0.05)。腦疝組的腦梗死體積、腦梗死占"/>
杜小燕 劉慶軍 趙立波 龔洪敏 吳林 魏靜 譚慶 趙瑞
[摘要] 目的 探討腦梗死占比對大面積腦梗死患者腦疝形成的預判價值。 方法 回顧性分析2017年1月~2019年1月于重慶醫(yī)科大學附屬永川醫(yī)院住院治療的71例大面積腦梗死患者的臨床資料。根據(jù)腦疝形成與否分為腦疝組(17例)和非腦疝組(54例)。對臨床資料與影像學資料進行單因素和二元邏輯回歸分析,采用ROC曲線評價診斷效果,尋找最佳預測值。 結果 兩組臨床資料比較,差異無統(tǒng)計學意義(P > 0.05)。腦疝組的腦梗死體積、腦梗死占比、緩沖體積均大于非腦疝組,差異有統(tǒng)計學意義(P < 0.05);兩組的腦組織體積、顱腔體積比較,差異無統(tǒng)計學意義(P > 0.05)。腦梗死占比為大面積腦梗死患者腦疝形成的獨立危險因素(OR = 7.749,95%CI: 1.539~38.284,P < 0.05)。腦梗死占比、腦梗死體積曲線下面積分別為0.818、0.808,當腦梗死占比為21%時為最佳拐點,敏感度為77%,特異度為76%。 結論 腦梗死占比為大面積腦梗死患者腦疝形成的獨立危險因素,對判斷大面積腦梗死患者腦疝形成有一定預測價值。
[關鍵詞] 大面積腦梗死;腦梗死占比;腦疝;預判價值
[中圖分類號] R743? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)05(b)-0023-04
Predictive value of the ratio of cerebral infarction on cerebral hernia formation in patients with large area cerebral infarction
DU Xiaoyan1,2? ?LIU Qingjun1,2? ?ZHAO Libo1,2,3? ?GONG Hongmin1,2? ?WU Lin1,2? ?WEI Jing1,2? ?TAN Qing1,2? ?ZHAO Rui1,2
1.Department of Neurology, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing? ?402160, China; 2.Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing? ?402160, China; 3.Department of Neurology, the Third People′s Hospital of Chongqing City, Chongqing? ?400010, China
[Abstract] Objective To assess predictive value of the ratio of cerebral infarction on cerebral hernia formation in patients with large area cerebral infarction. Methods The clinical data of 71 patients with massive cerebral infarction hospitalized in Yongchuan Hospital Affiliated to Chongqing Medical University from January 2017 to January 2019 were retrospectively analyzed. They were divided into brain hernia group (17 cases) and non brain hernia group (54 cases) according to the formation of brain hernia. Single factor and binary logistic regression analysis were carried out for clinical data and imaging data. ROC curve was used to evaluate the diagnosis effect and find the best predictive value. Results Clinical data between two groups was not statistically significant (P > 0.05). The volume of cerebral infarction, the proportion of cerebral infarction and the buffer volume of cerebral hernia group were larger than those of non cerebral hernia group, the differences were statistically significant (P < 0.05). There were no significant differences in volume of brain tissue and cranial cavity between two groups (P > 0.05). The proportion of cerebral infarction was an independent risk factor for the formation of cerebral hernia in patients with massive cerebral infarction (OR = 7.749, 95%CI: 1.539-38.284, P < 0.05). The proportion of cerebral infarction and the area under the volume curve of cerebral infarction was 0.818 and 0.808 respectively. When the proportion of cerebral infarction was 21%, it was the best turning point, the sensitivity was 77%, and the specificity was 76%. Conclusion The cerebral infarction proportion is an independent risk factor for the formation of cerebral hernia in patients with massive cerebral infarction, which provides a certain predictive value for judging the formation of cerebral hernia.
[Key words] Massive cerebral infarction; Proportion of cerebral infarction; Formation of cerebral hernia; Predictive value
腦卒中為最常見的成人致殘性腦血管病[1-2]。大面積腦梗死(MCI)為急危重癥。腦組織惡性水腫可致腦疝形成,危及生命,探究腦疝形成因素意義重大。有研究報道,惡性水腫主要與梗死體積和/或腦萎縮程度有關,腦萎縮程度越重,緩沖空間越大,越不易導致腦疝[3-5]。有研究認為,梗死體積相同而腦萎縮程度不同,腦疝形成風險不同。腦組織體積與腦萎縮呈年齡相關,可代表腦萎縮程度[6]。近期有研究將腦梗死體積/腦組織體積定義為腦梗死占比,該值可消除腦萎縮的影響[7]。采用腦梗死占比探究MCI患者腦疝形成的影響因素可能更合理,但目前鮮有類似報道。本研究擬探討腦梗死占比對MCI患者腦疝形成的預判價值。
1 資料與方法
1.1 一般資料
回顧性分析2017年1月~2019年1月于重慶醫(yī)科大學附屬永川醫(yī)院神經內科住院的MCI患者71例的臨床資料。MCI診斷標準參考2017年《大腦半球大面積梗死監(jiān)護與治療中國專家共識》[8]。腦疝形成標準:MCI伴瞳孔不等大、意識障礙加深。排除標準:出血性梗死、幕下梗死。觀察時間:入院后1周。根據(jù)是否形成腦疝將患者分為腦疝組(17例)和非腦疝組(54例)。回顧性收集MCI患者臨床及影像學資料。前者包括性別、年齡、高血壓病、房顫、冠心病、糖尿病、吸煙、飲酒、美國國立衛(wèi)生研究院卒中量表(NIHSS)評分、入院體溫、最高體溫、D2聚體、溶栓人數(shù)。后者為入院時和1周內復查的頭顱CT圖像。
1.2 方法
采用Mimics軟件計算顱腔體積和腦組織體積(圖1~2)。梗死體積=1/2×病灶層面梗死灶長徑×短徑×高[9](圖3)。
1.3 統(tǒng)計學方法
采用SPSS 19.0軟件進行分析。計數(shù)資料比較采用χ2檢驗。正態(tài)分布計量資料以均數(shù)±標準差(x±s)表示,采用t檢驗。采用二元邏輯回歸分析腦疝形成危險因素,ROC曲線評價診斷效果,約登指數(shù)確定最佳預測值。以P < 0.05為差異有統(tǒng)計學意義。
2 結果
2.1 兩組患者臨床資料比較
兩組臨床資料比較,差異無統(tǒng)計學意義(P > 0.05)。見表1。
2.2 兩組患者影像學資料比較
腦疝組的腦梗死體積、腦梗死占比、緩沖體積均大于非腦疝組,差異有統(tǒng)計學意義(P < 0.05);兩組的腦組織體積、顱腔體積比較,差異無統(tǒng)計學意義(P > 0.05)。見表2。
2.3 MCI患者腦疝形成二元邏輯回歸分析
以是否腦疝形成為因變量行二元邏輯回歸分析,并將腦疝形成賦值為1,將單因素比較差異有統(tǒng)計學意義的指標(腦梗死體積、腦梗死占比、緩沖體積)作為自變量進行二元邏輯回歸分析,結果顯示,腦梗死占比為MCI患者腦疝形成的獨立危險因素(OR = 7.749,95%CI:1.539~38.284,P < 0.05)。見表3。
2.4 腦梗死占比、腦梗死體積預測MCI腦疝形成ROC曲線
腦梗死占比、腦梗死體積曲線下面積分別為0.818、0.808,當腦梗死占比為21%時為最佳拐點,敏感度為77%,特異度為76%。見圖4。
3 討論
MCI為頸內動脈遠端或大腦中動脈主干閉塞引起腦組織缺血壞死,病死率高[10-12],存活患者遺留不同程度神經功能缺損癥狀[8]。大腦中動脈急性閉塞所致腦卒中患者中1%~10%可被歸類為“惡性缺血性腦卒中”。惡性缺血性腦卒中指缺血腦組織水腫引起顱內壓顯著升高,超過自身的代償,可導致腦疝,危及生命[13]。腦疝形成加重顱內血管受壓及腦組織機械損傷,增大死亡風險。目前MCI患者腦疝形成危險因素仍不明確。
有研究提出,MCI患者腦疝形成與腦梗死體積和腦萎縮程度相關[3]。因腦梗死缺血性水腫的占位效應不僅取決于病變大小,還取決于可代償?shù)娘B內容積儲備[14],主要由腦萎縮程度決定[4]。對于MCI而言,腦組織體積越小,即腦萎縮程度越重,其代償空間越大,即緩沖體積越多,越不易形成腦疝[4,15]。也有研究報道,腦萎縮與年齡相關[16],隨年齡增長,側腦室和皮質溝擴大,腦室或顱內腦脊液體積增加,腦組織體積減少。有學者認為,腦組織體積一定程度上可代表腦萎縮程度[6]。有理由認為,梗死體積越大,水腫越重,腦疝風險越高;不同個體不同年齡腦萎縮程度不一,同樣梗死體積、緩沖空間不一,腦疝風險不同。腦梗死占比可消除腦萎縮因素,用腦梗死占比探討MCI腦疝形成危險因素可能更為合理。
Goto等[7]提出,采用彌散加權成像(DWI)測得腦梗死體積、腦組織體積,用腦梗死占比來預測MCI患者惡性水腫形成的可能,其最佳預測值為7.8%,敏感度、特異度分別為86%、87%。目前認為,DWI是測量腦梗死核心體積最精確的技術[17]。然而,磁共振較CT檢查耗時長,風險大,尤其是對血氧飽和度低和/或有氣管插管危重患者,DWI檢查可行性受到限制。而CT耗時短,風險小,簡單易行。
在本回顧性研究中,采用Mimics軟件定量測量CT圖像腦梗死體積、腦組織體積,得出腦梗死占比,將臨床資料、影像學資料進行單因素和二元邏輯回歸分析,結果提示,僅腦梗死占比為MCI患者腦疝形成的獨立危險因素,與腦疝形成密切相關。根據(jù)ROC曲線分析結果,當腦梗死占比為21%時是腦疝形成最有力的預測指標,敏感度、特異度分別為77%、76%。即當MCI患者腦梗死占比接近21%時,意味著腦疝形成概率較大,需要更加積極降顱壓治療,甚至外科手術減壓。有研究提出,對于MCI可能導致腦疝形成的患者,盡早采取手術干預可以有效降低顱內壓,并降低一定的死亡率和改善預后[18-20]。故對于MCI患者,需密切隨訪CT,若有腦疝形成趨勢,可在腦梗死占比上升未達到21%之前盡早采用各種方法積極降顱壓治療。
本研究得出腦梗死占比閾值為21%,而Goto等[7]研究得出閾值為7.8%,相差較大,其原因可能是:①本研究采用CT,Goto等[7]采用DWI;CT平掃所顯示低密度區(qū)域為核心梗死區(qū)和水腫區(qū)之和,而DWI顯示高信號區(qū)域為核心梗死區(qū)。②本研究CT圖像采集時間在1周內,而Goto等[7]報道的DWI圖像采集時間在48 h內,本研究圖像采集時間較長,水腫更嚴重,故腦梗死占比更大。本研究閾值敏感度、特異度尚不足夠高,本研究組推測在腦疝形成前更早期采集CT圖像,得到腦梗死占比來預測腦疝形成,可能提高敏感度和特異度,才能更好地指導臨床決策。
綜上,腦梗死占比可在一定程度上預測MCI患者腦疝形成,當CT檢查提示腦梗死占比接近21%時,腦疝形成可能性較大,需擬定進一步的治療方案。但本研究為單中心回顧性研究,尚需隨機、多中心、大樣本量、前瞻性研究進一步驗證。
[參考文獻]
[1]? Naghavi M,Abajobir AA,Abbafati C,et al. Global,regional,and national age-sex specific mortality for 264 causes of death,1980-2016:a systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet,2017,390(10100):1151-1210.
[2]? Mozaffarian D,Benjamin EJ,Go AS,et al. Executive summary:heart disease and stroke statistics—2016 update:a report from the American Heart Association [J]. Circulation,2016,127(1):143-152.
[3]? Thomalla G,Hartmann F,Juettler E,et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset:a prospective multicenter observational study [J]. Ann Neurol,2010,68(4):435-445.
[4]? Minnerup J,Wersching H,Ringelstein EB,et al. Prediction of malignant middle cerebral artery infarction using computed tomography-based intracranial volume reserve measurements [J]. Stroke,2011,42(12):3403-3409.
[5]? Oppenheim C,Samson Y,Manai R,et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging [J]. Stroke,2000,31(9):2175-2181.
[6]? 車旭東,何朝暉.蛛網膜下腔出血后腦萎縮與認知功能障礙相關性研究進展[J].重慶醫(yī)科大學學報,2016,41(8):869-872.
[7]? Goto Y,Kumura E,Watabe T,et al. Prediction of malignant middle cerebral artery infarction in elderly patients [J]. J Stroke Cerebrovasc Dis,2016,25(6):1389-1395.
[8]? 中華醫(yī)學會神經病學分會神經重癥協(xié)作組,中國醫(yī)師協(xié)會神經內科醫(yī)師分會神經重癥專委會.大腦半球大面積梗死監(jiān)護與治療中國專家共識[J].中華醫(yī)學雜志,2017, 97(9):645-652.
[9]? Sims JR,Gharai LR,Schaefer PW,et al. ABC/2 for rapid clinical estimate of infarct,perfusion,and mismatch volumes [J]. Neurology,2009,72(24):2104-2110.
[10]? Huttner HB,Schwab S. Malignant middle cerebral artery infarction:clinical characteristics,treatment strategies,and future perspectives [J]. Lancet Neurol,2009,8(10):949-958.
[11]? Heiss WD. Malignant MCA infarction:pathophysiology and imaging for early diagnosis and management decisions [J]. Cerebrovasc Dis,2016,41(1/2):1-7.
[12]? Su Y,F(xiàn)an L,Zhang Y,et al. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction [J]. Stroke,2016, 47(2):457.
[13]? Stokum JA,Gerzanich V,Simard JM. Molecular pathophysiology of cerebral edema [J]. J Cerebr Blood F Met,2016,36(3):513-538.
[14]? Kauw F,Bennink E,de Jong HWAM,et al. Intracranial cerebrospinal fluid volume as a predictor of malignant middle cerebral artery infarction [J]. Stroke,2019.[Epub ahead of print].
[15]? Beck C,Kruetzelmann A,F(xiàn)orkert ND,et al. A simple brain atrophy measure improves the prediction of malignant middle cerebral artery infarction by acute DWI lesion volume [J]. J Neurol,2014,261(6):1097-1103.
[16]? Bektas H,Wu TC,Kasam M,et al. Increased blood-brain barrier permeability on perfusion CT might predict malignant middle cerebral artery infarction [J]. Stroke,2010,41(11):2539-2544.
[17]? Copen WA,Yoo AJ,Rost NS,et al. In patients with suspected acute stroke,CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core [J]. PLoS One,2017,12(11):e0188891.
[18]? Bongiorni GT,Hockmuller MCJ,Klein C,et al. Decompressive craniotomy for the treatment of malignant infarction of the middle cerebral artery:mortality and outcome [J]. Arq Neuropsiquiatr,2017,75(7):424-428.
[19]? Shah A,Almenawer S,Hawryluk G. Timing of decompressive craniectomy for ischemic stroke and traumatic brain injury:a review [J]. Front Neurol,2019,10:11.
[20]? Dasenbrock HH,Robertson FC,Vaitkevicius H,et al. Timing of decompressive hemicraniectomy for stroke:a nationwide inpatient sample analysis [J]. Stroke,2017,48(3):704-711.
(收稿日期:2019-10-09? 本文編輯:李亞聰)