国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于網(wǎng)絡(luò)藥理學(xué)從系統(tǒng)層面探討黃芩苷治療肺纖維化的效應(yīng)機(jī)制研究

2020-06-19 12:33:56張沂穆杰高偉華
世界中醫(yī)藥 2020年10期
關(guān)鍵詞:肺纖維化性反應(yīng)黃芩

張沂 穆杰 高偉華

摘要 目的:基于網(wǎng)絡(luò)藥理學(xué)的方法,從系統(tǒng)層面探討黃芩苷對(duì)肺纖維化的潛在作用機(jī)制。方法:通過NCBI pubchem、ZINC和TCMSP獲取黃芩苷的化合物信息,在NCBI數(shù)據(jù)庫、Pharmmapper數(shù)據(jù)庫獲取黃芩苷作用靶點(diǎn),在DiseaseGene Network和DrugBank獲取肺纖維化的靶點(diǎn),通過基因映射預(yù)測(cè)黃芩苷治療肺纖維化的潛在作用靶點(diǎn),在STRING數(shù)據(jù)庫建立黃芩苷治療肺纖維化的高置信度PPI網(wǎng)絡(luò),采用拓?fù)浞治龊透患治觯@得拓?fù)渲匾园悬c(diǎn)及核心通路。結(jié)果:獲得黃芩苷作用靶點(diǎn)332個(gè),肺纖維化靶點(diǎn)431個(gè),黃芩苷潛在作用靶點(diǎn)45個(gè),建立了1個(gè)45個(gè)節(jié)點(diǎn)、191條邊的高置信度PPI網(wǎng)絡(luò),得到黃芩苷治療肺纖維化的拓?fù)渲匾园悬c(diǎn)21個(gè),3條核心作用通路,及其涉及的20個(gè)生物過程(BP),4個(gè)細(xì)胞成分(CC),4個(gè)分子功能(MF)。結(jié)論:從網(wǎng)絡(luò)藥理學(xué)看黃芩苷治療肺纖維化的機(jī)制涉及多個(gè)靶點(diǎn)和信號(hào)通路,這些靶點(diǎn)與通路主要通過調(diào)節(jié)炎性反應(yīng)、凋亡以及其他與治療肺纖維化作用有關(guān)的生理病理過程有關(guān),為未來中藥研究提供了一個(gè)網(wǎng)絡(luò)藥理學(xué)框架。

關(guān)鍵詞 黃芩苷;肺纖維化;網(wǎng)絡(luò)藥理學(xué);炎性反應(yīng);凋亡;信號(hào)通路;拓?fù)浞治?富集分析

Abstract Objective:Based on the method of network pharmacology,the potential mechanism of Baicalin on pulmonary fibrosis was discussed from the systematical level.Methods:The information of baicalin compounds was obtained from NCBI pubchem,ZINC and TCMSP.The target of baicalin was obtained from NCBI database and Pharmmapper database.The target of pulmonary fibrosis was obtained from Disease Gene Network and Drug Bank.The potential target of Baicalin in the treatment of pulmonary fibrosis were predicted by gene mapping.A high confidence PPI network for baicalin in the treatment of pulmonary fibrosis was established in STING database.The important target and core path of topological were obtained by using topological analysis and enrichment analysis.Results:A total of 332 targets of baicalin,431 targets of pulmonary fibrosis and 45 potential targets of baicalin were obtained.A high confidence PPI network with 45 nodes and 191 edges was established.A total of 21 topologically important targets,3 core action pathways,20 biological processes (BP),4 cell components (CC) and 4 molecular functions (MF) involved in baicalin treatment of pulmonary fibrosis were obtained.Conclusion:From the perspective of network pharmacology,the mechanism of Baicalin in the treatment of pulmonary fibrosis involves multiple targets and signal pathways.These targets and pathways are mainly related to the regulation of inflammation,apoptosis and other physiological and pathological processes related to the treatment of pulmonary fibrosis,which provides a network pharmacology framework for the future research of traditional Chinese medicine.

Keywords Baicalin; Pulmonary fibrosis; Network pharmacology; Inflammation; Apoptosis; Signal pathway; Topological analysis; Enrichment analysis

肺纖維化是以成纖維細(xì)胞增殖及大量細(xì)胞外基質(zhì)聚集并伴炎性反應(yīng)損傷、組織結(jié)構(gòu)破壞為特征的一大類肺系疾病的終末期改變[1-3]。該疾病可不同程度損害患者呼吸系統(tǒng)的生理功能[4],病情持續(xù)進(jìn)展,可最終發(fā)展為呼吸循環(huán)衰竭而危及患者生命[5-6],目前臨床尚無特效療法,多采用抗炎、抗纖維化等藥物進(jìn)行治療[7],近年來采用天然中草藥治療肺纖維化在臨床試實(shí)驗(yàn)研究中均取得較好進(jìn)展,能發(fā)揮出色的治療效果[8]。中醫(yī)認(rèn)為肺纖維化屬“肺痿”“肺痹”“喘”等疾病的范疇[9],肺熱被認(rèn)為是其重要病機(jī)之一[10-12],而黃芩作為清肺熱的常用中藥,被廣泛應(yīng)用于治療肺纖維化的方劑中[13],如唐斌擎等[14]擬肺纖煎(黨參、黃芩、制半夏、沙參等)在臨床試驗(yàn)中取得了良好的臨床療效,黃芩苷既是黃芩的主要成分之一[15],已經(jīng)被證實(shí)能有效改善肺纖維化的氧化應(yīng)激、炎性反應(yīng)等[16-17]。

現(xiàn)階段黃芩苷治療肺纖維化效應(yīng)機(jī)制相關(guān)的動(dòng)物研究、細(xì)胞研究等仍缺乏系統(tǒng)或整體層面的研究,導(dǎo)致對(duì)黃芩苷藥效多靶點(diǎn)作用機(jī)制的認(rèn)識(shí)存在一定的差距[18-21],因此采用網(wǎng)絡(luò)藥理學(xué)方法從整體的、系統(tǒng)的角度闡述藥物、靶點(diǎn)和疾病之間的關(guān)系,直觀地呈現(xiàn)了藥物靶點(diǎn)網(wǎng)絡(luò)[22-24]。有助于理解藥物的藥理學(xué)及其對(duì)生物網(wǎng)絡(luò)的影響,并提高臨床療效[25]。本研究利用藥物靶點(diǎn)預(yù)測(cè)、蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)構(gòu)建、拓?fù)浜Y選等網(wǎng)絡(luò)藥理學(xué)方法,揭示黃芩苷治療肺纖維化的作用機(jī)制,明確其藥用價(jià)值。為黃芩苷治療肺纖維化藥效機(jī)制的定位和產(chǎn)生協(xié)同作用的潛在蛋白靶點(diǎn)的確定提供了一種新的研究方法。

1 材料與方法

1.1 黃芩苷靶點(diǎn)預(yù)測(cè) 黃芩苷結(jié)構(gòu)信息來自NCBI Pubchem(https://pubchem.ncbi.nlm.nih.gov/)和ZINC數(shù)據(jù)庫(http://zinc.docking.org/)[26-27]。黃芩苷的吸收、分布、代謝和排泄(adme)篩選標(biāo)準(zhǔn)包括生物利用度(ob)、藥物相似性(dl)、血腦屏障(bbb)等數(shù)據(jù)來自TCMSP數(shù)據(jù)庫[28]。在TargetNet數(shù)據(jù)庫(http://targetnet.scbdd.com)根據(jù)“Lipinski′s rule of five”(MW,AlogP,TPSA,Hdon,and Hacc)對(duì)黃芩苷的成藥性進(jìn)行評(píng)分。研究采用2種方法預(yù)測(cè)黃芩苷的靶點(diǎn)信息。首先,第1部分靶點(diǎn)來自NCBI數(shù)據(jù)庫,搜索詞包括“baicalin”和“pulmonary fibrosis”。第2部分來源于Pharmmapper數(shù)據(jù)庫(http://lilab.ecust.edu.cn/Pharmmapper/),該數(shù)據(jù)庫旨在通過反向藥效團(tuán)映射方法識(shí)別小分子的潛在靶點(diǎn)[29],將黃芩苷的MOL2文件上傳到web服務(wù)器中,選擇了“Human Protein Targets Only database”。

1.2 肺纖維化相關(guān)靶點(diǎn)收集及PPI網(wǎng)絡(luò)建立 研究在DiseaseGene Network數(shù)據(jù)庫(http://www.disgenet.org/)[30]、DrugBank數(shù)據(jù)庫(https://www.drugbank.ca/)[31]、搜索與“pulmonary fibrosis”相關(guān)的疾病靶點(diǎn)?;谑占姆卫w維化相關(guān)靶點(diǎn),在STRING數(shù)據(jù)庫(https://string-db.org/)建立PPI網(wǎng)絡(luò)[32],作為基因映射的背景網(wǎng)絡(luò)。

1.3 黃芩苷治療肺纖維化預(yù)測(cè)靶點(diǎn)的基因映射提取及PPI網(wǎng)絡(luò)建立 在Cytoscape軟件將黃芩苷化合物的靶點(diǎn)映射在肺纖維化疾病靶點(diǎn)的PPI背景網(wǎng)絡(luò)上,提取黃芩苷治療肺纖維化的預(yù)測(cè)靶點(diǎn),進(jìn)一步將黃芩苷治療肺纖維化的預(yù)測(cè)靶點(diǎn)在STRING數(shù)據(jù)建立PPI網(wǎng)絡(luò)[32],選擇具有高置信度的PPI進(jìn)一步研究(low confidence:score<0.4;medium:0.4~0.7;high:>0.7)。

1.4 拓?fù)浞治雠c富集分析 1)拓?fù)浞治觯涸贑ytoscape軟件對(duì)獲取的黃芩苷治療肺纖維化的相關(guān)靶點(diǎn),計(jì)算3個(gè)拓?fù)湫再|(zhì)“Degree”“Closeness Centrality”和“Betweenness Centrality,選取3個(gè)指標(biāo)均大于中位數(shù)的靶點(diǎn)[33],篩選出具有拓?fù)渲匾缘摹癏ub”節(jié)點(diǎn),定義為黃芩苷治療肺纖維化的核心靶點(diǎn)。2)富集分析:在DAVID(https://david.ncifcrf.gov/)[34]數(shù)據(jù)庫進(jìn)行富集分析,包括生物過程(BP)、細(xì)胞成分(CC)、分子功能(MF)及作用通路。選取P<0.05的分析結(jié)果,定義為黃芩苷治療肺纖維化的相關(guān)作用通路,及生物過程(BP)、細(xì)胞成分(CC)、分子功能(MF);選取P<0.01,F(xiàn)DR<1的分析結(jié)果,定義為黃芩苷治療肺纖維化的核心作用通路,及生物過程(BP)、細(xì)胞成分(CC)、分子功能(MF)?;谑占@得的黃芩苷治療肺纖維化的預(yù)測(cè)靶點(diǎn),在KEGG數(shù)據(jù)庫[35]搜索并建立核心通路的路線圖,標(biāo)注通路內(nèi)的預(yù)測(cè)作用靶點(diǎn)。

1.5 黃芩苷治療肺纖維化“靶點(diǎn)-通路”網(wǎng)絡(luò)建立 基于收集獲得的黃芩苷治療肺纖維化的預(yù)測(cè)靶點(diǎn),及DAVID數(shù)據(jù)庫進(jìn)行通路富集分析的黃芩苷治療肺纖維化的核心通路,在Cytoscape軟件建立黃芩苷治療肺纖維化的“靶點(diǎn)-通路”網(wǎng)絡(luò)。

2 結(jié)果

2.1 黃芩苷成藥性檢驗(yàn) 在TCMSP收集了黃芩苷(PubChem CID:64982)的ADME數(shù)據(jù)從而測(cè)定黃芩苷的潛在藥物性質(zhì),如人OB、DL等,包括MW=446.39,OB(%)=40.12,DL=0.75,BBB=-1.74,黃芩苷的DL計(jì)算為0.75,表明黃芩苷與已知藥物相似,此外黃芩苷MW<500 da,alogp<5,DL>0.18,OB>30%,BBB>0.3。

2.2 黃芩苷及肺纖維化靶點(diǎn)數(shù)據(jù)集建立及基因映射 1)黃芩苷靶點(diǎn)收集及PPI網(wǎng)絡(luò)建立:基于在NCBI數(shù)據(jù)庫及Pharmmapper數(shù)據(jù)庫收集的黃芩苷靶點(diǎn),刪除重復(fù)靶點(diǎn)后,共收集獲得了黃芩苷的332個(gè)不重復(fù)的潛在人類蛋白質(zhì)靶點(diǎn),這些靶點(diǎn)來自7 302個(gè)藥效團(tuán)模型。在STRING數(shù)據(jù)庫建立黃芩苷的PPI網(wǎng)絡(luò),獲得了一個(gè)332個(gè)節(jié)點(diǎn)、1 678條邊的PPI網(wǎng)絡(luò)(Low Confidence:score<0.4),如圖2。2)肺纖維化靶點(diǎn)收集及PPI網(wǎng)絡(luò)建立:在Disease Gene Network和DrugBank數(shù)據(jù)庫共收集獲得了肺纖維化的431個(gè)預(yù)測(cè)靶點(diǎn)。在STRING數(shù)據(jù)庫建立肺纖維化的PPI網(wǎng)絡(luò),獲得了一個(gè)431個(gè)節(jié)點(diǎn)、6 216條邊的PPI網(wǎng)絡(luò)(Low Confidence:score<0.4)。見圖3。3)基因映射:在Cytoscape軟件中,將黃芩苷332個(gè)預(yù)測(cè)靶點(diǎn)映射在以肺纖維化PPI網(wǎng)絡(luò)為背景的網(wǎng)絡(luò)上。見圖4。獲得了黃芩苷治療肺纖維化的45個(gè)預(yù)測(cè)靶點(diǎn)。

2.3 黃芩苷治療肺纖維化預(yù)測(cè)靶點(diǎn)的PPI網(wǎng)絡(luò)建立 基于收集獲得的45個(gè)黃芩苷治療肺纖維化的預(yù)測(cè)靶點(diǎn),建立PPI網(wǎng)絡(luò)獲得了1個(gè)45個(gè)節(jié)點(diǎn)、430條邊的PPI網(wǎng)絡(luò),選擇高置信度PPI獲得了1個(gè)45個(gè)節(jié)點(diǎn)、191條邊的PPI網(wǎng)絡(luò)。見圖5。

2.4 黃芩苷治療肺纖維化預(yù)測(cè)靶點(diǎn)拓?fù)浞治觥⒏患治鼋Y(jié)果及“靶點(diǎn)-通路”網(wǎng)絡(luò)建立 對(duì)收集獲得的黃芩苷治療肺纖維化的45個(gè)靶點(diǎn)進(jìn)行拓?fù)浞治?,“Degree”中位數(shù)為14,“Closeness Centrality”中位數(shù)為0.622 641 51,“Betweenness Centrality”中位數(shù)為0.002 303 49,其中“Degree”“Closeness Centrality”和“Betweenness Centrality”均大于中位數(shù)的具有重要拓?fù)湟饬x的節(jié)點(diǎn)共21個(gè),即為“Hub”節(jié)點(diǎn),為黃芩苷治療肺纖維化的核心靶點(diǎn)。對(duì)收集獲得的黃芩苷治療肺纖維化的45個(gè)靶點(diǎn)進(jìn)行富集分析,P<0.05的富集分析結(jié)果,包括145個(gè)生物過程(BP),16個(gè)細(xì)胞成分(CC),26個(gè)分子功能(MF),21個(gè)相關(guān)作用通路。其中P<0.01,F(xiàn)DR<0.01的富集分析結(jié)果,包括20個(gè)生物過程(BP),4個(gè)細(xì)胞成分(CC),4個(gè)分子功能(MF),及3個(gè)核心作用通路。基于富集分析結(jié)果,建立了黃芩苷治療肺纖維化的“靶點(diǎn)-通路”網(wǎng)絡(luò)圖。見圖6。基于在KEGG建立的3個(gè)核心作用通路的可視化通路網(wǎng)絡(luò)圖,建立黃芩苷治療肺纖維化的可視化通路網(wǎng)絡(luò)圖。見圖7。

3 討論

肺纖維化是一種進(jìn)行性、不可治愈的間質(zhì)性肺病[36],目前治療肺纖維化的方法很少。傳統(tǒng)中草藥在肺纖維化治療中具有顯著的療效優(yōu)勢(shì),然而天然中草藥物多靶點(diǎn)、多途徑的藥效、方效特點(diǎn)阻礙了對(duì)其作用機(jī)制的深入研究,網(wǎng)絡(luò)藥理學(xué)提供了一種在系統(tǒng)水平上闡釋黃芩苷生物學(xué)機(jī)制的研究方法。

首先根據(jù)Lipinski規(guī)則和ADME參數(shù)驗(yàn)證了黃芩苷良好的成藥性。在NCBI、TCMSP、Pharmmapper、DiseaseGene Network、DrugBank數(shù)據(jù)庫,分別獲得了黃芩苷的332個(gè)靶點(diǎn)及肺纖維化的431個(gè)靶點(diǎn)。研究進(jìn)一步通過建立PPI網(wǎng)絡(luò)及基因映射、拓?fù)浞治?,獲得了黃芩苷治療肺纖維化的45個(gè)預(yù)測(cè)靶點(diǎn)及21個(gè)具有拓?fù)渲匾缘陌悬c(diǎn)。富集分析結(jié)果表明,黃芩苷治療急性牙周炎主要圍繞3條核心作用通路,涉及的20個(gè)生物過程(BP),4個(gè)細(xì)胞成分(CC),4個(gè)分子功能(MF)。

目前已有的研究表明,黃芩苷具有顯著的抗凋亡、抗氧化和抗炎作用[37-38],研究顯示黃芩苷治療肺纖維化可以通過作用于與炎性反應(yīng)密切相關(guān)通路TNF signaling pathway、MAPK signaling pathway、Toll-like receptor signaling pathway的上游啟動(dòng)靶點(diǎn)如TNF、EGF、IL1等[39-40],從而介導(dǎo)與PI3K-Akt signaling pathway、NOD-like receptor signaling pathway、VEGF signaling pathway等多條通路間的復(fù)雜交互作用,如Luo L等[41]研究表明NOD-like receptor signaling pathway與MAPK signaling pathway的交互作用在PKC的激活[42]、誘導(dǎo)型一氧化氮的合成[43]、炎性反應(yīng)升高[44]中均具有重要作用。而“Hub”節(jié)點(diǎn)IL6、IL1β、TNF等又構(gòu)成了這些信號(hào)通路復(fù)雜交互作用形成的下游組分,其中IL6、IL1β、TNF均是調(diào)控介導(dǎo)炎性反應(yīng)的炎性反應(yīng)因子釋放的重要靶點(diǎn)[45]。此外還可以作用于PI3K-Akt signaling pathway的“Hub”節(jié)點(diǎn)AKT從而調(diào)節(jié)下游包括凋亡、細(xì)胞周期、細(xì)胞增殖等多種生物過程[46]。

有趣的是,研究顯示黃芩苷治療肺纖維化還涉及了膠原蛋白分解代謝及平滑肌細(xì)胞增殖過程[47-49],這在成纖維細(xì)胞向肌成纖維細(xì)胞的分化過程中具有重要的作用,研究表明靶向肌成纖維細(xì)胞分化的藥物是肺纖維化重要的潛在治療方法[50],“Hub”節(jié)點(diǎn)TGF-β1則是調(diào)節(jié)肌成纖維細(xì)胞分化最重要靶點(diǎn)之一[51],如肌成纖維細(xì)胞分化是由TGF-β1誘導(dǎo)的[52-54]。此外,TGF-β1誘導(dǎo)細(xì)胞外基質(zhì)蛋白和收縮性平滑肌蛋白的產(chǎn)生,如α-SMA[55-56],基質(zhì)蛋白的表達(dá)增加和肌成纖維細(xì)胞的收縮特性增強(qiáng),導(dǎo)致肺纖維化患者進(jìn)行性限制性肺病和彌漫性損傷,因此抑制這些細(xì)胞過程可以減輕肺纖維化的進(jìn)展。

研究結(jié)果表明,黃芩苷通過多個(gè)靶點(diǎn)和信號(hào)通路及相關(guān)通路間的復(fù)雜交互作用調(diào)節(jié)炎性反應(yīng)、凋亡及成纖維細(xì)胞分化等多個(gè)過程實(shí)現(xiàn)對(duì)肺纖維化的治療。

參考文獻(xiàn)

[1]Raghu G,Collard HR,Egan JJ,et al.An official ATS/ERS/JRS/ALAT statement:idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management[J].Am J Respir Crit Care Med,2011,183(6):788-824.

[2]Nalysnyk L,Cid-Ruzafa J,Rotella P,et al.Incidence and prevalence of idiopathic pulmonary fibrosis:review of the literature[J].Eur Respir Rev,2012,21(126):355-361.

[3]Stowasser S,Hallmann C.New guideline for idiopathic pulmonary fibrosis[J].Lancet,2015,386(10006):1823-1824.

[4]Samareh FM,Poursalehi HR,Sharififar F,et al.The effects of methanolic extract of Glycyrrhiza glabra on the prevention and treatment of bleomycin-induced pulmonary fibrosis in rat:experimental study[J].Drug Chem Toxicol,2019:1-7.(2019-10-16).https://doi.org/10.1080/01480545.2019.1606232.

[5]Song JW,Hong SB,Lim CM,et al.Acute exacerbation of idiopathic pulmonary fibrosis:incidence,risk factors and outcome[J].Eur Respir J,2011,37(2):356-363.

[6]White ES,Lazar MH,Thannickal VJ.Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis[J].J Pathol,2003,201(3):343-354.

[7]Vigeland CL,Hughes AH,Horton MR.Etiology and treatment of cough in idiopathic pulmonary fibrosis[J].Respir Med,2017,123:98-104.

[8]陳龍飛,李亞,劉冠汝,等.中藥復(fù)方治療特發(fā)性肺纖維化的研究進(jìn)展[J].中國(guó)中醫(yī)藥現(xiàn)代遠(yuǎn)程教育,2019,17(9):126-128.

[9]閆玉琴,賈琦,蘇惠萍.中醫(yī)對(duì)肺纖維化病因病機(jī)的探討[J].西部中醫(yī)藥,2018,31(12):23-25.

[10]耿青霞,趙宏照,李麗娜.肺絡(luò)與特發(fā)性肺纖維化病機(jī)探討[J].山東中醫(yī)雜志,2017,36(5):361-363.

[11]劉妍彤,呂曉東,龐立健,等.通絡(luò)補(bǔ)絡(luò)法扭轉(zhuǎn)特發(fā)性肺纖維化肺虛絡(luò)瘀病機(jī)的現(xiàn)代醫(yī)學(xué)基礎(chǔ)[J].中醫(yī)雜志,2017,58(16):1381-1384.

[12]中華中醫(yī)藥學(xué)會(huì)肺系病專業(yè)委員會(huì).彌漫性間質(zhì)性肺疾病的中醫(yī)證候診斷標(biāo)準(zhǔn)(2012版)[J].中醫(yī)雜志,2012,53(13):1163-1165.

[13]盛麗,姚嵐,王莉,等.沙參水蛭黃芩人參對(duì)博萊霉素小鼠肺纖維化的影響[J].中醫(yī)藥學(xué)刊,2006,24(6):1000-1002.

[14]閆玉琴,賈琦,蘇惠萍.中醫(yī)對(duì)肺纖維化病因病機(jī)的探討[J].西部中醫(yī)藥,2018,31(12):23-25.

[15]Xu T,Ma C,F(xiàn)an S,et al.Corrigendum to “Systematic Understanding of the Mechanism of Baicalin against Ischemic Stroke through a Network Pharmacology Approach”[J].Evid Based Complement Alternat Med,2019,2019:4520704.

[16]劉建輝.黃芩苷對(duì)實(shí)驗(yàn)性大鼠肺纖維化的影響及機(jī)制初探[D].石家莊:河北醫(yī)科大學(xué),2004.

[17]賈慧,陳曉玲,陳超,等.黃芩苷防止肺纖維化大鼠肺內(nèi)結(jié)締組織生長(zhǎng)因子的上調(diào)[J].生理學(xué)報(bào),2010,62(6):535-540.

[18]Wang X,Yu S,Jia Q,et al.NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia[J].Oncotarget,2017,8(34):55920-55937.

[19]Wang S,Wang H,Lu Y.Tianfoshen oral liquid:a CFDA approved clinical traditional Chinese medicine,normalizes major cellular pathways disordered during colorectal carcinogenesis[J].Oncotarget,2017,8(9):14549-14569.

[20]Cao YF,Wang SF,Li X,et al.The anticancer mechanism investigation of Tanshinone IIA by pharmacological clustering in protein network[J].BMC Syst Biol,2018,12(1):90.

[21]Chen SJ,Cui MC.Systematic Understanding of the Mechanism of Salvianolic Acid A via Computational Target Fishing[J].Molecules,2017,22(4):644-654.

[22]Terstappen GC,Schlüpen C,Raggiaschi R,et al.Target deconvolution strategies in drug discovery[J].Nat Rev Drug Discov,2007,6(11):891-903.

[23]Zhang GB,Li QY,Chen QL,et al.Network pharmacology:a new approach for chinese herbal medicine research[J].Evid Based Complement Alternat Med,2013,2013:621423.

[24]Zeng L,Yang K.Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach[J].J Ethnopharmacol,2017,199:68-85.

[25]Hopkins AL.Network pharmacology:the next paradigm in drug discovery[J].Nat Chem Biol,2008,4(11):682-90.

[26]Wang Y,Xiao J,Suzek TO,et al.PubChem:a public information system for analyzing bioactivities of small molecules[J].Nucleic Acids Res,2009,37(Web Server issue):W623-W633.

[27]Irwin JJ,Sterling T,Mysinger MM,et al.ZINC:a free tool to discover chemistry for biology[J].J Chem Inf Model,2012,52(7):1757-1768.

[28]Ru J,Li P,Wang J,et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J].J Cheminform,2014,6:13.

[29]Wang X,Shen Y,Wang S,et al.PharmMapper 2017 update:a web server for potential drug target identification with a comprehensive target pharmacophore database[J].Nucleic Acids Res,2017,45(W1):W356-W360.

[30]Piero J,Bravo à,Queralt-Rosinach N,et al.DisGeNET:a comprehensive platform integrating information on human disease-associated genes and variants[J].Nucleic Acids Res,2017,45(D1):D833-D839.

[31]Wishart DS,F(xiàn)eunang YD,Guo AC,et al.DrugBank 5.0:a major update to the DrugBank database for 2018[J].Nucleic Acids Res,2018,46(D1):D1074-D1082.

[32]Szklarczyk D,Gable AL,Lyon D,et al.STRING v11:protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Res,2019,47(D1):D607-D613.

[33]Liu P,Duan JA,Bai G,et al.Network pharmacology study on major active compounds of siwu decoction analogous formulae for treating primary dysmenorrhea of gynecology blood stasis syndrome[J].China Journal of Chinese Materia Medica,2014,39(1):113-120.

[34]Dennis G,Sherman BT,Hosack DA,et al.DAVID:Database for Annotation,Visualization,and Integrated Discovery[J].Genome Biol,2003,4(5):P3.

[35]Kanehisa M,Goto S,F(xiàn)urumichi M,et al.KEGG for representation and analysis of molecular networks involving diseases and drugs[J].Nucleic Acids Res,2010,38(Database issue):D355-D360.

[36]Brett Ley,Harold R Collard,Talmadge E King.Clinical course and prediction of survival in idiopathic pulmonary fibrosis[J].American journal of respiratory and critical care medicine,2011,183(4):431-440.

[37]Qin Y,Hu W,Yang Y,et al.Neuroprotective Effect of DAHP via Antiapoptosis in Cerebral Ischemia[J].Behav Neurol,2018,2018:5050469.

[38]Xu M,Chen X,Gu Y,et al.Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury[J].J Ethnopharmacol,2013,150(1):116-124.

[39]Hu Z,Li H,Xie R,et al.Genomic variant in porcine TNFRSF1A gene and its effects on TNF signaling pathway in vitro[J].Gene,2019,700:105-109.

[40]Alper B,Erdogan B,Erdogan M,et al.Associations of Trauma Severity with Mean Platelet Volume and Levels of Systemic Inflammatory Markers(IL1β,IL6,TNFα,and CRP)[J].Mediators Inflamm,2016,2016:9894716.

[41]Luo L,Zhou WH,Cai JJ,et al.Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients[J].J Diabetes Res,2017,2017:8103904.

[42] Obrosova I G.Diabetes and the peripheral nerve[J].Biochimica et Biophysica Acta,2009,1792(10):931-940.

[43] Vareniuk I,Pavlov I.A,Obrosova I.G.Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes[J].Diabetologia,2008,51(11):2126-2133.

[44]Cameron NE,Cotter MA.Pro-inflammatory mechanisms in diabetic neuropathy:focus on the nuclear factor kappa B pathway[J].Curr Drug Targets,2008,9(1):60-67.

[45]Carty CL,Heagerty P,Heckbert SR,et al.Association of genetic variation in serum amyloid-A with cardiovascular disease and interactions with IL6,IL1RN,IL1beta and TNF genes in the Cardiovascular Health Study[J].J Atheroscler Thromb,2009,16(4):419-430.

[46]Qiu T,Tian Y,Gao Y,et al.PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation[J].Aging(Albany NY),2019,11(18):7492-7509.

[47]Hinz B,Phan SH,Thannickal VJ,et al.The myofibroblast:one function,multiple origins[J].Am J Pathol,2007,170(6):1807-1816.

[48]Gabbiani G.The myofibroblast in wound healing and fibrocontractive diseases[J].J Pathol,2003,200(4):500-503.

[49]Baur PS,Parks DH.The myofibroblast anchoring strand--the fibronectin connection in wound healing and the possible loci of collagen fibril assembly[J].J Trauma,1983,23(10):853-862.

[50]Judge JL,Nagel DJ,Owens KM,et al.Prevention and treatment of bleomycin-induced pulmonary fibrosis with the lactate dehydrogenase inhibitor gossypol[J].PLoS One,2018,13(5):e0197936.

[51]McMahon GA,Dignam JD,Gentry LE.Structural characterization of the latent complex between transforming growth factor beta 1 and beta 1-latency-associated peptide[J].Biochem J,1996,313(Pt 1):343-351.

[52]J Gauldie,P Bonniaud,P Sime,et al.TGF-beta,Smad3 and the process of progressive fibrosis[J].biochem soc trans,2007,35(4):661-664.

[53]Kottmann RM,Hogan CM,Phipps RP,et al.Determinants of initiation and progression of idiopathic pulmonary fibrosis[J].Respirology,2009,14(7):917-933.

[54]Sime PJ,Xing Z,Graham FL,et al.Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung[J].J Clin Invest,1997,100(4):768-776.

[55]Burgess HA,Daugherty LE,Thatcher TH,et al.PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production:implications for therapy of lung fibrosis[J].Am J Physiol Lung Cell Mol Physiol,2005,288(6):L1146-L1153.

[56]Darby IA,Hewitson TD.Fibroblast differentiation in wound healing and fibrosis[J].Int Rev Cytol,2007,257:143-179.

猜你喜歡
肺纖維化性反應(yīng)黃芩
我國(guó)研究人員探索肺纖維化治療新策略
中老年保健(2022年2期)2022-11-25 23:46:31
遺傳性T淋巴細(xì)胞免疫缺陷在百草枯所致肺纖維化中的作用
黃芩的高產(chǎn)栽培技術(shù)
腸道菌群失調(diào)通過促進(jìn)炎性反應(yīng)影響頸動(dòng)脈粥樣硬化的形成
張永新:種植黃芩迷上了“茶”
黃芩使用有講究
特發(fā)性肺纖維化合并肺癌
黃芩苷脈沖片的制備
中成藥(2017年12期)2018-01-19 02:06:54
促酰化蛋白對(duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
沙利度胺治療肺纖維化新進(jìn)展
庆安县| 砚山县| 唐河县| 开平市| 呼玛县| 雷波县| 潜山县| 伊宁市| 河源市| 历史| 齐河县| 遂溪县| 岗巴县| 道真| 滦南县| 卢湾区| 波密县| 祁连县| 壶关县| 射阳县| 安徽省| 满洲里市| 遵化市| 志丹县| 淮滨县| 桓台县| 馆陶县| 莲花县| 塔城市| 商河县| 三原县| 德州市| 永宁县| 民县| 汶川县| 长岛县| 武冈市| 岗巴县| 永登县| 南华县| 那坡县|