魏鐘博,邊大紅,杜 雄,Pushpa Raj,崔彥宏
黑龍港流域夏玉米生育期降水、需水和干旱時空分布特征
魏鐘博,邊大紅,杜 雄,Pushpa Raj,崔彥宏※
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建華北作物改良與調(diào)控國家重點實驗室/河北省作物生長調(diào)控實驗室,保定 071001)
黑龍港流域地下水超采導(dǎo)致水分極度匱乏,提高降水利用效率成為該區(qū)夏玉米生產(chǎn)的關(guān)鍵。該文利用黑龍港流域18個地面氣象觀測站1966—2015年逐日氣象數(shù)據(jù),對玉米全生育期及各生育階段的有效降水量、需水量、作物水分虧缺指數(shù)、干旱發(fā)生頻率的時空分布特征等進行了分析。結(jié)果表明,夏玉米全生育期有效降水量292.89~361.56 mm,呈“東北高、西南低”的趨勢;需水量362.82~444.04 mm,呈“南部高,北部低”的趨勢;近50年總有效降水量和需水量均呈下降趨勢,且需水量的變化與平均日照時數(shù)、平均風(fēng)速呈高度正相關(guān);全區(qū)干旱發(fā)生頻率為48.30%,其中南部超33.3%,中部及北部超66.6%;黑龍港中部和北部在成粒和灌漿階段出現(xiàn)干旱的幾率較大,南部在成粒階段出現(xiàn)干旱的幾率較大。該研究為黑龍港夏玉米降水資源的高效利用提供了理論依據(jù)。
降水量;蒸發(fā)蒸騰量;干旱;需水量;時空分布;夏玉米
黑龍港流域是中國重要的糧食產(chǎn)區(qū),主要種植制度為冬小麥/夏玉米一年兩熟。但常年的冬小麥生長季灌溉導(dǎo)致地下水嚴重超采,使黑龍港成為世界上最大的地下水漏斗區(qū)[1],灌溉用水受到極大限制。夏玉米作為黑龍港最重要的農(nóng)作物之一,生長期間雨熱同期,如何充分利用自然降水滿足黑龍港夏玉米的水分需求,對促進該區(qū)域糧食生產(chǎn)具有重要意義。近年來,一些學(xué)者采用國際糧農(nóng)組織(Food and Agriculture Organization of the United Nations,F(xiàn)AO)推薦的彭曼-蒙蒂斯(Penman-Monteith)公式和作物系數(shù)法,探討了不同作物在不同生育時期的需水規(guī)律,并對不同區(qū)域尺度下河北省主要農(nóng)作物的水分供需關(guān)系進行了系統(tǒng)的研究[2-4]。曹永強等[5-8]針對河北區(qū)域內(nèi)作物需水量與缺水量開展了研究,并分別從整體和局部對夏玉米生育期需水量和降雨量的時空變化規(guī)律進行分析。萬能涵等[9]以作物水分虧缺指數(shù)(Crop Water Deficit Index,CWDI)為干旱指標,對華北地區(qū)夏玉米不同生育階段干旱的時空間分布特征進行了分析,指出河北大部分地區(qū)處于華北干旱中心。王宏等[10]通過研究河北省承德地區(qū)春玉米需水量,得出氣象因子與春玉米發(fā)育中期的日最高氣溫、平均氣溫、風(fēng)速、日照時數(shù)具有正相關(guān)關(guān)系。但上述研究采用的空間尺度較大,針對黑龍港夏玉米全生育時期及各生育階段的降水量、需水量、水分虧缺等空間分布特征及變化趨勢尚缺乏研究。
因此,在氣候變暖及河北地區(qū)休耕、地下水壓采的背景下[11],從時空角度明確夏玉米自然降水與需水的匹配度,是提高該區(qū)域夏玉米生長季降水利用效率、促進玉米生產(chǎn)的關(guān)鍵。本研究依據(jù)黑龍港流域18個氣象站1966—2015年的逐日氣象資料及有關(guān)玉米生育時期觀測數(shù)據(jù),對黑龍港流域夏玉米全生育期各生育階段有效降雨量、需水量、干旱指數(shù)、氣候傾向率、干旱頻率的時空分布規(guī)律及變化特征進行了分析,探討主要氣象因子與黑龍港夏玉米需水量及區(qū)域平均單產(chǎn)的相關(guān)關(guān)系。以期進一步優(yōu)化該區(qū)域夏玉米生產(chǎn)策略,提高區(qū)域降水資源利用效率,為黑龍港夏玉米高產(chǎn)穩(wěn)產(chǎn)提供理論依據(jù)。
黑龍港流域位于河北省東南部(36°03′N~39°04′N,114°20′E~117°48′E),屬華北平原低平原區(qū),是海河平原重要組成部分,全年日照時數(shù)約2 550 h,多年平均氣溫11.7~13.3 ℃,全年平均降水量510~680 mm[12];本研究中黑龍港區(qū)域包括滄州、衡水市的全部,邢臺市的10個縣(隆堯、寧晉、巨鹿、新河、廣宗、平鄉(xiāng)、威縣、清河、臨西、南宮),邯鄲市的10個縣(臨漳、成安、大名、肥鄉(xiāng)、邱縣、雞澤、廣平、館陶、魏縣、曲周)、保定市的5個縣(高陽、安新、蠡縣、博野、雄縣)及廊坊市的2個縣(大城、文安)(圖1)。
圖1 研究區(qū)域與地面氣象觀測站分布
選取黑龍港流域18個地面氣象觀測站1966—2015年的日尺度氣象資料(中國氣象局國家氣象信息中心提供),包括氣溫(最高、最低、平均)、平均相對濕度、風(fēng)速、日照時數(shù)、降雨量以及各氣象站點經(jīng)緯度等地理特征數(shù)據(jù);分別調(diào)查大城縣、南皮縣、深州縣、巨鹿縣、曲周縣等5個典型地區(qū)常規(guī)品種(鄭單958)的實際播種和收獲時間,并詳細記錄各生育階段日期(表1),各氣象站點所在區(qū)域的播種、拔節(jié)期、吐絲期、灌漿初期和生理成熟的日期由其臨近的典型區(qū)域記錄的物候期所確定。結(jié)合夏玉米的生長發(fā)育過程[13]及FAO-56劃分原則[14],將玉米整個生育期劃分為4個生育階段:苗期階段(播種—拔節(jié)期)、穗期階段(拔節(jié)期—吐絲期)、成粒階段(吐絲期—灌漿初期)、灌漿階段(灌漿初期—生理成熟);夏玉米產(chǎn)量數(shù)據(jù)來自2007—2016年 《河北省農(nóng)村統(tǒng)計年鑒》。
表1 夏玉米各生育期在各典型地區(qū)的生長時段
1.3.1 玉米需水量計算
采用FAO推薦的分段單值平均作物系數(shù)法計算玉米逐日需水量[15]。玉米各生育期內(nèi)需水量及總需水量由生育期內(nèi)逐日需水量累加得出。根據(jù)玉米不同生長階段的作物系數(shù)可以計算得到玉米需水量如式(2)所示
1.3.2 生育期內(nèi)有效降雨量
1.3.3 生育期水分虧缺指數(shù)與干旱頻率
作物水分虧缺指數(shù)(Crop Water Deficit Index,CWDI)是用來表示夏玉米水分虧缺程度的常用指標,因此結(jié)合前人研究[18],通過式(5)計算水分虧缺指數(shù)。
作物水分虧缺狀況可以通過CWDI直接反應(yīng),當(dāng)CWDI≤0時,表示有效自然降水能夠滿足玉米需水量,當(dāng)CWDI>0時,表示有效自然降水不能滿足玉米需水量,且當(dāng)CWDI≥0.35時,玉米將發(fā)生干旱?,F(xiàn)參考國家標準《農(nóng)業(yè)干旱等級》以及萬能涵[9]等指標的設(shè)定,對CWDI值進行了分級,見表2。
表2 基于作物水分虧缺指數(shù)的農(nóng)業(yè)干旱等級
某一站點某一生育階段干旱發(fā)生的年次數(shù)與氣象資料總年數(shù)之比,即為夏玉米不同生育階段各干旱等級的發(fā)生頻率如式(6)所示
/(6)
式中為統(tǒng)計資料的總年數(shù),本研究為50年;為年中該生育階段出現(xiàn)的某一干旱等級的次數(shù)。
1.3.4 氣候傾向率
采用最小二乘法,將氣象要素變化趨勢用一次線性方程表示如式(7)所示
通過Python、Microsoft Excel對氣象站數(shù)據(jù)進行整理;利用SPSS19.0進行相關(guān)性、顯著性分析;利用ArcGIS10.2軟件的反距離加權(quán)法(Inverse Distance Weighted,IDW)進行空間插值并作圖。
黑龍港流域1966—2015年夏玉米生育期及各生育階段有效降水量的時空分布(圖2)。由圖2a所示,全生育期有效降水量總體呈由東北向西南逐漸減少趨勢,變化范圍在292.89~361.56 mm,平均為326.46 mm;各生育階段有效降水量空間分布如圖2b~圖2e,苗期、穗期2個階段有效降水量均自東北向西南呈逐漸減少趨勢,成粒、灌漿2個階段有效降水量自東北向西南呈逐漸增加趨勢。各生育階段平均有效降水量順序依次為:穗期階段107.64 mm、苗期階段131.09 mm、成粒階段67.63 mm、灌漿階段19.93 mm,分別占全生育期的比例依次為40.15%、32.97%、20.72%和6.10%。
圖2 1966—2015年玉米全生育期及各生育階段有效降水量空間分布
近50年來,黑龍港流域夏玉米全生育期有效降水量呈降低趨勢(圖3a),氣候傾向率變化范圍為-28.90~0.04 mm/10a,平均為-11.76 mm/10a;各生育階段氣候傾向率空間分布情況如圖3a~圖3e,苗期、穗期和成粒3個階段的有效降水量總體呈下降趨勢,穗期階段下降最快為-9.70 mm/10a,而灌漿階段有效降水量總體呈增加趨勢,為1.04 mm/10a。從黑龍港流域全域來看,黑龍港北部地區(qū)有效降水量在苗期、穗期、成粒3個階段均呈下降趨勢,范圍在-8.00~-34.00 mm/10a之間,灌漿階段呈上升趨勢。中部地區(qū)有效降水量在苗期、穗期、灌漿3個階段呈下降趨勢,范圍在0~-15.80 mm/10a之間,成粒階段呈上升趨勢。南部地區(qū)有效降水量在穗期、成粒2個階段呈下降趨勢,范圍在-5.00~-13.00 mm/10a之間,在苗期、灌漿2個階段呈上升趨勢。
圖3 1966—2015年玉米全生育期及各生育階段有效降水量氣候傾向率空間分布
黑龍港流域1966—2015年夏玉米全生育期及各生育階段需水量的時空分布(圖4)。由圖4a可知,全生育期年均需水量總體由西南向東北方向逐漸減少,變化范圍在362.82~444.04 mm,平均值395.45 mm;各生育階段需水量分布如圖4b~圖4e,4個階段需水量整體均呈自東北向西南增加趨勢。各生育階段平均需水量順序依次為:穗期階段141.22 mm、成粒階段133.35 mm、苗期階段86.62 mm、灌漿階段34.20 mm。分別占全生育期的比例依次為35.71%、33.72%、21.90%、和8.65%。
圖4 1966—2015年全生育期及各生育階段需水量空間分布
近50年來,黑龍港流域全生育期年均需水量除中部偏西地區(qū)呈逐年上升趨勢外,其余地區(qū)均呈下降趨勢(圖 5a),需水量變化趨勢(指需水量與時間線性回歸的斜率)為-20.20~25.39 mm/10a,平均為-6.26 mm/10a;各生育階段需水量變化趨勢空間分布如圖 5a~圖5e,4個階段的需水量均呈下降趨勢,其中苗期下降最快為-2.50 mm/10a。從黑龍港流域全域來看,中部偏西地區(qū)在4個階段均呈上升趨勢,范圍在0~25.39 mm/10a之間,中部偏東地區(qū)在4個階段均呈下降趨勢。南部與北部地區(qū)在4個階段均呈下降趨勢,但南部下降速率要高于北部地區(qū)。南部及北部需水量下降速率范圍分別為-3.00~-21.00 mm/10a和-2.00~-15.00 mm/10a。
圖5 1966—2015年玉米全生育期及各生育階段需水量變化趨勢空間分布
如圖6a可知,全生育期作物水分虧缺指數(shù)(CWDI)高值區(qū)分布在中部,低值區(qū)分布在北部,變化趨勢在0.07~0.26之間,平均值為0.17;各生育階段CWDI空間分布如圖6b~圖6e。苗期、穗期2個階段(圖6b~圖6c)CWDI均小于0.35,水分虧缺區(qū)域主要集中在中南部;成粒階段CWDI范圍為0.42~0.57,平均值為0.49,全域達到輕旱及以上水平,北部地區(qū)為中旱區(qū),中部和南部地區(qū)為輕旱區(qū);灌漿階段CWDI范圍為0.13~0.65,平均值為0.41,南部地區(qū)為無旱區(qū),北部地區(qū)為輕旱區(qū),中部偏東地區(qū)為中旱區(qū)??梢姡邶埜勰喜康貐^(qū)在成粒階段容易出現(xiàn)輕旱,北部及中部地區(qū)在成粒、灌漿階段容易出現(xiàn)干旱,且最高達中度干旱。
圖6 1966—2015年玉米全生育期及各生育階段作物水分虧缺指數(shù)CWDI空間分布
由近50年各生育階段干旱發(fā)生頻率的空間分布可知(圖7),黑龍港中部及北部地區(qū)干旱發(fā)生頻率大于南部地區(qū),且主要發(fā)生在成粒和灌漿2個階段。南部地區(qū)4個生育階段發(fā)生干旱的年份占比均超33.3%。中部與北部地區(qū)成粒和灌漿階段發(fā)生干旱的年份占比均超66.6%。由表3所示,1966—2015年,苗期、穗期2個階段發(fā)生干旱的頻率分別為25.77%和35.22%,且出現(xiàn)輕旱的頻率最大,分別為9.11%和11.67%。成粒階段發(fā)生干旱的頻率為68.11%,出現(xiàn)重旱的頻率最大為22.11%。灌漿階段發(fā)生干旱頻率為64.10%,出現(xiàn)特旱的頻率最大,為30.44%。從全生育期看,50年來發(fā)生干旱頻率為48.30%,根據(jù)各干旱等級頻率排序為:特旱(14.67%)>重旱(12.44%)>中旱(11.11%)>輕旱(10.08%)。
圖7 1966—2015年玉米各生育階段干旱頻率的空間分布
表3 玉米全生育期及不同生育階段各干旱等級發(fā)生頻率
由典型地區(qū)需水量與主要氣象因子的相關(guān)性分析表明(表4),平均最高氣溫、平均日照時數(shù)與需水量呈正相關(guān)關(guān)系,平均相對濕度與需水量成負相關(guān)關(guān)系,且5個氣象站規(guī)律一致。從氣候傾向率及其顯著性來看,5個典型氣象站的平均氣溫、平均最低氣溫顯著增加,平均日照時數(shù)、平均風(fēng)速顯著降低。從需水量來看,5個氣象站需水量均呈降低趨勢,其中4個站呈極顯著降低趨勢??梢?,夏玉米需水量的顯著降低與平均日照時數(shù)和平均風(fēng)速的顯著降低有關(guān)。平均單產(chǎn)與有效積溫具有顯著性正相關(guān)關(guān)系,相關(guān)系數(shù)為0.52(<0.05)。有效降水量、日照時數(shù)與平均單產(chǎn)的相關(guān)系數(shù)分別為-0.40和0.11,相關(guān)性不顯著。表明玉米平均單產(chǎn)主要受生育期內(nèi)熱量資源的影響,生育期內(nèi)有效降水、日照時數(shù)與玉米平均單產(chǎn)相關(guān)性不明確,這可能是因為生育期內(nèi)補充灌溉掩蓋了上述因素對產(chǎn)量的影響。
表4 影響夏玉米需水量的氣象因子分析
注:*為通過顯著性檢驗(<0.05),**為通過極顯著性檢驗(<0.01)。
Note: * for the significance of the test (<0.05), ** for the extreme significance test (<0.01).
在氣候變化的背景下,近年來華北地區(qū)缺水日益嚴重、干旱頻發(fā)[20]。提高作物的降水利用效率、穩(wěn)定產(chǎn)量成為黑龍港農(nóng)業(yè)研究的重要課題之一[21-22]。本研究結(jié)果表明,黑龍港全域有效降水均不能滿足夏玉米生育期水分需求,尤其是中部地區(qū)缺水最為嚴重。從時空角度分析,由于降水與需水的時空間分布不平衡,導(dǎo)致北部地區(qū)在成粒、灌漿階段容易出現(xiàn)旱情,西南部地區(qū)在成粒階段容易出現(xiàn)旱情。本研究當(dāng)中,穗期階段干旱發(fā)生頻率為35.22%,且南部地區(qū)高于北部地區(qū)。前人研究表明,穗期是作物需水臨界期,缺水會導(dǎo)致玉米雌穗生長發(fā)育受到抑制,授粉受精不良,嚴重影響玉米產(chǎn)量[23-24],即使之后有充足的水分供應(yīng)對產(chǎn)量的影響也難以恢復(fù)[25]。因此,嚴防穗期階段出現(xiàn)的干旱對于保證該區(qū)夏玉米穩(wěn)產(chǎn)具有重要意義。本研究表明,尤其是北部和中部地區(qū),成粒與灌漿階段水分虧缺比較嚴重,干旱發(fā)生頻率均超66.6%。因此,該區(qū)域應(yīng)選用抗旱能力強、生育期短、灌漿速率高的品種[26]。也可以通過秸稈還田和深松等措施提高土壤儲水能力,促使夏季降水補充地下水,達到夏水秋用的目的[27-28]。
近年來,隨著對黑龍港流域地下水超采的治理,冬小麥面積不斷壓縮[11,29]。因此,該地區(qū)玉米生產(chǎn)就出現(xiàn)了春播、夏播、早夏播(晚春播)等多種種植形式。從熱量資源角度來考慮,早播可延長玉米生長期,增加熱量,從而有利于實現(xiàn)玉米高產(chǎn)[30]。有研究表明,影響華北平原春玉米生長發(fā)育和產(chǎn)量的最重要氣象因子是總降雨量[1]。黑龍港流域降水高峰主要集中在7—8月份,約占全年降水量的68.7%,而4—6月份處于干旱階段[31]。從生長發(fā)育進程來判斷,春播和早夏播玉米在吐絲期前易受到干旱脅迫,而不利于籽粒形成。灌漿期又正好處于陰雨寡照階段,又不利于籽粒灌漿[32]。因此,從降水資源角度出發(fā),黑龍港流域并不適合玉米春播或早夏播,生產(chǎn)優(yōu)勢依然是夏玉米。本研究表明,黑龍港夏玉米苗期、穗期2個階段有效降水量為238.73 mm,占全生育期的73.21%,而成粒、灌漿2個階段有效降水量明顯低于同期玉米需水量,水分平均虧缺33.26 mm。所以,有必要在當(dāng)前種植制度下,開展多點田間播期試驗,進一步量化玉米需水量、有效降水量和產(chǎn)量之間的關(guān)系,提高夏玉米需水臨界期與降水的時空耦合度,為黑龍港夏玉米穩(wěn)產(chǎn)提供更多理論依據(jù)。
1)1966—2015年黑龍港流域玉米生育期年均有效降水量變化范圍在292.89~361.56 mm,平均值為326.46 mm,總體呈“東北高,西南低”的趨勢。需水量變化范圍在362.82~444.04 mm,平均值395.45 mm,總體呈“南部高,北部低”的趨勢;苗期、穗期、成粒和灌漿階段有效降水量分別占全生育期的32.97%、40.15%、20.72%和6.10%。需水量分別占全生育期的35.71%、33.72%、21.90%和8.65%。
2)近50年來全生育期有效降水量、需水量總體均呈逐年下降趨勢,變化趨勢分別為-11.76 mm/10a和-6.26 mm/10a,且需水量的降低與平均日照時數(shù)和平均風(fēng)速的顯著降低有關(guān);從全生育期看,有效降水量在穗期階段下降最快,為-9.70 mm/10a。需水量在苗期下降最快,為-2.50 mm/10a。
3)黑龍港夏玉米發(fā)生干旱頻率為48.30%。其中南部地區(qū)4個生育階段發(fā)生干旱的年份占比均超33.3%。中部與北部地區(qū)成粒和灌漿階段發(fā)生干旱的年份占比均超66.6%。
4)苗期、穗期2階段水分虧缺區(qū)域主要在中南部。成粒、灌漿階段的作物水分虧缺指數(shù)(Crop Water Deficit Index,CWDI)均值分別為0.49和0.41,其中黑龍港南部地區(qū)在成粒階段容易出現(xiàn)輕旱,北部及中部地區(qū)在成粒、灌漿階段容易出現(xiàn)干旱,且最高達中度干旱。
[1] 明博,朱金城,陶洪斌,等. 黑龍港流域玉米不同生育階段氣象因子對產(chǎn)量性狀的影響[J]. 作物學(xué)報,2013,39(5):919-927. Ming Bo, Zhu Jincheng, Tao Hongbin, et al. Effects of meteorological factors at different growth stages on yield traits of maize (L. ) in Heilonggang Basin[J]. Acta Agronomica Sinica, 2013, 39(5): 919-927. (in Chinese with English abstract)
[2] 劉玉春,姜紅安,李存東,等. 河北省棉花灌溉需水量與灌溉需求指數(shù)分析[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(19):98-104. Liu Yuchun, Jiang Hongan, Li Cundong, et al. Analysis of irrigation water requirement and irrigation requirement index for cotton of Hebei province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 98-104. (in Chinese with English abstract)
[3] 李春強,李保國,洪克勤. 河北省近35年農(nóng)作物需水量變化趨勢分析[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2009,17(2):359-363. Li Chunqiang, Li Baoguo, Hong Keqin. Trend of crop water requirement in recent 35 years in Hebei province[J]. Chinese Journal of Eco-Agriculture. 2009, 17(2): 359-363. (in Chinese with English abstract)
[4] 于海磊,吳息,李珊,等. 衡水地區(qū)冬小麥生長后期需水量變化特征[J]. 湖北農(nóng)業(yè)科,2016,55(14):3546-3548,3554. Yu Hailei, Wu Xi, Li Shan. et al. The characteristics of water requirement change during the later growth stage of winter wheat in Hengshui[J]. Hubei Agricultural Sciences, 2016, 55(14): 3546-3548, 3554. (in Chinese with English abstract)
[5] 曹永強,趙博雅,袁立婷. 保定市主要作物需水量和缺水量特征分析[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2018,39(8):150-157. Cao Yongqiang, Zhao Yabo, Yuan Liting. Analysis of the water demand and water shortage in main crops in Baoding city[J]. Chinese Journal of Agricultural Resources and Regional Planning. 2018, 39(8): 150-157. (in Chinese with English abstract)
[6] 曹永強,朱明明,李維佳. 河北省典型區(qū)主要作物有效降雨量和需水量特征[J]. 生態(tài)學(xué)報,2018,38(2):560-570. Cao Yongqiang, Zhu Mingming, Li Weijia. Effective precipitation and water requirements of crops in Hebei province over 60 years[J]. Acta Ecologica Sinica, 2018, 38(2): 560-570. (in Chinese with English abstract)
[7] 曹永強,李曉瑞. 河北省夏玉米主產(chǎn)區(qū)作物需水量和缺水量研究[J]. 中國農(nóng)村水利水電,2018,2018(10):141-147,152. Cao Yongqiang, Li Xiaorui. Research on the crop water demand and water shortage in the main producing areas of summer maize in Hebei province[J]. China Rural Water and Hydropower, 2018, 2018(10): 141-147, 152. (in Chinese with English abstract)
[8] 曹永強,劉明陽,張路方. 河北省夏玉米需水量變化特征及未來可能趨勢[J]. 水利經(jīng)濟,2019,37(2):46-52,87. Cao Yongqiang, Liu Mingyang, Zhang Lufang, Variation characteristics of water demand of summer maize crop and possible future trends in Hebei province[J]. Journal of Economics of Water Resources, 2019, 37(2): 46-52, 87. (in Chinese with English abstract)
[9] 萬能涵,楊曉光,劉志娟,等. 氣候變化背景下中國主要作物農(nóng)業(yè)氣象災(zāi)害時空分布特征(Ⅲ):華北地區(qū)夏玉米干旱[J]. 中國農(nóng)業(yè)氣象,2018,39(4):209-219. Wan Nenghan, Yang Xiaoguang, Liu Zhijuan, et al. Temporal and spatial variations of agro-meteorological disasters of main crops in China in a changing climate (Ⅲ): Drought of summer maize in North China Plain[J]. Chinese Journal of Agrometeorology, 2018, 39(4): 209-219. (in Chinese with English abstract)
[10] 王宏,譚國明,孫慶川,等. 承德春玉米需水量變化及其與氣象因子的關(guān)系[J]. 氣象與環(huán)境學(xué)報,2012,28(4):69-72. Wang Hong, Tan Guoming, Sun Qingchuan, et al. Variation of spring corn water requirement and its relationship with the meteorological factors in Chengde, Hebei province[J]. Journal of Meteorology and Environment, 2012, 28(4): 69-72. (in Chinese with English abstract)
[11] 王學(xué),李秀彬,辛良杰,等. 華北地下水超采區(qū)冬小麥退耕的生態(tài)補償問題探討[J]. 地理學(xué)報,2016,71(5):829-839. Wang Xue, Li Xiubin, Xin Liangjie, et al. Ecological compensation for winter wheat abandonment in groundwater over-exploited areas in the North China Plain[J]. Journal of Geographical Sciences, 2016, 71(5): 829-839. (in Chinese with English abstract)
[12] 鄭鑫. GIS支持下的黑龍港地區(qū)土地生產(chǎn)潛力研究[D]. 北京:北京林業(yè)大學(xué),2011. Zheng Xin. Study on Land Productivity Potential of Heilonggang Region Based on GIS[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract)
[13] 周玉芝,段會軍,姬惜珠,等. 河北省夏播玉米品種主要農(nóng)藝性狀演變規(guī)律的研究[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2005,28(2):1-4,22. Zhong Yuzhi, Duan Huijun, Ji Xizhu, et al. Study on the developing rule of summer-planting maize varieties in Hebei province[J]. Journal of Agricultural University of Hebei, 2005, 28(2): 1-4, 22. (in Chinese with English abstract)
[14] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements[M]. Rome: Food and Agriculture Organization of United Nation, 1998.
[15] 劉鈺,Pereira L S. 對FAO推薦的作物系數(shù)計算方法的驗證[J]. 農(nóng)業(yè)工程學(xué)報,2000,16(5):26-30. Liu Yu, Pereira L S. Validation of FAO methods for estimating crop coefficients[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 26-30. (in Chinese with English abstract)
[16] 曹永強,李曉瑞,朱明明. 河北省主要作物系數(shù)時空分布特征[J]. 水利水電科技進展,2019,39(2):37-45. Cao Yongqiang, Li Xiaorui, Zhu Mingming. Spatial and temporal distribution characteristics of main crop coefficients in Hebei province[J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 37-45. (in Chinese with English abstract)
[17] 朱明明. 河北省主要作物全生育期有效降雨量及需水規(guī)律研究[D]. 沈陽:遼寧師范大學(xué),2017. Zhu Mingming. Effective Precipitation and Water Requirements of Main Crops in Whole Growth Period in Hebei Province over 60 Years[D]. Shenyang: Liaoning Normal University, 2017. (in Chinese with English abstract)
[18] 郭進考,史占良,何明琦,等. 發(fā)展節(jié)水小麥緩解北方水資源短缺—以河北省冬小麥為例[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2010,18(4):876-879. Guo Jinkao, Shi Zhanliang, He Mingqi, et al. Developing of water-saving wheat cultivars to limit water shortage in North China: A case study of Hebei province[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 876-879. (in Chinese with English abstract)
[19] 康紹忠,蔡煥杰. 農(nóng)業(yè)水管理學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,1996.
[20] 胡亞南,李闊,許吟隆. 1951-2010年華北平原農(nóng)業(yè)氣象災(zāi)害特征分析及糧食減產(chǎn)風(fēng)險評估[J]. 中國農(nóng)業(yè)氣象,2013,34(2):197-203. Hu Yanan, Li Kuo, Xu Yinlong. Characteristic analysis of agricultural meteorological disasters and risk assessment of the crop loss in North China Plain during 1951-2010[J]. Chinese Journal of Agrometeorology, 2013, 34(2): 197-203. (in Chinese with English abstract)
[21] Zhang Xiying, Chen Suying, Liu Mengyu, et al. Improved water-use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005, 97(3): 783-790.
[22] 董寶娣,張正斌,劉孟雨,等. 小麥不同品種的水分利用特性及對灌溉制度的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(9):27-33. Dong Baodi, Zhang Zhengbin, Liu Mengyu, et al. Water use characteristics of different wheat varieties and their responses to different irrigation schedulings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 27-33. (in Chinese with English abstract)
[23] Wang Fei, Wang Zongmin, Yang Haibo, et al. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI[J]. Science China Earth Sciences, 2018, 61(8): 1098-1111.
[24] 宋鳳斌,戴俊英. 干旱脅迫對玉米雌穗生長發(fā)育和產(chǎn)量的影響[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報,2000,22(1):18-22. Song Fengbin, Dai Junying. Effect of drought stress on growth and developing of female inflorescence and yield of maize[J]. Journal of Jilin Agricultural University, 2000, 22(1): 18-22. (in Chinese with English abstract)
[25] 王同朝,李小艷,杜園園,等. 時空交替間隔灌溉對夏玉米田水分和產(chǎn)量形成的影響[J]. 華北農(nóng)學(xué)報,2013,28(4):115-122. Wang Tongchao, Li Xiaoyan, Du Yuanyuan, et al. Effects of tempo-spatial alternate furrow irrigation on farmland moisture and yield formation in summer maize[J]. Acta Agriculturae Boreali Sinica, 2013, 28(4): 115-122. (in Chinese with English abstract)
[26] 魏湜. 玉米生態(tài)基礎(chǔ)[R]. 北京:中國農(nóng)業(yè)出版社,2010.
[27] 孔凡磊,張海林,翟云龍,等. 耕作方式對華北冬小麥—夏玉米周年產(chǎn)量和水分利用的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2014,22(7):749-756. Kong Fanlei, Zhang Hailin, Zai Yunlong, et al. Effects of tillage methods on crop yield and water use characteristics in winter-wheat/summer-maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7): 749-756. (in Chinese with English abstract)
[28] 趙亞麗,薛志偉,郭海斌,等. 耕作方式與秸稈還田對冬小麥-夏玉米耗水特性和水分利用效率的影響[J]. 中國農(nóng)業(yè)科學(xué),2014,47(17):3359-3371. Zhao Yali, Xue Zhiwei, Guo Haibin, et al. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. (in Chinese with English abstract)
[29] 王學(xué),李秀彬,辛良杰,等. 華北平原農(nóng)戶主動退耕冬小麥的影響因素模型分析及政策啟示[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(9):248-257. Wang Xue, Li Xiubin, Xin Liangjie, et al. Driving factors on winter wheat abandonment by farmers in North China Plain and its policy implication[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 248-257. (in Chinese with English abstract)
[30] 劉明,陶洪斌,王璞,等. 播期對春玉米生長發(fā)育、產(chǎn)量及水分利用的影響[J]. 玉米科學(xué),2009,17(2):108-111. Liu Ming, Tao Hongbin, Wang Pu, et al. Effects of sowing date on growth, yield formation and water utilization of spring maize[J]. Journal of Maize Sciences, 2009, 17(2): 108-111. (in Chinese with English abstract)
[31] 雷廷,張兆吉,費宇紅,等. 海河平原1956年—2011年降水特征分析[J]. 南水北調(diào)與水利科技,2014,12(1):32-36,41. Lei Ting, Zhang Zhaoji, Fei Yuhong, et al. Analysis of precipitation characteristics in the Haihe River Plain from 1956 to 2011[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(1): 32-36, 41. (in Chinese with English abstract)
[32] 孫宏勇,張喜英,陳素英,等. 氣象因子變化對華北平原夏玉米產(chǎn)量的影響[J]. 中國農(nóng)業(yè)氣象,2009,30(2):215-218. Sun Hongyong, Zhang Xiying, Chen Suying, et al. Effect of meteorological factors on grain yield of summer maize in the North China Plain[J]. Chinese Journal of Agrometeorology, 2009, 30(2): 215-218. (in Chinese with English abstract)
Characteristics of spatial-temporal distribution of precipitation, water requirement and drought for summer maize growth period in Heilonggang Basin
Wei Zhongbo, Bian Dahong, Du Xiong, Pushpa Raj, Cui Yanhong※
(071001)
The severe over-exploitation of groundwater led to the problems of extreme water shortage and restricted irrigation in the Heilonggang Basin. Effective use of natural precipitation was one of the key approaches to solve the problem of water requirement for maize production in the Heilonggang Basin. The objective of this study was to analyze spatial-temporal distribution characteristics of effective precipitation and water requirement for maize production and define the water deficit region. Daily meteorological data from 18 surface meteorology stations from 1966 to 2015 were collected and phenological data of summer maize in 5 typical regions of the Heilonggang Basin were observed. The calculated index included effective precipitation, water requirement, the Crop Water Deficit Index (CWDI), the frequency of drought, and the correlation between water demand and meteorological factors during the maize whole growing period and 4 important stages. The water requirement of maize was estimated by using the Penman-Monteith equation of the Food and Agriculture Organization and crop coefficient method, and the crop coefficient of summer maize was identified by previous research of Hebei Province. The spatial distribution and evolution trend of drought for summer maize in different growth stages were analyzed by using the CWDI. Furthermore, analyzing the temporal and spatial distribution characteristics of the all calculated index in the whole growing period and each growth stage of maize was drew by the Inverse Distance Weighted (IDW) method of ArcGIS. The results showed that the range of annual effective precipitation in the summer maize growth period was from 292.89 mm to 361.56 mm, an average of the whole growth period was 326.46 mm, and the spatial distribution of effective precipitation during the whole growth period was showed a trend of ‘high in northeast and low in the southwest’. The annual average water requirement for maize ranged from 362.82 mm to 444.04 mm with an average of 395.45 mm during the whole growing period, and the spatial distribution of water requirement showed a trend of ‘higher in the south and lower in the north’. Total effective precipitation and water requirement during the whole growth period showed a downward trend year by year, and the climate tendency rates were -11.76 mm/10aand -6.26 mm/10a, respectively. Correlation analysis showed that the reduction in water requirement was related to a significant reduction in average sunshine hours and average wind speed. In the past 50 years, the drought frequency of summer maize during the whole growth period in the Heilonggang Basin was 48.30%. Among them, the proportion of drought-prone years of all the 4 growth stages were more than 33.3% in the southern regions and more than 66.6% during the kernel formation stage and grain filling stage both in the central and northern regions. The values of CWDI were less than 0.35 from the seedling stage to the ear developing stage and the water deficit regions were mainly concentrated in the central and southern regions. The average values of CWDI during the kernel formation stage and the grain filling stage were 0.49 and 0.41 respectively. The southern region of the Heilonggang basin was prone to light drought during the kernel development stage.The kernel formation stage and the grain filling stage were prone to occur drought in central and northern regions of the Heilonggang Basin, and the highest drought level reached moderate drought. Hybrid cultivars with higher drought resistance, shortened growth period and a higher rate of grain filling were recommended in the Heilonggang Basin to improve the drought resistance of summer maize, and soil water supply capacity could be increased through techniques such as subsoiling and straw-returning. This study could provide a theoretical basis for the efficient use of precipitation resources for summer maize in the Heilonggang Basin.
precipitation; evapotranspiration; drought; water requirement; spatial-temporal distribution; summer maize
魏鐘博,邊大紅,杜雄,等. 黑龍港流域夏玉米生育期降水、需水和干旱時空分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(9):124-133.doi:10.11975/j.issn.1002-6819.2020.09.014 http://www.tcsae.org
Wei Zhongbo, Bian Dahong, Du Xiong, et al. Characteristics of spatial-temporal distribution of precipitation, water requirement and drought for summer maize growth period in Heilonggang Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 124-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.014 http://www.tcsae.org
2019-12-01
2020-03-25
國家科技支撐計劃“糧食豐產(chǎn)科技工程”(2017YFD0300903);河北省玉米產(chǎn)業(yè)體系(HBCT2018020101)
魏鐘博,博士生,主要從事作物高產(chǎn)生態(tài)生理研究。Email:qqwzb88@126.com
崔彥宏,教授,主要從事作物高產(chǎn)優(yōu)質(zhì)理論與技術(shù)研究。Email:cyh@hebau.edu.cn
10.11975/j.issn.1002-6819.2020.09.014
S274.1
A
1002-6819(2020)-09-0124-10