算[J].鐵道建筑,2014(11):14-16.
LI Hai-dong,CHEN Shun-dong.Stability calculation of bowl-type full-frame bracket for cast-in-place construction of bridge[J].Railway Engineering,2014(11):14-16.
[2]戈?銘,王?濤.橋梁坍塌事故的原因分析及其預(yù)防措施[J].特種結(jié)構(gòu),2012,29(2):72-75.
GE Ming,WANG Tao.Cause analysis and preventive measures of bridge collapse accidents[J].Special Structures,2012,29(2):72-75.
[3]方詩圣,王文洋,顧?穎,等.高支模碗扣式滿堂支架有限元分析及施工監(jiān)控[J].施工技術(shù),2015,44(14):83-87.
FANG Shi-sheng,WANG Wen-yang,GU Ying,et al.Finite element analysis and construction monitoring of high-supported and cuplock joint full framing[J].Construction Technology,2015,44(14):83-87.
[4]趙挺生,唐菁菁,周?萌.模板工程結(jié)構(gòu)的承載能力計算與變形驗算[J].施工技術(shù),2012,41(5):21-24.
ZHAO Ting-sheng,TANG Jing-jing,ZHOU Meng.Calculation of caring capacity and deformation for formwork[J].Construction Technology,2012,41(5):21-24.
[5]郝云杉.客貨共線1~156 m簡支鋼桁結(jié)構(gòu)分析[J].西安科技大學(xué)學(xué)報,2012,32(3):376-381.
HAO Yun-shan.Structural analysis of 156 m simply supported steel truss girder[J].Journal of Xian University of Science and Technology,2012,32(3):376-381.
[6]任?偉,李聞濤,許世展,等.大跨徑橋梁施工監(jiān)控精細(xì)模擬及數(shù)據(jù)分析[J].西安科技大學(xué)學(xué)報,2009,29(5):554-558.
REN Wei,LI Wen-tao,XU Shi-zhan,et al.Fine simulation and data analysis for construction monitoring long-span bridges[J].Journal of Xian University of Science and Technology,2009,29(5):554-558.
[7]石程華.現(xiàn)澆箱梁碗扣式滿堂支架整體計算分析與監(jiān)測技術(shù)研究[J].公路,2015(7):156-160.
SHI Cheng-hua.Research on overall calculation analysis and monitoring technology of cast-in-place box beam bowl-type full-frame bracket[J].Highway,2015(7):156-160.
[8]李?銳.變異形互通式立交布設(shè)控制因素分析[J].西安科技大學(xué)學(xué)報,2017,37(3):431-437.
LI Rui.Analysis of controlling factors of the variant interchange[J].Journal of Xian University of Science and Technology,2017,37(3):431-437.
[9]王凌波,蔣逢煒,招國忠,等.特種車通過曲線部分斜拉橋的運營安全分析[J].西安科技大學(xué)學(xué)報,2016,36(2):288-295.
WANG Ling-bo,JIANG Feng-wei,ZHAO Guo-zhong,et al.Operational safety analysis of special vehicle drivingthrough an extradosed bridge with curve shape[J].Journal of Xian University of Science and Technology,2016,36(2):288-295.
[10]Mitoulis S A,Tegos I A,Stylianidis K C.Cost-effectiveness related to the earthquake resisting system of multi-span bridges[J].Engineering Structures,2010,32(9):2658-2671.
[11]Tegou S D,Mitoulis S A,Tegos I A.An unconventional earthquake resistant abutment with transversely directed R/C walls[J].Engineering Structures,2010,32(11):3801-3816.
[12]張?鵬,肖緒文.客運專線現(xiàn)澆連續(xù)箱梁滿堂支架設(shè)計計算方法研究[J].鐵道標(biāo)準(zhǔn)設(shè)計,2009(12):42-46.
ZHANG Peng,XIAO Xu-wen.Research on calculation method of cast-in-place continuous box girder full-frame support for passenger dedicated line[J].Railway Standard Design,2009(12):42-46.
[13]蘇衛(wèi)國,劉?劍.現(xiàn)澆箱梁高支模滿堂支架的有限元分析[J].華南理工大學(xué)學(xué)報(自然科學(xué)版),2013,41(2):82-87.
SU Wei-guo,LIU Jian.Finite element analysis of high-supported scaffold of cast-in-situ box girder[J].Journal of South China University of Technology(Natural Science Edition),2013,41(2):82-87.
[14]孟再生,方詩圣,石程華,等.基于Midas/Civil的碗扣式滿堂支架參數(shù)化建模研究[J].合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版),2018,41(4):513-517.
MENG Zai-sheng,F(xiàn)ANG Shi-sheng,SHI Cheng-hua,et al.Research on parametric modeling of cuplock full framing structural analysis based on Midas/Civil[J].Journal of Hefei University of Technology,2018,41(4):513-517.
[15]張春鳳,方詩圣,石程華,等.碗扣式滿堂支架整體穩(wěn)定性分析[J].合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版),2018,41(5):666-670.
ZHANG Chun-feng,F(xiàn)ANG Shi-sheng,SHI Cheng-hua,et al.Global stability analysis of bowl-button full support[J].Journal of Hefei University of Technology,2018,41(5):666-670.
[16]張東山,彭正勇.軟基上碗扣式滿堂高支架數(shù)值分析與基礎(chǔ)驗算[J].筑路機(jī)械與施工機(jī)械化,2017,34(1):43-46.
ZHANG Dong-shan,PENG Zheng-yong.Numerical analysis and cuplock support on basic calculation of weak foundation[J].Road Machinery & Construction Mechanization,2017,34(1):43-46.
[17]朱小京,起朝鮮,鄒懷秀,等.現(xiàn)澆箱梁滿堂支架濕軟地基處理與承載力驗算[J].施工技術(shù),2016,45(s1):311-313.
ZHU Xiao-jing,QI Chao-xian,ZOU Huai-xiu,et al.Wet-soft foundation treatment and bearing capacity checking for construction of cast-in-situ box beams supported by full framing[J].Construction Technology,2016,45(S1):311-313.
[18]梁?巖,高?杰,陳全興.現(xiàn)澆混凝土箱梁滿堂支撐體系方案優(yōu)選分析[J].施工技術(shù),2016,45(24):64-67.
LIANG Yan,GAO Jie,CHEN Quan-xing.Supporting system scheme optimizing analysis of cast-in-situ concrete box girder[J].Construction Technology,2016,45(24):64-67.
[19]韓江水,張?玲,袁?涌.斜拉橋抗震性能評價[J].西安科技大學(xué)學(xué)報,2013,33(2):131-135+148.
HAN Jiang-shui,ZHANG Ling,YUAN Yong.Evaluation of seismic resistance capacity for cable-stayed bridge[J].Journal of Xian University of Science and Technology,2013,33(2):131-135+148.
[20]雷自學(xué),張喜慶,董三升.掃地桿對碗扣式鋼管滿堂支撐架整體穩(wěn)定性的影響研究[J].四川建筑科學(xué)研究,2015,41(2):314-315+325.
LEI Zi-xue,ZHANG Xi-qing,DONG San-sheng.Study on the influence of sweeping pole on the overall stability of bowl-buckled steel pipe full-hall support[J].Sichuan Building Science,2015,41(2):314-315+325.
[21]劉金輝,楊秀武,高國旗.利紅公路鹽中高速跨線橋加寬現(xiàn)澆箱梁碗扣支架方案設(shè)計與驗算[J].中外公路,2017,37(6):114-117.
LIU Jin-hui,YANG Xiu-wu,GAO Guo-qi.Design and check of widening cast-in-situ box girder bowl bracket of yan-zhong high-speed overpass bridge on Lihong highway[J].Journal of China & Foreign Highway,2017,37(6):114-117.
[22]衛(wèi)建軍.三跨變截面預(yù)應(yīng)力混凝土連續(xù)梁橋的收縮徐變效應(yīng)[J].西安科技大學(xué)學(xué)報,2015,35(2):192-196.
WEI Jian-jun.Shrinkage and creep effect of three-span continuousvariable cross-section prestressed concrete bridge[J].Journal of Xian University of Science and Technology,2015,35(2):192-196.
[23]Lu P Z,Shao H,Zhao R D.Investigation and verification of the fatigue characteristic of the composite bridge deck of a steel truss arch bridge[J].Arabian Journal for Science and Engineering,2017,42(3):1283-1293.
[24]Zhou C,Chen S M,Li R H,et al.Segment model analysis of a steel deck for railway steel truss arch bridges[J].Structural Engineers,2013,29(5):46-51.
[25]Kim H J,Kim H K,Park J Y.Reliability-based evaluation of load carrying capacity for a composite box girder bridge[J].Journal of Civil Engineering,2013,17(3):575-583.