袁盼盼,朱興亮,尤 佳,韓長杰,張學(xué)軍,郭 輝
釀酒葡萄曲軸式振動脫粒收獲裝置研制
袁盼盼,朱興亮,尤 佳,韓長杰,張學(xué)軍※,郭 輝
(新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052)
針對釀酒葡萄機(jī)械化采收時(shí)對植株損傷大、果粒破損率高、脫粒效率低等問題,該文設(shè)計(jì)了一種曲軸式振動脫粒收獲裝置,該裝置主要由曲軸、彈性夾持振動機(jī)構(gòu)、傳動系統(tǒng)、機(jī)架等組成。對曲柄搖桿機(jī)構(gòu)的運(yùn)動和彈性振動桿變形進(jìn)行了分析,獲取了影響作業(yè)效果的主要因素。根據(jù)Box-Benhnken 中心組合設(shè)計(jì)方法,以夾持間距、轉(zhuǎn)速和偏心距為影響因子,釀酒葡萄脫粒率和破損率為響應(yīng)函數(shù)進(jìn)行三因素三水平二次回歸正交試驗(yàn)設(shè)計(jì),建立了響應(yīng)面數(shù)學(xué)模型,并進(jìn)行了參數(shù)優(yōu)化和驗(yàn)證。結(jié)果表明,釀酒葡萄脫粒率影響因素的顯著性順序?yàn)檗D(zhuǎn)速、偏心距和夾持間距,破損率的影響顯著性順序?yàn)檗D(zhuǎn)速、夾持間距和偏心距;最優(yōu)參數(shù)組合為夾持間距193 mm、曲軸轉(zhuǎn)速720 r/min、曲軸偏心距38.8 mm,在此參數(shù)下測得的釀酒葡萄脫粒率為93.06%,破損率為4.57%,與模型優(yōu)化理論值相比脫粒率降低了1.09個(gè)百分比,破損率增加了1.45個(gè)百分點(diǎn)。該研究可為釀酒葡萄的機(jī)械化收獲及其他林果的振動采收裝置設(shè)計(jì)提供參考。
農(nóng)業(yè)機(jī)械;收獲;振動;釀酒葡萄;曲軸
葡萄是世界四大水果之一[1],中國釀酒葡萄種植面積已超越法國,成為世界第二大釀酒葡萄種植區(qū)[2]。新疆是優(yōu)質(zhì)葡萄主產(chǎn)區(qū)[3],目前,釀酒葡萄收獲作業(yè)還停留在傳統(tǒng)人工采摘。釀酒葡萄枝條無序生長,人工采收困難,且效率低。國外釀酒葡萄主要產(chǎn)區(qū)如意大利、美國、法國等均已基本實(shí)現(xiàn)機(jī)械化采收[4-5],但由于氣候和自然條件上的差異,國內(nèi)外釀酒葡萄在樹形、空間形態(tài)、果實(shí)集中度等方面差異巨大,亟需開發(fā)適用于中國釀酒葡萄種植和管理模式特點(diǎn)的采收機(jī)構(gòu)。
振動采收是目前漿果采收的主要手段之一[6-11],國內(nèi)外藍(lán)莓、黑加侖、葡萄等漿果,主要利用激勵(lì)源振動果樹,迫使果穗或果粒與相連的枝條或果梗產(chǎn)生相對運(yùn)動(拉、彎、扭),使連接處變形直至斷裂,實(shí)現(xiàn)果實(shí)采收,釀酒葡萄主要采收果粒[12-16],使葡萄粒從果梗上分離脫落。Caprara利用偏心搖桿機(jī)構(gòu)驅(qū)動2排撓性肋條旋轉(zhuǎn)擊打葡萄藤實(shí)現(xiàn)果實(shí)采收[17],Roger 等利用曲柄搖桿機(jī)構(gòu)以及伺服液壓交替振動機(jī)構(gòu)產(chǎn)生旋轉(zhuǎn)運(yùn)動驅(qū)動2排交錯(cuò)肋條對葡萄進(jìn)行振動采收[18],Baisan利用偏心圓盤搖桿機(jī)構(gòu)驅(qū)動尼龍彈性桿振搖葡萄藤實(shí)現(xiàn)釀酒葡萄采收[19],國內(nèi)外在葡萄樹形、果實(shí)分布方面差異較大,振動能量傳遞效率不同,國外葡萄收獲機(jī)在中國作業(yè)時(shí)易造成葡萄植株、葡萄粒損傷大。李成松等基于RSSR空間四桿機(jī)構(gòu)和平面雙搖桿機(jī)構(gòu)設(shè)計(jì)了雙支撐釀酒葡萄果實(shí)振動分離裝置,作業(yè)可靠性及穩(wěn)定性有待改進(jìn)優(yōu)化[20-21]。王業(yè)成利用可調(diào)偏心連桿式振動機(jī)構(gòu)進(jìn)行試驗(yàn),分析了振動頻率、振幅和激振位置對黑加侖采收率的影響[22],史亮等利用雙偏心塊旋轉(zhuǎn)產(chǎn)生的反向力偶驅(qū)動撥桿圓盤實(shí)現(xiàn)藍(lán)莓的采收[23],王海濱等利用采摘滾筒旋轉(zhuǎn)帶動藍(lán)莓樹振動進(jìn)行采收[24-25]。目前國內(nèi)釀酒葡萄收獲裝備并不成熟,作業(yè)時(shí)對植株損傷大、脫粒效率低、果粒破損率高、可靠性及穩(wěn)定性低等問題。
基于上述問題,本文提出了一種曲軸式振動脫粒收獲裝置,彈性振動桿夾持葡萄植株進(jìn)行振動脫粒收獲,振動脫粒部分主要結(jié)構(gòu)和工作參數(shù)均可調(diào),分析了影響葡萄脫粒率和破損率的主要因素,將獲得的最優(yōu)參數(shù)應(yīng)用于釀酒葡萄收獲機(jī)中,以期為釀酒葡萄及其他漿果和林果的振動采收裝備參數(shù)設(shè)計(jì)提供參考。
釀酒葡萄振動脫粒收獲裝置主要由曲軸、彈性夾持振動機(jī)構(gòu)、傳動系統(tǒng)、機(jī)架等組成,如圖1所示。其中,彈性夾持振動機(jī)構(gòu)由左、右彈性夾持單體構(gòu)成,結(jié)合新疆釀酒葡萄為籬架種植,葉幕形寬度為0.8 m左右,在葡萄行的兩側(cè)利用彈性夾持振動機(jī)構(gòu)左、右單體間的配合夾持釀酒葡萄植株,根據(jù)葉幕形實(shí)際寬度通過夾持間距調(diào)節(jié)桿進(jìn)行調(diào)整,主要參數(shù)如表1所示。
1.同步帶傳動系統(tǒng) 2.電機(jī) 3.彈性夾持振動機(jī)構(gòu) 4.機(jī)架 5.曲軸
表1 釀酒葡萄振動脫粒裝置主要參數(shù)
作業(yè)時(shí),彈性夾持振動機(jī)構(gòu)左單體的曲軸在電機(jī)驅(qū)動下轉(zhuǎn)動,將電機(jī)輸出的旋轉(zhuǎn)運(yùn)動轉(zhuǎn)換為彈性振動桿的非圓周變向運(yùn)動;通過同步帶傳動系統(tǒng),彈性夾持振動機(jī)構(gòu)右單體與左單體保持同相位、同方向和同步運(yùn)動;彈性夾持振動機(jī)構(gòu)夾持釀酒葡萄植株做有規(guī)律的變速變向運(yùn)動,使釀酒葡萄粒從葡萄梗上脫落,實(shí)現(xiàn)脫粒。
彈性夾持振動機(jī)構(gòu)由曲軸、夾持桿組、轉(zhuǎn)動軸、轉(zhuǎn)動連桿和夾持間距調(diào)節(jié)桿等組成,圖2a和2b分別為彈性夾持振動機(jī)構(gòu)的左單體和右單體,連桿與夾持桿組間固接,轉(zhuǎn)動連桿與夾持桿組間采用銷軸連接。夾持桿組上分布3組彈性桿,間距為300 mm,每組彈性桿通過騎馬卡固定在豎直的連接桿上,騎馬卡的直徑、孔距等與彈性桿的尺寸相配合。
曲軸、夾持桿組、轉(zhuǎn)動軸和機(jī)架構(gòu)成了曲柄搖桿機(jī)構(gòu)。為實(shí)現(xiàn)左右并聯(lián)、對稱的夾持桿組上下錯(cuò)位布置的2組曲柄搖桿機(jī)構(gòu)同相位、同向和同步運(yùn)動,右側(cè)夾持桿組不能直接安裝在曲柄搖桿機(jī)構(gòu)的連桿上,需在曲柄搖桿機(jī)構(gòu)的連桿上設(shè)置一組連接桿將夾持桿組與左側(cè)夾持桿組反向且平行安裝。在彈性夾持振動機(jī)構(gòu)右單體曲柄搖桿機(jī)構(gòu)的連桿上安裝2個(gè)平行的夾持間距調(diào)節(jié)桿用于連接夾持桿組,使其與左單體同向運(yùn)動。
1.曲軸 2.夾持桿組 3.轉(zhuǎn)動軸 4.轉(zhuǎn)動連桿 5.連接板 6.夾持間距調(diào)節(jié)桿
1.Crankshaft 2.Clamping rod group 3.Axis of rotation 4.Rotating connecting rod 5.Connecting plate 6.Clamping spacing adjusting rod
圖2 彈性夾持振動機(jī)構(gòu)
Fig.2 Elastic clamping vibration mechanism
夾持間距調(diào)節(jié)桿通過調(diào)節(jié)安裝孔的位置調(diào)整左右2組夾持振動桿組的間距,具體結(jié)構(gòu)如圖3所示。左連接桿和中間調(diào)節(jié)桿焊合固接,中間調(diào)節(jié)桿和右連接桿上按一定間距對應(yīng)分布孔,中間調(diào)節(jié)桿(尺寸為25×25,mm)在右連接桿(尺寸為30×30,mm)中通過伸縮調(diào)整間距。
圖3 夾持間距調(diào)節(jié)桿
夾持振動機(jī)構(gòu)利用偏心曲軸的旋轉(zhuǎn)運(yùn)動帶動夾持振動桿做非圓周運(yùn)動,為曲柄搖桿機(jī)構(gòu),如圖 4所示。
該機(jī)構(gòu)的封閉矢量方程以復(fù)數(shù)形式表示為[26]
按歐拉公式展開得
實(shí)部和虛部分別相等,即
注:AB為曲柄;CD為彈性振動桿;BCD為連桿;DE為搖桿;AE為機(jī)架;AB1C1D1E為曲柄搖桿機(jī)構(gòu)的極限位置;、、和分別為曲柄、連桿、搖桿及機(jī)架的長度,mm;為曲柄轉(zhuǎn)動的角速度,rad·s-1;為曲柄的轉(zhuǎn)角,rad;為連桿的方位角,rad;為搖桿擺角,rad。
由此求得搖桿擺角為
同理可求得
將公式(1)對時(shí)間求導(dǎo)數(shù),按歐拉公式展開,求得連桿的角速度為
曲軸主要由驅(qū)動軸、曲軸板、曲軸調(diào)節(jié)板、傳動軸頭和曲柄連接體組成,如圖5a所示,驅(qū)動軸、傳動軸和曲軸板均采用焊合固接,曲軸板和調(diào)節(jié)板的厚度均為8 mm,二者采用3組螺栓進(jìn)行連接,螺栓安裝間距分別為30和20 mm,曲柄連接體將上下曲軸調(diào)節(jié)板連接。曲軸板和調(diào)節(jié)板配合如圖5b和5c所示,通過調(diào)整曲軸板和曲軸調(diào)節(jié)板上孔的對應(yīng)安裝位置,曲柄長度可調(diào),曲柄長度調(diào)整間距為12 mm。
圖5 曲軸及其調(diào)整板
曲柄連接體是將曲軸的曲柄和連桿進(jìn)行連接,主要是由心軸、軸承座、圓錐滾子軸承、卡簧和套筒組成,心軸的上下端與曲柄調(diào)節(jié)板通過螺紋連接。
彈性振動桿分為平直段和圓弧段,2段間用軸套連接,如圖6所示。平直段采用PA6材質(zhì)尼龍棒,具有韌性好、耐磨力強(qiáng)和彎曲強(qiáng)度高等特點(diǎn),根據(jù)前期研究[9],確定振動桿的直徑為25 mm,平直段長度為900 mm。圓弧段將分散及外伸的葡萄藤蔓和枝條進(jìn)行收攏聚集進(jìn)入平直段工作區(qū),在收攏聚集時(shí),為避免工作部件對葡萄串及植株造成損傷,要求圓弧段材質(zhì)具有較好的柔性,因此,圓弧段采用PU聚氨酯棒,具有較高的機(jī)械強(qiáng)度、柔性和回彈性,能夠滿足工作要求。
注:為夾持間距,mm;為彈性振動桿平直段長度,mm;為圓弧段有效長度,mm;為收攏區(qū)入口最大寬度,mm;R為圓弧段半徑,mm。
在進(jìn)行非圓周變向振動過程中,彈性振動桿存在一定程度的彎曲變形,最大變形量由公式(8)計(jì)算[28]。
由此可得彈性振動桿的振動變形量為
為驗(yàn)證理論分析的正確性,獲取最優(yōu)結(jié)構(gòu)和工作參數(shù),2019年8月29日,在新疆農(nóng)業(yè)大學(xué)農(nóng)業(yè)工程裝備創(chuàng)新設(shè)計(jì)實(shí)驗(yàn)室進(jìn)行試驗(yàn),采樣地點(diǎn)為新疆兵團(tuán)十二師三坪農(nóng)場三坪二連,北緯43°57′ 6″ ,東經(jīng)87°19′ 35″ ,品種為“赤霞珠”,樹齡6 a,在采樣時(shí),選取不同位置枝蔓、不同直徑的掛果枝條進(jìn)行剪枝,采樣枝條直徑為6~16 mm,枝條掛果串?dāng)?shù)1~4串,枝條長度約1 m左右。試驗(yàn)如圖7所示。
1.彈性夾持振動機(jī)構(gòu) 2.釀酒葡萄枝條 3.曲軸 4.電機(jī) 5.夾持間距調(diào)節(jié)桿 6.變頻器
試驗(yàn)設(shè)備有:i-SPEEDFS高速攝像機(jī)(包含攝像機(jī)主機(jī)、觸發(fā)開關(guān),控制顯示器等,2 000 幀/s時(shí)的分辨率為1 280×1 024(像素),配套圖像分析軟件i-SPEED Suite,日本Olympus公司);Altivar38HD12N4變頻器(功率3 kW,施耐德公司);TCS電子臺秤(精度20 g,量程1~100 kg,上海地久商貿(mào)有限公司);計(jì)算機(jī)。
根據(jù)《GB/T 25393—2010 葡萄栽培和葡萄酒釀制設(shè)備葡萄收獲機(jī)試驗(yàn)方法》和《GB/T5667—2008 農(nóng)業(yè)機(jī)械生產(chǎn)試驗(yàn)方法》規(guī)定的試驗(yàn)方法[30-31],考察所設(shè)計(jì)的曲軸式振動脫粒收獲裝置的作業(yè)性能,選取脫粒率和破損率為試驗(yàn)指標(biāo)。
根據(jù)對曲軸振動機(jī)構(gòu)的運(yùn)動學(xué)及振動彈性桿的分析,確定影響釀酒葡萄脫粒效果的主要因素為曲柄轉(zhuǎn)速、曲軸偏心距(曲柄長度)和夾持間距,因此,選取曲柄轉(zhuǎn)速、偏心距和夾持間距為試驗(yàn)因素。根據(jù)前期參與的研究[9],整機(jī)田間試驗(yàn)獲得的較優(yōu)作業(yè)速度為2 km/h,以模擬2 km/h進(jìn)行脫粒試驗(yàn),換算為0.56 m/s,夾持振動桿平直段長度為900 mm,收攏區(qū)有效長度為400 mm,因此,有效夾持振動部分對葡萄植株的振動時(shí)間約2 s,電機(jī)啟動加速度過大,會造成瞬間載荷增大,影響試驗(yàn)效果,設(shè)定振動時(shí)間為9 s,其中電機(jī)轉(zhuǎn)速由0加速至試驗(yàn)轉(zhuǎn)速時(shí)長為7 s[32],穩(wěn)定試驗(yàn)轉(zhuǎn)速2 s。采用Box-Benhnken中心組合設(shè)計(jì)方法[33-34],以三因素和三水平二次回歸正交為試驗(yàn)方案,每組試驗(yàn)進(jìn)行3次,取3次測試結(jié)果的均值作為該組的試驗(yàn)結(jié)果,對指標(biāo)的因素進(jìn)行顯著性分析,獲取機(jī)構(gòu)各參數(shù)最優(yōu)組合。根據(jù)預(yù)試驗(yàn)結(jié)果設(shè)置試驗(yàn)因素水平,如表2所示。
表2 試驗(yàn)因素水平
根據(jù)表3中的試驗(yàn)數(shù)據(jù),利用Design Expert 8.0.6軟件對試驗(yàn)結(jié)果進(jìn)行二次回歸分析[35],建立葡萄脫粒率和破損率對夾持間距、轉(zhuǎn)速和偏心距的二次響應(yīng)面回歸模型,并對其進(jìn)行方差分析,結(jié)果如(12)~(13)和表4所示。
表3 試驗(yàn)結(jié)果
表4 脫粒率與破損率方差分析
注:“***”表示極顯著(≤0.01);“**”表示顯著(0.01<≤0.05);“*”表示較顯著(0.05<≤0.1)。下同。
Note: “***” means highly significant (≤0.01), “**” means very significant(0.01<≤0.05), “*” means significant (0.05<≤0.1). The same below.
圖8a為脫粒率對轉(zhuǎn)速和偏心距的響應(yīng)曲面圖,可看出當(dāng)曲軸的偏心距固定時(shí),脫粒率隨著轉(zhuǎn)速的增加而增大,當(dāng)曲軸轉(zhuǎn)速固定時(shí),脫粒率隨著偏心距的增大先增大后減小。圖8b為破損率對偏心距和夾持間距的響應(yīng)曲面圖,可看出當(dāng)曲軸的偏心距固定時(shí),破損率隨著夾持間距的增大而增大;當(dāng)夾持間距固定時(shí),破損率隨著偏心距的增大先減小后增大。
圖8 各因素對釀酒葡萄脫粒率和破損率的交互作用
利用Design-Expert軟件中的Optimization(最優(yōu)化)模塊,對脫粒率和破損率回歸模型進(jìn)行優(yōu)化求解,以脫粒率最大和破損率最小為優(yōu)化目標(biāo),約束函數(shù)如式(14)。
求得的優(yōu)化組合為:夾持間距192.93 mm、曲軸轉(zhuǎn)速720 r/min、曲軸偏心距38.79 mm,此時(shí)脫粒率與破損率的預(yù)測值分別為94.15%和3.12%。
為驗(yàn)證優(yōu)化結(jié)果的準(zhǔn)確性,將裝置優(yōu)化參數(shù)組合的夾持間距圓整為193 mm,曲軸轉(zhuǎn)速為720 r/min,曲軸偏心距圓整為38.8 mm,進(jìn)行3次重復(fù)驗(yàn)證試驗(yàn),試驗(yàn)材料和方法與上述相同,取3次試驗(yàn)的結(jié)果均值為驗(yàn)證值。試驗(yàn)結(jié)果表明,圓整優(yōu)化參數(shù)下作業(yè)的葡萄脫粒率為93.06%,破損率為4.57%,與模型預(yù)測結(jié)果基本一致。
1)設(shè)計(jì)了一種曲軸式振動脫粒收獲裝置,主要由曲軸、彈性夾持振動機(jī)構(gòu)、同步帶傳動系統(tǒng)、機(jī)架等組成,利用并聯(lián)的彈性夾持振動機(jī)構(gòu)左、右單體實(shí)現(xiàn)同相位、同向和同步運(yùn)動。
2)對釀酒葡萄脫粒率顯著性影響順序依次為曲軸轉(zhuǎn)速、曲軸偏心距離和夾持間距;各因素對破損率影響顯著順序依次為曲軸轉(zhuǎn)速、夾持間距和曲軸偏心距離。
3)通過優(yōu)化分析與試驗(yàn)驗(yàn)證,最佳參數(shù)組合為:夾持間距為193 mm、曲軸轉(zhuǎn)速為720 r/min、曲軸偏心距為38.8 mm,試驗(yàn)結(jié)果為釀酒葡萄脫粒率為93.06%,破損率為4.57%,與模型優(yōu)化預(yù)測結(jié)果基本一致,結(jié)構(gòu)設(shè)計(jì)合理。
[1] 劉崇懷. 中國葡萄屬(L. )植物分類與地理分布研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2012. Liu Chonghuai. Studies on Taxonomy and Geographical Distribution of Chinese Wild Grape Species[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese with English abstract)
[2] 李超. 基于柔性梳脫的釀酒葡萄脫粒機(jī)理與裝置的研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2017. Li Chao. Study of Wine Grape Threshing Mechanism and Device by Flexible Combing Triping Mechanism[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[3] 王麗紅,袁盼盼,李成松,等. 釀酒葡萄振動脫落機(jī)構(gòu)運(yùn)動分析及研究平臺設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2015,37(8):53-56. Wang Lihong, Yuan Panpan, Li Chengsong, et al. Analysis of vibratory mechanism movement for wine grape and design of virtual prototype research platform[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 53-56. (in Chinese with English abstract)
[4] 胡志超,王海鷗,胡良龍,等. 美國葡萄生產(chǎn)機(jī)械化[J]. 中國農(nóng)機(jī)化,2005(6):107-109. Hu Zhichao, Wang Haiou, Hu Lianglong, et al. Mechanization of grape production in America[J]. Chinese Agricultural Mechanization, 2005(6): 107-109. (in Chinese with English abstract)
[5] 吳清分. 紐荷蘭公司VMLPLUS系列新型葡萄收獲機(jī)[J]. 當(dāng)代農(nóng)機(jī),2017(2):60-61.
[6] 杜小強(qiáng),倪柯楠,潘珂,等. 可調(diào)振幅單向拽振式林果采收機(jī)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):25-32. Du Xiaoqiang, Ni Ke’nan, Pan Ke, et al. Parameter optimization of stroke-adjustable and monodirectional pulling fruit harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 25-32. (in Chinese with English abstract)
[7] 蔡菲,王春耀,王學(xué)農(nóng),等. 基于高速攝像技術(shù)的振動落果慣性力研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2013,41(4):208-212. Cai Fei, Wang Chunyao, Wang Xuenong, et al. Inertia force of fruits abscised by vibration based on high-speed video camera technology[J]. Journal of Northwest A & F University: Natural Science Edition, 2013, 41(4): 208-212. (in Chinese with English abstract)
[8] Yuan Panpan, Zhu Xingliang, Wang Lihong, et al. Design and test of separation harvesting device for wine grape[J], International Agricultural Engineering Journal, 2018, 27(3): 116-122.
[9] 楊蘭濤,王麗紅,坎雜,等. 4PZ-1型自走式釀酒葡萄收獲機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):38-44. Yang Lantao, Wang Lihong, Kan Za, et al. Development and test of 4PZ-1 self-propelled wine grape harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 38-44. (in Chinese with English abstract)
[10] 散鋆龍,楊會民,王學(xué)農(nóng),等. 振動方式和頻率對杏樹振動采收響應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):10-17. San Yunlong, Yang Huimin, Wang Xuenong, et al. Effects of vibration mode and frequency on vibration harvesting of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 10-17. (in Chinese with English abstract)
[11] 杜小強(qiáng),李松濤,賀磊盈,等. 三維激振果品采收機(jī)構(gòu)優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):48-55. Du Xiaoqiang, Li Songtao, He Leiying, et al. Optimal design and experiment on vibratory fruit harvesting mechanism with three-dimensional excitation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 48-55. (in Chinese with English abstract)
[12] Du Xiaoqiang, Chen Du, Zhang Qin, et al. Dynamic responses of sweet cherry trees under vibratory excitations[J]. Biosystems Engineering, 2012, 111(3): 305-314.
[13] Roger P, Gialis J M. Shakers with adjustable stiffness for harvesting machines and harvesting machines using such shakers: United States Patent, 7841160B2[P].2009-07-27.
[14] 杜小強(qiáng),倪柯楠,武傳宇. 基于外旋輪線軌跡的果品振動采收機(jī)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):59-66. Du Xiaoqiang, Ni Ke’nan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 59-66. (in Chinese with English abstract)
[15] 袁盼盼,張學(xué)軍,坎雜,等. 末端驅(qū)動式釀酒葡萄分離機(jī)構(gòu)的設(shè)計(jì)及分析[J]. 農(nóng)機(jī)化研究,2016,38(9):104-107. Yuan Panpan, Zhang Xuejun, Kan Za, et al. Design and analysis of end driven separation mechanism for wine grape[J]. Journal of Agricultural Mechanization Research, 2016, 38(9): 104-107. (in Chinese with English abstract)
[16] 鮑玉冬,楊闖,趙彥玲,等. 基于碰撞變形能的機(jī)械采收藍(lán)莓果實(shí)碰撞損傷評估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):283-292. Bao Yudong, Yang Chuang, Zhao Yanling, et al. Collision injury assessment of mechanical harvesting blueberry fruit based on collision deformation energy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 283-292. (in Chinese with English abstract)
[17] Caprara C, Pezzi F. Measuring the stresses transmitted during mechanical grape harvesting[J]. Biosystems Engineering, 2011, 110(2): 97-105.
[18] Roger Pellenc, Jean-Marc Gialis. Berry harvesting machine, especially grape harvesting machine, equipped with a shaking system and mechatronic shaking control for this system: United States Patent: 2010/0024373 A1[P]. 2010-02-04.
[19] Baisan Ioan. Theoretical studies concerning elastic bars deformation from grapes harvesting machine[J]. Journal of Engineering Studies and Research, 2012, 18(2): 18-24
[20] 李成松,高振江,坎雜,等. 雙支撐釀酒葡萄果實(shí)振動分離裝置作業(yè)機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):26-32. Li Chengsong, Gao Zhenjiang, Kan Za, et al. Operation mechanism of double support vibration separation device for wine grape berry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 26-32. (in Chinese with English abstract)
[21] 李成松. 釀酒葡萄振動分離機(jī)理及裝置的研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2015. Li Chengsong. Study on Vibration Separation Mechanism and Equipment of Wine Grape[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[22] 王業(yè)成,陳海濤,林青. 黑加侖采收裝置參數(shù)的優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):79-83. Wang Yecheng, Chen Haitao, Lin Qing. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 79-83. (in Chinese with English abstract)
[23] 史亮,范久臣,喬晗. 基于ADAMS 的藍(lán)莓采摘機(jī)構(gòu)設(shè)計(jì)與仿真[J]. 機(jī)械研究與應(yīng)用,2015,28(4):158-160. Shi Liang, Fan Jiuchen, Qiao Han. Design and simulation of blueberry picking mechanism based on the ADAMS[J]. Mechanical Research & Application, 2015, 28(4): 158-160. (in Chinese with English abstract)
[24] 王海濱,郭艷玲,鮑玉冬,等. 振動式藍(lán)莓采摘的機(jī)理分析與仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):40-46. Wang Haibin, Guo Yanling, Bao Yudong, et al. Mechanism analysis and simulation of blueberry harvest by vibration mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 40-46. (in Chinese with English abstract)
[25] 郭艷玲,鮑玉冬,何培莊,等. 手推式矮叢藍(lán)莓采摘機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):40-45. Guo Yanling, Bao Yudong, He Peizhuang, et al. Design and experiment analysis of hand-push lowbush blueberry picking machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 40-45. (in Chinese with English abstract)
[26] 孫恒. 機(jī)械原理[M]. 北京:高等教育出版社,2005.
[27] 李成松,高振江,坎雜,等. 釀酒葡萄果-蒂振動分離試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):39-44. Li Chengsong, Gao Zhenjiang, Kan Za, et al. Experiment of fruit-pedicle vibration separation of wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 39-44. (in Chinese with English abstract)
[28] 蒲應(yīng)俊. 面向柑橘機(jī)械化收獲的樹冠振動系統(tǒng)設(shè)計(jì)與性能試驗(yàn)[D]. 楊凌:西北農(nóng)林科技大學(xué),2018. Pu Yingjun. Design and Performance Experiments of a Canopy Shaking System for Mechanical Harvesting Citrus[D]. Yangling: Northwest A & F university, 2018. (in Chinese with English abstract)
[29] 李建波. PA6/TPU/MMT復(fù)合材料葉片擠出機(jī)制備及其結(jié)構(gòu)性能研究[D].華南理工大學(xué),2014. Li Jianbo. Study on Structure and Performance of PA6/TPU/MMT Composites Processed by Vane Extruder[D]. Guangzhou: South China University of Technology, 2014. (in Chinese with English abstract)
[30] 葡萄栽培和葡萄酒釀制設(shè)備葡萄收獲機(jī)試驗(yàn)方法:GBT25393-2010[S]. 北京:中國標(biāo)準(zhǔn)出版社,2011.
[31] 農(nóng)業(yè)機(jī)械試驗(yàn)條件測定方法的一般規(guī)定:GB/T5262-2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2009.
[32] 駱春曉. 蔬菜缽苗取苗機(jī)構(gòu)的優(yōu)化設(shè)計(jì)及試驗(yàn)研究[D]. 杭州:浙江理工大學(xué),2013. Luo Chunxiao. The Optimization Design and Test Study of Pick-up Mechanism for Vegetable Potted Seeding[D]. Hangzhou: Zhejiang Sci-Tech university, 2013. (in Chinese with English abstract)
[33] 邱軼兵. 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 北京:中國科學(xué)技術(shù)大學(xué)出版社,2008.
[34] 葛宜元. 試驗(yàn)設(shè)計(jì)方法與Design-Expert軟件應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2014.
[35] 張學(xué)軍,白圣賀,靳偉,等. 氣力式矮密栽培紅棗撿拾機(jī)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):1-9. Zhang Xuejun, Bai Shenghe, Jin Wei, et al. Development of pneumatic collecting machine of red jujube in dwarfing and closer cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 1-9. (in Chinese with English abstract)
Development of crankshaft vibration threshing and harvesting equipment for wine grape
Yuan Panpan, Zhu Xingliang, You Jia, Han Changjie, Zhang Xuejun※, Guo Hui
(,,830052,)
At present, the wine grape harvesting method is still the traditional manual picking with scissor, because the grape fruit is randomly distributed among the branches, the manual harvesting is difficult and the operation efficiency is low. Therefore, mechanized harvesting of wine grape has become an urgent need. Vibration harvesting is one of the main methods of fruit harvesting at home and abroad. The mechanical harvesting of blueberries, blackcurrant, grape and other berries mainly vibrates the fruit tree by means of incentive source, so that the fruit and the connected branches produced a relative movement, the joints produced deformation and fracture, and the fruits falling. However, the domestic wine grape harvesting machines are immature, which has great damage to plant, low threshing efficiency, high fruit broken rate, low reliability and so on. In order to meet the requirements of wine grape mechanization harvest, a crankshaft vibration threshing device was put forward, the device was mainly composed of crankshaft, clamping vibration mechanism, elastic vibration rod, synchronous belt driving system, frame and so on, the driving crankshaft and the driving crankshaft were connected by a synchronous belt, and the elastic vibration monomers composed of parallel crank and rocker mechanism on both sides were in the same phase and moved synchronously in the same direction. The wine grape plant was held by the clamping vibration mechanism on both sides, and was driven to perform a regular variable motion, so that the wine grape grains fall off the grape stem. The angular displacement and angular velocity of the working parts were obtained based on the kinematics analysis of the crank and rocker mechanism. The main factors affecting the vibration operation effect were the length and angular velocity of the crank. The elastic vibrating rod were divided into straight segment and arc segment. The material of PA6 nylon and PU polyurethane with high mechanical strength, flexibility and resilience were selected as the material of vibrating rods. Based on the elastic deformation theory of the elastic vibrating rod, the maximum deformation of the elastic vibration rod was calculated, the influence of the elastic deformation of the elastic vibration rod on the amplitude was analyzed, and the amplitude of the elastic vibration rod in the vibration state was obtained. Furthermore, the clamping spacing, rotating speed and eccentricity were selected as the influencing factors, and wine grape threshing rate and broken rate were selected as the response value for three factors and three levels two Sub-regression orthogonal test design, and the regression equations to describe the relationships between the factors and assessment indexes were established by using the regression analysis and response surface analysis with the software Design-Expert 8.0.6. The optimum combination of the selected parameters was obtained and verified, and the experimental verification of the mathematical model was also conducted. The test results showed that the factors had great effects on the performance of wine grape vibration threshing device. The significant effects of rotating speed, eccentricity and clamping spacing on threshing rate were in a decreasing order. The significant effects of rotating speed, clamping spacing and eccentricity on broken rate were in a decreasing order. Verification test results indicated thtat when the clamping spacing was 193 mm, the rotating speed was 720 r/min and the eccentricity was 38.8 mm, wine grape threshing rate of the device was 93.06% and broken rate was 1.54%, which was basically consistent with the prediction results of model optimization, and the structural design was reasonable. This study provides a reference for the mechanization harvesting of wine grape and vibration harvesting of other fruits.
agricultural machinery; harvesting; vibration; wine grape; crankshaft
袁盼盼,朱興亮,尤佳,等.釀酒葡萄曲軸式振動脫粒收獲裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):67-74.doi:10.11975/j.issn.1002-6819.2020.09.008 http://www.tcsae.org
Yuan Panpan, Zhu Xingliang, You Jia, et al. Development of crankshaft vibration threshing and harvesting equipment for wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 67-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.008 http://www.tcsae.org
2019-12-05
2020-03-23
國家自然科學(xué)基金(51605411);國家自然科學(xué)基金(51805461);新疆高??蒲杏?jì)劃項(xiàng)目(XJEDU2017S018)
袁盼盼,講師,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)與智能農(nóng)業(yè)裝備的研究。Email:ypp_xnd@163.com
張學(xué)軍,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)與智能農(nóng)業(yè)裝備的研究。Email:tuec@163.com
10.11975/j.issn.1002-6819.2020.09.008
S225.99
A
1002-6819(2020)-09-0067-08