国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤應(yīng)力分布均勻性分析

2020-06-20 02:40李耀明任利東
關(guān)鍵詞:行走機(jī)構(gòu)履帶峰值

丁 肇,李耀明,任利東,唐 忠

履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤應(yīng)力分布均勻性分析

丁 肇1,李耀明1,任利東2,唐 忠1

(1. 江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,鎮(zhèn)江 212013;2. 比利時(shí)根特大學(xué)生物科學(xué)工程學(xué)院環(huán)境系,Ghent 9000)

履帶式行走機(jī)構(gòu)因具有較小的接地壓力而被逐漸應(yīng)用在大型農(nóng)業(yè)車輛上,以減小對土壤的壓實(shí)。然而由于履帶下應(yīng)力分布的不均勻,導(dǎo)致農(nóng)業(yè)車輛對土壤的最大應(yīng)力并未有效減小,對土壤較長的壓力作用時(shí)間反而增加了土壤被壓實(shí)的風(fēng)險(xiǎn)。應(yīng)力分布的不均勻還會(huì)造成履帶沉陷量的增大,降低車輛在軟土地面的通過性能。為了研究履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的應(yīng)力分布規(guī)律以及如何提高應(yīng)力分布的均勻性,以緩解履帶車輛對土壤壓實(shí)作用、提高履帶車輛軟地通過能力,該文采用側(cè)斷面水平鉆孔埋設(shè)壓力傳感器的方法,測得了履帶式行走機(jī)構(gòu)壓實(shí)作用下履帶中心線橫截面內(nèi)0.35 m深度土壤內(nèi)沿履帶長度方向上的垂直及水平應(yīng)力分布;同時(shí)研究了履帶張緊力大小對應(yīng)力分布均勻性的影響。結(jié)果表明,履帶式行走機(jī)構(gòu)下的垂直應(yīng)力在各負(fù)重輪的軸線處呈現(xiàn)一個(gè)應(yīng)力峰值;水平應(yīng)力在各負(fù)重輪軸線的前、后方分別呈現(xiàn)一個(gè)應(yīng)力峰值,且最小應(yīng)力在軸線處。各負(fù)重輪下的應(yīng)力峰值大小不同。最大垂直應(yīng)力出現(xiàn)在履帶式行走機(jī)構(gòu)后端的導(dǎo)向輪處;最大水平應(yīng)力出現(xiàn)在后支重輪與導(dǎo)向輪之間。適當(dāng)減小履帶張緊力能夠提高垂直及水平應(yīng)力分布的均勻性。履帶張緊力由1.8×104kPa減小至1.6×104kPa時(shí),履帶下的最大垂直及水平應(yīng)力分別減小了約37.3% 和21.7%;平均最大垂直及水平應(yīng)力分別減小了約26.4%和20.4%。研究結(jié)果可為履帶式行走機(jī)構(gòu)結(jié)構(gòu)的優(yōu)化提供理論依據(jù),以期提高履帶下應(yīng)力分布的均勻性。

農(nóng)業(yè)機(jī)械;應(yīng)力;行走機(jī)構(gòu);分布均勻性;履帶;土壤壓實(shí)

0 引 言

農(nóng)業(yè)車輛的逐步大型化增加了對農(nóng)田土壤的壓實(shí)風(fēng)險(xiǎn)[1-2]。車輛對土壤的壓實(shí)應(yīng)力將土壤中較小的團(tuán)聚體壓縮成為具有更高容重和機(jī)械強(qiáng)度的大團(tuán)聚體,限制了植物根系的生長,影響作物根系對水分及養(yǎng)分的吸收,導(dǎo)致農(nóng)作物產(chǎn)量降低[3-7]。

履帶相比較于輪胎因具有較大的接地面積而被逐漸應(yīng)用在大型農(nóng)業(yè)車輛上,以緩解對土壤的壓實(shí)[8]。然而,履帶式行走機(jī)構(gòu)是由柔性履帶將驅(qū)動(dòng)輪、導(dǎo)向輪及支重輪包圍所組成的復(fù)雜整體。履帶與支重輪及地面間的相互接觸關(guān)系復(fù)雜,表現(xiàn)為履帶與土壤接觸面應(yīng)力分布的不均勻[9],導(dǎo)致履帶壓實(shí)作用下土壤內(nèi)的最大應(yīng)力并未有效的減小,在一定程度上降低了履帶緩解對土壤壓實(shí)的能力。Keller等[10]測試了履帶車輛壓實(shí)作用下0.3 m深度土壤內(nèi)的垂直應(yīng)力沿履帶長度方向上的分布,發(fā)現(xiàn)垂直應(yīng)力的分布極不均勻,其最大應(yīng)力約為平均應(yīng)力的3.2倍。Lamandé等[11]比較了同一車輛分別采用輪式和履帶式行走機(jī)構(gòu)時(shí)對土壤的垂直應(yīng)力。研究發(fā)現(xiàn)雖然履帶的接地面積約為輪胎的2.2倍,但履帶下0.35 m深度土壤內(nèi)的最大垂直應(yīng)力相比較于輪胎僅減小了約0.2倍;所測得履帶下的最大垂直應(yīng)力約為平均垂直應(yīng)力的3.8倍。丁肇等[12]研究了相同載質(zhì)量的輪式及履帶式車輛行走對農(nóng)田土壤功能的影響,研究發(fā)現(xiàn)履帶壓實(shí)作用下0.15和0.35 m深度內(nèi)土壤的透氣率均明顯小于輪胎,但先期固結(jié)壓力及干容重?zé)o顯著區(qū)別。這說明與輪胎相比,履帶并未減輕對土壤的壓實(shí)。該研究認(rèn)為造成這一現(xiàn)象的原因有兩點(diǎn):一是履帶下應(yīng)力分布的不均勻?qū)е峦寥纼?nèi)最大應(yīng)力相比較于輪胎并未有效的減??;二是履帶對土壤更長的壓實(shí)作用時(shí)間。另外,履帶與土壤接觸面壓力分布的不均勻還會(huì)增大履帶在軟土地面的沉陷量,從而增大車輛的行駛阻力,降低車輛的通過性能[13-15]。Rowland[16]提出了以最大平均接地壓力,即所有負(fù)重輪下的最大壓力的平均值,作為履帶車輛在軟土地面通過性的評價(jià)指標(biāo)。

土壤內(nèi)的壓實(shí)應(yīng)力是由車輛重力以及牽引力所引起的土壤壓縮(垂直)應(yīng)力與剪切(水平)應(yīng)力的組合[17]。土壤的壓實(shí)是由垂直應(yīng)力引起的土壤壓縮形變和水平應(yīng)力引起的土壤剪切形變共同作用的結(jié)果[18]。因此要探究履帶式行走機(jī)構(gòu)對土壤的壓實(shí)作用過程,需要對履帶壓實(shí)作用下土壤內(nèi)垂直及水平方向的應(yīng)力分布進(jìn)行研究。Lamandé等[11]測試了橡膠履帶式行走機(jī)構(gòu)與土壤接觸面內(nèi)垂直應(yīng)力沿履帶長度方向的分布,研究發(fā)現(xiàn)垂直應(yīng)力呈類似于正弦函數(shù)的分布形式,分別在各負(fù)重輪的軸線處呈現(xiàn)一個(gè)應(yīng)力峰值。栗浩展[19]等研究了金屬履帶式行走機(jī)構(gòu)與土壤接觸面內(nèi)的垂直應(yīng)力分布情況,發(fā)現(xiàn)垂直應(yīng)力沿履帶長度方向呈現(xiàn)不連續(xù)的近似三角形的分布形式,且最大應(yīng)力出現(xiàn)在各負(fù)重輪軸線處。

履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)應(yīng)力分布的均勻性與地面條件、行走機(jī)構(gòu)結(jié)構(gòu)型式、載質(zhì)量大小及作業(yè)工況等有關(guān)[16]。趙子涵等[20]研究了地面軟硬程度和車輛載質(zhì)量大小對垂直應(yīng)力分布均勻性的影響,測試表明在堅(jiān)實(shí)的地面條件下,各負(fù)重輪之間的履帶幾乎不承重,應(yīng)力呈非連續(xù)分布;而在松軟的地面條件下,履帶在長度方向上均承重,應(yīng)力呈連續(xù)分布,且載荷越大,各負(fù)重輪下的應(yīng)力分布越均勻。Keller等[10]研究發(fā)現(xiàn)履帶車輛在牽引作業(yè)時(shí),后端負(fù)重輪下的垂直應(yīng)力要大于前端負(fù)重輪,分析原因是車輛牽引作業(yè)造成車身重心向后端發(fā)生了偏移;在減小了牽引載荷后垂直應(yīng)力分布的不均勻性得到了明顯改善。該研究表明保持履帶車輛行駛過程中重心的平衡,是提高履帶下壓實(shí)應(yīng)力分布均勻性的有效手段之一。

綜上所述,研究履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的應(yīng)力分布規(guī)律,并尋求提高履帶下應(yīng)力分布均勻性的方法,是緩解履帶車輛對土壤壓實(shí)作用和提高履帶車輛軟地通過能力的關(guān)鍵。然而,目前的研究均針對履帶下土壤內(nèi)的垂直應(yīng)力分布進(jìn)行研究,對于水平方向應(yīng)力的分布規(guī)律尚不清楚。此外,由于履帶為柔性體,其張緊力的大小會(huì)影響履帶與負(fù)重輪及土壤之間的接觸情況,進(jìn)而影響履帶下的壓實(shí)應(yīng)力分布。因此有必要研究履帶張緊力大小對應(yīng)力分布均勻性的影響。本文通過在土壤內(nèi)埋設(shè)壓力傳感器,對履帶式行走機(jī)構(gòu)下履帶中心線橫截面內(nèi)0.35 m深度土壤內(nèi)在履帶長度方向上的垂直及水平應(yīng)力分布規(guī)律進(jìn)行研究;同時(shí)改變履帶張緊力的大小,研究履帶張緊力大小對應(yīng)力分布均勻性的影響。

1 材料與方法

1.1 試驗(yàn)車輛及地點(diǎn)

試驗(yàn)所用車輛為Class Lexion 770型自走半履帶半輪式聯(lián)合收獲機(jī),車輛前端為履帶,后端為輪胎。履帶式行走機(jī)構(gòu)如圖1所示,分別由橡膠履帶、驅(qū)動(dòng)輪、導(dǎo)向輪和位于履帶中間位置的2個(gè)支重輪組成。試驗(yàn)時(shí)車輛為空載,為方便測試卸去車輛前部的割臺(tái)裝置。試驗(yàn)時(shí)間為2018年6月,地點(diǎn)位于奧胡斯大學(xué)Foulum研究中心的試驗(yàn)田(56°30'N,9°34'E)。試驗(yàn)地區(qū)年平均降水量為626 mm,年平均氣溫為7.3 ℃。土壤質(zhì)地為砂壤土,相關(guān)物化參數(shù)如表1所示。

圖1 履帶式行走機(jī)構(gòu)結(jié)構(gòu)示意圖

表1 土壤相關(guān)物化參數(shù)

1.2 土壤應(yīng)力測試

土壤應(yīng)力測試采用側(cè)斷面水平鉆孔埋設(shè)壓力傳感器的方法[12]。該方法對原狀土壤的擾動(dòng)量極小,能夠最大程度的減小由于對傳感器上方土壤擾動(dòng)而產(chǎn)生的測量誤差[21-26]。壓力傳感器選用Lamandé 等[27]設(shè)計(jì)的變直徑圓柱型壓力傳感器,該傳感器可通過改變測力面的放置方向測試土壤內(nèi)不同方向的應(yīng)力;傳感器下部的契型滑塊可調(diào)節(jié)傳感器直徑大小以保證傳感器測力面與土壤充分接觸,最大程度的減小由于傳感器測力面和土壤接觸不完全所造成的測量誤差[28]。壓力傳感器的測量范圍為0~100 kPa,輸出電壓為0~5 V,工作溫度為-20~80 ℃,過載能力為最大測量范圍的150%,測量重復(fù)性誤差為最大測量范圍的±0.02%。

不同于耕作層土壤,犁底層土壤一旦被壓實(shí),無法通過傳統(tǒng)的耕作及作物輪作等方式進(jìn)行緩解,其自然恢復(fù)時(shí)間長達(dá)幾十年[2]。隨著犁底層土壤不斷被壓實(shí),土壤的通氣性及透水性下降,對作物的生長造成嚴(yán)重影響。因此在實(shí)際生產(chǎn)中我們更加關(guān)心犁底層土壤的壓實(shí)情況。由于試驗(yàn)田主要種植作物為小麥,耕作層深度在0.25~0.3 m之間,因此試驗(yàn)中選取距離地表0.35 m深度土壤進(jìn)行應(yīng)力測試。試驗(yàn)共在3個(gè)相距約30 m的應(yīng)力測試點(diǎn)進(jìn)行,每個(gè)應(yīng)力測試點(diǎn)在0.35 m深度土壤內(nèi)共埋設(shè)4個(gè)傳感器,其中2個(gè)傳感器測力面朝上平行于地表放置,用于測試土壤內(nèi)的垂直應(yīng)力;另外2個(gè)傳感器測力面朝車輛行駛方向水平放置,用于測試土壤內(nèi)的水平應(yīng)力;在地表放置激光測位傳感器,用于測試履帶式行走機(jī)構(gòu)行駛過程中各負(fù)重輪的實(shí)時(shí)位置。具體的壓力傳感器結(jié)構(gòu)、傳感器放置方法及應(yīng)力測試過程見文獻(xiàn)[12]。試驗(yàn)時(shí),車輛以3 km/h的恒定速度從傳感器上方通過,并保證履帶中心線在2個(gè)傳感器的中間位置。每個(gè)應(yīng)力測試點(diǎn)共重復(fù)3次測試。

2 結(jié)果與分析

2.1 垂直及水平應(yīng)力分布規(guī)律

由于3組測試所測得的應(yīng)力分布規(guī)律相似,因此選取其中一個(gè)應(yīng)力測試點(diǎn)的結(jié)果進(jìn)行分析。所測得履帶式行走機(jī)構(gòu)壓實(shí)作用下0.35 m深度土壤內(nèi)的垂直及水平應(yīng)力沿履帶長度方向的分布曲線如圖2所示。

注:P1、P2和P3為垂直應(yīng)力分布曲線的峰值點(diǎn),kPa;Q1、Q2、Q3和Q4為水平應(yīng)力分布曲線的峰值點(diǎn),kPa;A和B為水平應(yīng)力分布曲線的極小值點(diǎn),kPa。Note: P1, P2 and P3 are peaks of vertical stress distribution curve, kPa; Q1, Q2, Q3 and Q4 are peaks of horizontal stress distribution curve, kPa; A and B are minimum value of horizontal stress distribution curve, kPa.

從圖2a可以看到,履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的垂直應(yīng)力分布極不均勻,在履帶長度方向上共呈現(xiàn)3個(gè)應(yīng)力峰值,分別在驅(qū)動(dòng)輪、導(dǎo)向輪及兩個(gè)支重輪之間(P1、P3及P2)。然而在Lamandé等[11]對履帶行走機(jī)構(gòu)與土壤接觸面內(nèi)垂直應(yīng)力的測試中,各支重輪下方均呈現(xiàn)一個(gè)應(yīng)力峰值。分析圖2a中僅在兩個(gè)支重輪之間呈現(xiàn)一個(gè)應(yīng)力峰值的原因可能為:應(yīng)力從土壤表面?zhèn)鬟f至0.35 m深度土壤后有一定的衰減;支重輪半徑較小,且兩支重輪間距較小,其下方的應(yīng)力發(fā)生相互干涉,而Lamandé等[11]所采用的履帶式行走機(jī)構(gòu)的支重輪間距較大。另外,Lamandé等[11]所測得履帶與土壤接觸面的垂直應(yīng)力峰值在各支重輪的軸線處,但圖2a中的垂直應(yīng)力峰值位于輪軸線的后(右)方約0.15 m處,這是由于應(yīng)力需要一定的時(shí)間從土壤表面?zhèn)鬟f到0.35 m深度土壤內(nèi)。

從圖2b可以看到,履帶行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的水平應(yīng)力在驅(qū)動(dòng)輪及導(dǎo)向輪軸線的前、后方各呈現(xiàn)一個(gè)應(yīng)力峰值(Q1、Q2及Q3、Q4)。驅(qū)動(dòng)輪后方的應(yīng)力與前支重輪前方的應(yīng)力發(fā)生干涉,僅呈現(xiàn)一個(gè)應(yīng)力峰值(Q2);后支重輪后方的應(yīng)力與導(dǎo)向輪前方的應(yīng)力發(fā)生干涉,僅呈現(xiàn)一個(gè)應(yīng)力峰值(Q3)。同樣,由于應(yīng)力傳遞過程中的衰減及前、后支重輪的間距過小,兩個(gè)支重輪之間無應(yīng)力峰值。各支重輪前方的應(yīng)力峰值是由于支重輪對土壤的推土作用形成;而后方的應(yīng)力峰值是由于支重輪對土壤的剪切作用形成。

另外,由于土壤內(nèi)的水平應(yīng)力是由履帶與土壤接觸面的垂直載荷及剪向載荷共同作用引起的。因此當(dāng)各輪軸線正好位于傳感器測力點(diǎn)上方時(shí),由接觸面垂直載荷引起的土壤內(nèi)的水平應(yīng)力值應(yīng)為0。此時(shí)土壤內(nèi)的水平應(yīng)力達(dá)到最小值,僅由接觸面的剪切載荷引起。由此可以推斷,支重輪下方的水平應(yīng)力極小值點(diǎn)(A、B)應(yīng)該位于支重輪的軸線處。然而,圖2b中驅(qū)動(dòng)輪及導(dǎo)向輪下方的水平應(yīng)力極小值點(diǎn)A、B均位于輪軸線的后方,這同樣是由于應(yīng)力需要一定的時(shí)間從土壤表面?zhèn)鬟f到0.35 m深度土壤內(nèi)。

以上結(jié)果表明,履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)在履帶長度方向上的垂直及水平應(yīng)力分布極不均勻,極大的降低了履帶式行走機(jī)構(gòu)緩解對土壤壓實(shí)的能力以及車輛的軟地通過性能。由于垂直及水平應(yīng)力在履帶長度方向均呈現(xiàn)出若干個(gè)明顯的應(yīng)力峰值,履帶式行走機(jī)構(gòu)的行駛過程可以看作對土壤連續(xù)的碾壓。已有研究表明[29-32],土壤的壓實(shí)程度隨著被碾壓次數(shù)的增多而增大。因此提高履帶式行走機(jī)構(gòu)下應(yīng)力分布的均勻性對于降低履帶車輛對土壤的壓實(shí)風(fēng)險(xiǎn)以及提高履帶車輛在軟土地面的通過性至關(guān)重要。

2.2 應(yīng)力峰值分析

測試履帶式行走機(jī)構(gòu)下各垂直和水平應(yīng)力峰值、平均垂直和水平應(yīng)力(履帶長度方向上的應(yīng)力平均值)以及平均最大垂直和水平應(yīng)力(履帶下各應(yīng)力峰值的平均值),3組試驗(yàn)的平均值如表2所示。

從表2中可以看到,履帶式行走機(jī)構(gòu)下的垂直應(yīng)力峰值大小各不相同,最大垂直應(yīng)力出現(xiàn)在履帶后端的導(dǎo)向輪處(P3),最小垂直應(yīng)力出現(xiàn)在履帶前端的驅(qū)動(dòng)輪處(P1)。這說明車輛行駛過程中履帶后端的接地壓力比前端大,其重心向履帶后端發(fā)生了偏移。這種情況一般出現(xiàn)在履帶車輛牽引作業(yè)時(shí)[10]。對于本文所使用的半履帶半輪胎式聯(lián)合收獲機(jī),由于履帶式行走機(jī)構(gòu)在車輛前端,提供了大部分的驅(qū)動(dòng)力,這與履帶車輛牽引作業(yè)時(shí)的情況類似。另外,在試驗(yàn)過程中卸除了聯(lián)合收獲機(jī)前部的割臺(tái)裝置,這也導(dǎo)致了車輛重心的向后偏移。履帶式行走機(jī)構(gòu)下的水平應(yīng)力峰值大小也各不相同。其中,驅(qū)動(dòng)輪與前支重輪之間以及后支重輪與導(dǎo)向輪之間的應(yīng)力峰值(Q2及Q3)要明顯的大于驅(qū)動(dòng)輪前方的應(yīng)力峰值(Q1)及導(dǎo)向輪后方的應(yīng)力峰值(Q4)。這是由于應(yīng)力峰值(Q2)是驅(qū)動(dòng)輪后方的應(yīng)力峰值及前支重輪前方應(yīng)力峰值的疊加,而應(yīng)力峰值(Q3)是后支重輪后方的應(yīng)力峰值與導(dǎo)向輪前方應(yīng)力峰值的疊加。另外,后支重輪與導(dǎo)向輪之間的應(yīng)力峰值(Q3)要大于驅(qū)動(dòng)輪與前支重輪之間的應(yīng)力峰值(Q2),原因同樣是由于車輛重心的向后偏移,造成履帶后端的接地壓力要大于前端。

表2 履帶式行走機(jī)構(gòu)下應(yīng)力峰值、平均應(yīng)力及平均最大應(yīng)力測試值

注:平均最大應(yīng)力表示各應(yīng)力峰值點(diǎn)的平均應(yīng)力,kPa;平均應(yīng)力表示應(yīng)力在履帶長度方向上的平均值;括號(hào)中的值表示應(yīng)力峰值標(biāo)準(zhǔn)差。

Note: mean maximum stress is the mean value of each stress peak, kPa; mean stress is the mean value of stress along the length of track; Values in brackets indicate standard deviation of peak stress.

從表2中還可以看到,最大垂直應(yīng)力(51.7 kPa)約為平均垂直應(yīng)力(17.1 kPa)的3.0倍。平均最大垂直應(yīng)力(42.5 kPa)約為平均垂直應(yīng)力(17.1 kPa)的2.5倍。這與Kelle等[10]及Lamandé等[11]的測試結(jié)果相近。另外,最大水平應(yīng)力(Q3)(7.2 kPa)約為平均水平應(yīng)力(3.3 kPa)的2.2倍。平均最大水平應(yīng)力(5.1 kPa)約為平均水平應(yīng)力(3.3 kPa)的1.5倍。這說明由于履帶下應(yīng)力分布的不均勻,最大應(yīng)力和平均最大應(yīng)力均遠(yuǎn)大于平均應(yīng)力。造成履帶下的最大垂直及水平應(yīng)力并未有效的減小。

以上結(jié)果表明,由于聯(lián)合收獲機(jī)作業(yè)過程中重心的向后偏移以及履帶式行走機(jī)構(gòu)各負(fù)重輪下應(yīng)力的相互干涉,造成各負(fù)重輪下的垂直及水平應(yīng)力峰值大小不同,加劇了應(yīng)力分布的不均勻性。因此,保持履帶車輛在行駛過程中重心的平衡以及合理布置各負(fù)重輪在履帶長度方向上的分布,是提高履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)應(yīng)力分布均勻性的重要因素。

2.3 履帶張緊力大小對應(yīng)力分布均勻性的影響

采用控制變量法,改變履帶張緊力的大小,對不同履帶張緊力條件下的垂直及水平應(yīng)力分布進(jìn)行測試,研究其影響。履帶初始張緊力為1.8×104kPa,通過液壓調(diào)節(jié)裝置分別將張緊力調(diào)節(jié)至1.7×104和1.6×104kPa。每個(gè)張緊力條件下進(jìn)行3組測試。為保證在每個(gè)張緊力條件下測試時(shí)土壤的初始狀態(tài)一致,采取每組測試間隔30 min進(jìn)行,目的是給予土壤充足的回彈時(shí)間。

所測得不同履帶張緊力條件下的垂直及水平應(yīng)力的分布曲線如圖3所示。選取履帶行走機(jī)構(gòu)作用下土壤內(nèi)的最大應(yīng)力(各應(yīng)力峰值的最大值)以及平均最大應(yīng)力(各應(yīng)力峰值的平均值)作為表征應(yīng)力分布均勻性的指標(biāo)。不同履帶張緊力條件下所測得土壤內(nèi)最大應(yīng)力及平均最大應(yīng)力如表3所示。

圖3 不同履帶張緊力下的垂直及水平應(yīng)力分布

表3 不同履帶張緊力條件下土壤內(nèi)的最大應(yīng)力及平均最大應(yīng)力測試值

注:最大應(yīng)力表示履帶下各應(yīng)力峰值的最大值,kPa;平均最大應(yīng)力表示履帶下各應(yīng)力峰值的平均值,kPa;<0.05表示最大應(yīng)力及平均最大應(yīng)力隨履帶張緊力的減小變化顯著。

Note: Maximum stress means the maximum value of each stress peak, kPa; mean maximum stress means the mean value of each stress peak, kPa;<0.05 means significant difference between track tension and measured stress.

從圖3可以看到,不同履帶張緊力條件下所測得的垂直及水平應(yīng)力分布曲線形狀類似,履帶式行走機(jī)構(gòu)各負(fù)重輪下的應(yīng)力峰值分布規(guī)律相同。由表3可知,履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的最大垂直應(yīng)力及平均最大垂直應(yīng)力均隨著履帶張緊力的減小而顯著減?。?0.05)。履帶張緊力由1.8×104kPa減小至1.6×104kPa時(shí),最大垂直應(yīng)力減小了約37.3%;平均最大垂直應(yīng)力減小了約26.4%。研究結(jié)果表明,減小履帶的張緊力能夠顯著提高履帶式行走機(jī)構(gòu)下垂直應(yīng)力分布的均勻性。這是由于履帶是一個(gè)柔性體,其張緊力的減小使各負(fù)重輪與履帶的接觸面積增大,使負(fù)重輪下的應(yīng)力分布更加均勻,這與通過降低輪胎氣壓增加與土壤接觸面積,從而減小輪胎下土壤壓實(shí)應(yīng)力的方法類似[33-38]。另外,履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的最大水平應(yīng)力及平均最大水平應(yīng)力也隨履帶張緊力的減小有減小的趨勢,但并不顯著(>0.05)。履帶張緊力由1.8×104kPa減小至1.6×104kPa時(shí),最大水平應(yīng)力及平均最大水平應(yīng)力分別減小約21.7%及20.4%,小于垂直應(yīng)力的減小量。履帶張緊力的減小雖然使履帶與土壤的接觸面積增大,減小了土壤內(nèi)的最大水平應(yīng)力,但同時(shí)也造成了履帶與土壤接觸面剪切作用的增大,這在一定程度上增加了土壤內(nèi)的水平應(yīng)力。因此最大水平應(yīng)力的減小并不顯著。

以上結(jié)果表明,適當(dāng)?shù)臏p小履帶張緊力能夠在一定程度上提高履帶式行走機(jī)構(gòu)下垂直及水平應(yīng)力分布的均勻性。從而降低對土壤的壓實(shí)風(fēng)險(xiǎn),提高履帶車輛在軟土地面的通過性能。但履帶張緊力過小會(huì)造成履帶松弛,容易出現(xiàn)脫帶、爬齒等現(xiàn)象,造成履帶失效,影響車輛行駛的平順性[39]。因此通過減小履帶張緊力的方法來提高應(yīng)力分布的均勻性有一定的局限性。此外,負(fù)重輪沿履帶長度方向的布置方式(如負(fù)重輪數(shù)量、間距等)及負(fù)重輪的直徑大小,都會(huì)影響履帶與地面的接觸情況,進(jìn)而影響履帶式行走機(jī)構(gòu)下應(yīng)力的分布。因此,如何通過對履帶式行走機(jī)構(gòu)結(jié)構(gòu)的優(yōu)化來提高履帶下應(yīng)力分布的均勻性,是今后需要著重研究的問題。

3 結(jié) 論

1)履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤內(nèi)的垂直及水平應(yīng)力沿履帶長度方向的分布極不均勻。垂直應(yīng)力在各負(fù)重輪的軸線處呈現(xiàn)一個(gè)應(yīng)力峰值;水平應(yīng)力在各負(fù)重輪軸線的前、后方各呈現(xiàn)一個(gè)應(yīng)力峰值,且最小應(yīng)力在軸線處。對履帶式行走機(jī)構(gòu)下應(yīng)力分布的研究為履帶車輛對土壤壓實(shí)機(jī)理的研究奠定了理論基礎(chǔ)。

2)由于履帶車輛重心向后的偏移以及各負(fù)重輪下應(yīng)力的干涉,造成履帶式行走機(jī)構(gòu)各負(fù)重輪下的應(yīng)力峰值大小不同。最大垂直應(yīng)力出現(xiàn)在履帶后端的導(dǎo)向輪處,最大水平應(yīng)力出現(xiàn)在后支重輪與導(dǎo)向輪之間。保持履帶車輛行駛過程中重心平衡以及合理布置各負(fù)重輪在履帶長度方向上的分布是提高履帶式行走機(jī)構(gòu)下應(yīng)力分布均勻性,以減輕履帶車輛對土壤壓實(shí)的關(guān)鍵因素。

3)適當(dāng)減小履帶的張緊力能夠在一定程度提高履帶式行走機(jī)構(gòu)下垂直及水平應(yīng)力分布的均勻性,當(dāng)履帶張緊力由1.8×104 kPa減小至1.6×104 kPa時(shí),履帶下的最大垂直及水平應(yīng)力分別減小了約37.3%和21.7%;平均最大垂直及水平應(yīng)力分別減小了約26.4%和20.4%,水平應(yīng)力的減小量小于垂直應(yīng)力。

緩解履帶車輛對土壤的壓實(shí),提高車輛在軟地的通過性。

[1] 王憲良,王慶杰,李洪文,等. 農(nóng)業(yè)機(jī)械土壤壓實(shí)研究方法現(xiàn)狀[J]. 熱帶農(nóng)業(yè)科學(xué),2015,35(6): 72-76. Wang Xianliang, Wang Qingjie, Li Hongwen, et al. Current research status of soil compaction by agriculture machinery[J]. Chinese Journal of Tropical Agriculture, 2015, 35(6): 72-76. (in Chinese with English abstract)

[2] 李汝莘,林成厚,高煥文,等. 小四輪拖拉機(jī)土壤壓實(shí)的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(1): 126-129. Li Ruxin, Lin Chenghou, Gao Huanwen, et al. Small four-wheel tractor research on soil compaction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(1): 125-129. (in Chinese with English abstract)

[3] 遲仁立,左淑珍,夏平,等. 不同程度壓實(shí)對土壤理化性狀及作物生育產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2001,17(6): 39-43. Chi Renli, Zuo Shuzhen, Xia Ping, et al. Effects of different level compaction on the physicochemical characteristics of soil and crop growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(6): 39-43. (in Chinese with English abstract)

[4] 張興義,隋躍宇. 土壤壓實(shí)對農(nóng)作物影響概述[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(10): 161-164. Zhang Xingyi, Sui Yueyu. Summarization on the effect of soil compaction on crops[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(10): 161-164. (in Chinese with English abstract)

[5] 楊曉娟,李春儉. 機(jī)械壓實(shí)對土壤質(zhì)量、作物生長、土壤生物及環(huán)境的影響[J]. 中國農(nóng)業(yè)科學(xué),2008,41(7):2008-2015. Yang Xiaojuan, Li Chunjian. Impacts of mechanical compaction on soil properties, growth of crops,soil-borne organisms and environment[J]. Scientia Agricultura Sinica, 2008, 41(7): 2008-2015. (in Chinese with English abstract)

[6] 孫忠英,李寶筏. 農(nóng)業(yè)機(jī)器行走裝置對土壤壓實(shí)作用的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1998,29(3): 172-174.

[7] 張家勵(lì),傅濰坊. 土壤壓實(shí)特性及其在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),1995,11(2):17-20. Zhang Jiali, Fu Weifang. The soil compactive characteristics and their application in agriculture production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(2): 17-20. (in Chinese with English abstract)

[8] Alakukku L, Weisskopf P, Chamen W C T, et al. Prevention strategies for field traffic-induced subsoil compaction: a review: Part 1. Machine/soil interactions[J]. Soil and Tillage Research, 2003, 73(1/2): 145-160.

[9] 馮莉,鄧兆軍,馬巖,等. 履帶-負(fù)載輪-地面耦合作用關(guān)系研究[J]. 林業(yè)工程學(xué)報(bào),2017,2(4),115-120. Feng Li, Deng Zhaojun, Ma Yan, et al. Study on coupling relationship of track-load whell-ground[J]. Journal of Forestry Engineering, 2017, 2(4), 115-120. (in Chinese with English abstract)

[10] Keller T, Trautner A, Arvidsson J. Stress distribution and soil displacement under a rubber-tracked and a wheeled tractor during ploughing, both on-land and within furrows[J]. Soil and Tillage Research, 2002, 68(1): 39-47.

[11] Lamandé M, Greve M H, Schj?nning P. Risk assessment of soil compaction in Europe–Rubber tracks or wheels on machinery[J]. Catena, 2018, 167: 353-362.

[12] 丁肇,李曜明,唐忠. 輪式和履帶式車輛行走對土壤的壓實(shí)作用分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5): 10-18. Ding Zhao, Li Yaoming, Tang Zhong. Compaction effects of wheeled vehicles and tracked on farmland soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 10-18. (in Chinese with English abstract)

[13] 李軍,李灝,寧俊帥. 履帶車輛松軟路面通過性分析[J]. 農(nóng)業(yè)裝備與車輛工程,2010(5):3-6. Li Jun, Li hao, Ning Junshuai. Analysis of the mobility of tracked vehicle on soft soil[J]. Agricultural Equipment and Vehicle Engineering, 2010(5):3-6. (in Chinese with English abstract)

[14] 劉彤,許純新. 橡膠履帶車輛接地壓力分布[J]. 工程機(jī)械,1995,26(2):11-18. Liu Tong, Xu Chunxin, Ground bearing distribution of vehicles on rubber tracks[J]. Construction Machinery and Equipment, 1995, 26(2): 11-18. (in Chinese with English abstract)

[15] 遲媛,張榮蓉,任潔,等. 履帶車輛差速轉(zhuǎn)向時(shí)載荷比受土壤下陷的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):62-68. Chi Yuan, Zhang Rongrong, Ren Jie, et al. Steering power ratio affected by soil sinkage with differential steering in tracked vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 62-68. (in Chinese with English abstract)

[16] Rowland D. Tracked vehicle ground pressure and its effect on soft ground performance[C]. Proc. 4th International Conference of ISTVS, Stockholm-Kiruna, 1972.

[17] Horn R, Dom??a? H, S?owińska-Jurkiewicz A, et al. Soil compaction processes and their effects on the structure of arable soils and the environment[J]. Soil and Tillage Research, 1995, 35(1): 23-36.

[18] Mcgarry D. Tillage and Soil Compaction [M]. Conservation agriculture. Netherlands: Springer, 2003:307-316.

[19] 栗浩展,王紅巖,芮強(qiáng),等. 履帶車輛地面牽引力的計(jì)算與試驗(yàn)驗(yàn)證[J]. 裝甲兵工程學(xué)院學(xué)報(bào),2015 29(1): 36-40. Li Haozhan, Wang Hongyan, Rui Qiang, et al. Calculation and testing verification of ground traction of tracked vehicles[J]. Journal of Academy of Armored Force Engineering, 2015, 29(1): 36-40. (in Chinese with English abstract)

[20] 趙子涵,穆希輝,郭浩亮,等. 橡膠履帶輪靜態(tài)接地壓力測試與建模[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):72-79. Zhao Zihan, Mu Xihui, Guo Haoliang, et al. Test and modeling on static ground pressure of rubber track conversion system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 72-79. (in Chinese with English abstract)

[21] Baylot E, Burhman Q. Standard for Ground Vehicle Mo-bility[R]. US Army Corps of Engineers Engineer Research and Development Center, 2005.

[22] Arvidsson J, Keller T. Soil stress as affected by wheel load and tyre inflation pressure[J]. Soil and Tillage Research, 2007, 96(1/2): 284-291.

[23] Keller T, Arvidsson J. Technical solutions to reduce the risk of subsoil compaction: Effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil[J]. Soil and Tillage Research, 2004, 79(2): 191-205.

[24] Lamandé M, Schj?nning P. Transmission of vertical stress in a real soil profile. Part I: Site description, evaluation of the S?hne model, and the effect of topsoil tillage[J]. Soil and Tillage Research, 2011, 114(2): 57-70.

[25] Lamandé M, Schj?nning P. Transmission of vertical stress in a real soil profile. Part II: Effect of tyre size, inflation pressure and wheel load[J]. Soil and Tillage Research, 2011, 114(2): 71-77.

[26] Lamandé M, Schj?nning P. Transmission of vertical stress in a real soil profile. Part III: Effect of soil water content[J]. Soil and Tillage Research, 2011, 114(2): 78-85.

[27] Lamandé M, Schj?nning P, T?gersen F A. Mechanical behaviour of an undisturbed soil subjected to loadings: Effects of load and contact area[J]. Soil and Tillage Research, 2007, 97(1): 91-106.

[28] Lamandé M, Keller T, Berisso F, et al. Accuracy of soil stress measurements as affected by transducer dimensions and shape[J]. Soil and Tillage Research, 2015, 145: 72-77.

[29] Horn R, Way T, Rostek J. Effect of repeated tractor wheeling on stress/strain properties and consequences on physical properties in structured arable soils[J]. Soil and Tillage Research, 2003, 73(1/2), 101–106.

[30] Naderi-Boldaji M, Kazemzadeh A, Hemmat A, et al. Changes in soil stress during repeated wheeling: A comparison of measured and simulated values[J]. Soil Research, 2018, 56(2), 204–214.

[31] Peth S, Horn R. The mechanical behavior of structured and homogenized soil under repeated loading[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3), 401–410.

[32] Pytka J. Effects of repeated rolling of agricultural tractors on soil stress and deformation state in sand and loess[J]. Soil and Tillage Research, 2005, 82, 77–88.

[33] Schj?nning P, Stettler M, Keller T, et al. Predicted tyre–soil interface area and vertical stress distribution based on loading characteristics[J]. Soil and Tillage Research, 2015, 152: 52-66.

[34] Nawaz M F, Bourrie G, Trolard F. Soil compaction impact and modelling. A review[J]. Agronomy for sustainable development, 2013, 33(2): 291-309.

[35] Hamza M A, Anderson W K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions[J]. Soil and Tillage Research, 2005, 82(2): 121-145.

[36] Way T R, Kishimoto T. Interface pressures of a tractor drive tyre on structured and loose soils[J]. Biosystems Engineering, 2004, 87(3): 375-386.

[37] Lamandé M, Schj?nning P. The ability of agricultural tyres to distribute the wheel load at the soil–tyre interface[J]. Journal of Terramechanics, 2008, 45(4): 109-120.

[38] Abu-Hamdeh N H, Reeder R C. Measuring and predicting stress distribution under tractive devices in undisturbed soils[J]. Biosystems Engineering, 2003, 85(4): 493-502.

[39] 卞美卉,張洋,杜志岐. 履帶車輛履帶預(yù)張緊力對平順性的影響與仿真[J]. 車輛與動(dòng)力技術(shù),2019(1),34-37. Bian Meihui, Zhang Yang, Du Zhiqi. Influence of Track Pretension on Ride Comfort of Tracked Vehicle[J]. Vehicle and Power Technology, 2019(1), 34-37. (in Chinese with English abstract)

Distribution uniformity of soil stress under compaction of tracked undercarriage

Ding zhao1, Li Yaoming1, Ren Lidong2, Tang Zhong1

(1.,,,212013,; 2.,,,9000,)

Tracked undercarriage is considered as a technical solution to reduce the soil compaction as compared to the tire due to its large contact area between track and soil. However, the interaction between track and soil is complex, resulting in uneven distributed stress at track/soil interface. Uneven distributed stress may reduce the ability that track decreases the soil compaction and will also lead to the increases of track sinkage depth, which may reduce the vehicle's traffic-ability. Therefore, we can better understanding of the soil compaction process with the help of investigating the distribution of soil stress beneath the tracked undercarriage. The objectives of this study were to estimate the distribution of soil vertical and horizontal stresses under the tracked undercarriage in the track length direction, and to investigate the effect of track tensions on the distribution of soil stress. The test was conducted on the sandy loam soil and combine harvester equipped with rubber tracks was used in the test. The rubber tracked undercarriage system is comprised of a front wheel and a rear wheel with two support wheels. During measurement, the harvester was unloaded and without its header. The soil stress was measured by embedding the pressure sensors under the centerline of the track at depth of 0.35m. In total four pressure sensors were installed: two sensors for vertical stress, and two sensors for horizontal stress (piston facing the vehicle’s driving direction). A laser position sensor fixed on the ground was employed to track the positions of the axle of track wheels. Three repeated measurements were performed with different track tensions (i.e. 1.6×104, 1.7×104, and 1.8×104kPa) at same traffic speed. The results showed that the measured vertical stress presented three peak points along the track length, with two peaks beneath each axle of track drive wheel and guide wheel, and one peak between two support wheels. The horizontal stress presented two peaks before and after each wheel axle, with the minimum stress on the axle. Moreover, the magnitude of soil stress beneath each of track wheel were different, with the largest vertical stress beneath the guide wheel, and the largest horizontal stress between guide wheel and rear support wheel. The maximum stress and mean maximum stress under the track were decreased with the decreasing of track tension, when the track tension was reduced from 1.8 × 104 kPa to 1.6 × 104 kPa, the maximum vertical and horizontal stresses were reduced by 37.3% and 21.7% respectively, and the mean maximum vertical and horizontal stresses were reduced by 26.4% and 20.4% respectively, which indicated that decreasing the track tension could improve the uniformity of the soil stress. However, too small track tension will lead to relaxation of track, resulting in track failure and affecting the ride comfort of the vehicle. Therefore, it has limitations in improving the uniformity of stress by reducing track tension. Some other methods, such as optimizing the configuration of track wheels along the track length, may also improve the uniformity of the soil stress under the tracked undercarriage. More investigation about the effect of track wheel configuration on the soil stress distribution is needed in the future work. This study can provide preliminary guidance on optimizing the structure of tracked undercarriage to improve the uniformity of soil stress.

agricultural machinery; stress; undercarriage; distribution uniformity; track; soil compaction

丁肇,李耀明,任利東,等. 履帶式行走機(jī)構(gòu)壓實(shí)作用下土壤應(yīng)力分布均勻性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):52-58.doi:10.11975/j.issn.1002-6819.2020.09.006 http://www.tcsae.org

Ding zhao, Li Yaoming, Ren Lidong, et al. Distribution uniformity of soil stress under compaction of tracked undercarriage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 52-58. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.006 http://www.tcsae.org

2019-12-01

2019-04-23

國家重點(diǎn)研發(fā)項(xiàng)目(2016YFD0702004);江蘇省自然科學(xué)基金面上項(xiàng)目(BK20170553);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(KYLX15_1047);江蘇高校優(yōu)勢學(xué)科建設(shè)工程(三期)資助項(xiàng)目

丁肇,博士生,研究方向:農(nóng)田土壤壓實(shí)及耕作。Email:dingzhao0806@foxmail.com

李耀明,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備關(guān)鍵技術(shù)的基礎(chǔ)理論及產(chǎn)品的研發(fā)工作。Email:ymli@ujs.edu.cn

10.11975/j.issn.1002-6819.2020.09.006

S225.3;S219.032.3

A

1002-6819(2020)-09-0052-07

猜你喜歡
行走機(jī)構(gòu)履帶峰值
“四單”聯(lián)動(dòng)打造適齡兒童隊(duì)前教育峰值體驗(yàn)
結(jié)合模擬退火和多分配策略的密度峰值聚類算法
基于滑移條件下的履帶車輛剪切位移特性試驗(yàn)研究
錨桿錨固質(zhì)量等級(jí)快速評級(jí)方法研究
清掃機(jī)器人行走機(jī)構(gòu)的設(shè)計(jì)
履帶張緊力及其在履帶環(huán)上的分布
高效卸車平臺(tái)設(shè)計(jì)
履帶式推土機(jī)行走機(jī)構(gòu)的應(yīng)用及維護(hù)要點(diǎn)分析
履帶ABC