馮美蘋 馮文靜 胡松 毛擁軍
[摘要] 目的 探討褐藻膠寡糖(AOS)對D-半乳糖誘導(dǎo)C57BL/6J小鼠白內(nèi)障的影響及其機制。
方法 將45只雄性C57BL/6J小鼠隨機分為對照組(A組)、D-半乳糖組(B組)、D-半乳糖+AOS低劑量組(C組)、D-半乳糖+AOS中劑量組(D組)和D-半乳糖+AOS高劑量組(E組),每組9只。A組小鼠注射無菌注射用水(5 mL·kg-1·d-1)8周,其余各組小鼠注射D-半乳糖(200 mg·kg-1·d-1)8周;并于第5周開始,A、B兩組小鼠給予蒸餾水10 mL/(kg·d)灌胃處理4周,C、D、E組小鼠分別給予AOS 50、100、150 mg·kg-1·d-1灌胃處理4周。實驗結(jié)束后摘除小鼠眼球,解剖顯微鏡下分離晶狀體,評定各組小鼠晶狀體混濁度得分,蘇木精-伊紅(HE)染色觀察各組小鼠晶狀體組織病理學改變,Western blot檢測各組小鼠凋亡相關(guān)蛋白Bax、Bcl-xl和caspase-3表達。
結(jié)果與對照組比較,D-半乳糖組晶狀體混濁度評分明顯升高,差異有統(tǒng)計學意義(F=4.347,P<0.05);與D-半乳糖組相比,AOS干預(yù)各組晶狀體混濁度評分明顯降低,并且呈濃度依賴性降低,差異有統(tǒng)計學意義(P<0.05)。HE染色結(jié)果顯示,對照組小鼠晶狀體上皮細胞單層排列,整齊有序;D-半乳糖組晶狀體上皮細胞稍腫脹,細胞大小及排列不均勻;AOS 150 mg·kg-1·d-1灌胃處理顯著改善了晶狀體上皮細胞的形態(tài)結(jié)構(gòu)及排列紊亂。Western blot結(jié)果顯示,與對照組相比較,D-半乳糖組小鼠晶狀體Bcl-xl蛋白表達明顯減少,Bax、caspase-3蛋白表達明顯增加,差異有統(tǒng)計學意義(F=6.62~9.16,P<0.05);與D-半乳糖組相比,AOS干預(yù)各組小鼠晶狀體Bcl-xl蛋白表達明顯增加,Bax、caspase-3蛋白表達明顯減少,差異有統(tǒng)計學意義(P<0.05);不同濃度AOS干預(yù)組小鼠晶狀體Bcl-xl蛋白表達呈濃度依賴性增加,E組與C組比較差異有統(tǒng)計學意義(P<0.05);不同濃度AOS干預(yù)組小鼠晶狀體Bax、caspase-3蛋白表達呈濃度依賴性減少,E組與C、D組差異有統(tǒng)計學意義(P<0.05)。
結(jié)論 AOS可以延緩D-半乳糖誘導(dǎo)C57BL/6J小鼠白內(nèi)障的發(fā)生,其機制可能與抑制晶狀體細胞凋亡有關(guān)。
[關(guān)鍵詞] 白內(nèi)障;半乳糖;細胞凋亡;衰老;晶體;上皮細胞
[中圖分類號] R329.25
[文獻標志碼] A
[文章編號] 2096-5532(2020)03-0256-05
doi:10.11712/jms.2096-5532.2020.56.096
[開放科學(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1445.016.html;2020-05-20 17:09
EFFECT OF ALGINATE OLIGOSACCHARIDES ON D-GALACTOSE-INDUCED CATARACT IN MICE
\ FENG Meiping, FENG Wenjing, HU Song, MAO Yongjun
\ (Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qing-
dao 266000, China)
\; [ABSTRACT]\ Objective\ To investigate the effect of alginate oligosaccharides (AOS) on D-galactose-induced cataract in C57BL/6J mice and its mechanism of action.
\ Methods\ A total of 45 male C57BL/6J mice were randomly divided into control group (group A), D-galactose group (group B), D-galactose+low-dose AOS group (group C), D-galactose+medium-dose AOS group (group D), and D-galactose+high-dose AOS group (group E), with 9 mice in each group. The mice in group A were injected with sterile water for injection (5 mL·kg-1·d-1) for 8 weeks; the mice in other groups were injected with D-galactose (200 mg·kg-1·d-1) for 8 weeks. From the fifth week, the mice in groups A and B were intragastrically administered distilled water (10 mL·kg-1·d-1) for 4 weeks, and the mice in groups C, D, and E were intragastrically administered 50, 100, and 150 mg·kg-1·d-1 AOS, respectively, for 4 weeks. At the end of the experiment, the eyeballs of the mice were removed, and the lens were dissected under a dissecting microscope to evaluate the lens turbidity scores of mice in each group. The histopathological changes of the lens of mice in each group were evaluated using HE staining, and the expression of apoptosis-related proteins, Bax, Bcl-xl, and caspase-3, of mice in each group was determined by Western blot.
\ Results\ Compared with the control group, the D-galactose group had a significantly increased lens turbidity score (F=4.347,P<0.05); compared with the D-galactose group, the AOS-treated groups had significant decreases in lens turbidity score in a concentration-dependent manner (P<0.05). HE staining showed that the lens epithelial cells of mice in the control group were orderly arranged in a single layer, and the lens epithelial cells of mice in the D-galactose group were slightly dilated with non-uniform cell size and arrangement; intragastric administration of AOS (150 mg·kg-1·d-1) significantly improved the mor-
phological structure and disorderly arrangement of the lens epithelial cells. Western blot results showed the following: compared with the control group, the D-galactose group had significantly reduced expression of Bcl-xl protein but significantly increased expression of Bax and caspase-3 proteins in the lens (F=6.62-9.16,P<0.05); compared with the D-galactose group, the AOS-treated groups had significantly increased expression of Bcl-xl protein but significantly reduced expression of Bax and caspase-3 proteins in the lens (P<0.05); the groups treated with different concentrations of AOS showed concentration-dependent increases in the expression of Bcl-xl protein, with a significant difference between group E and group C (P<0.05), and concentration-depen-
dent decreases in the expression of Bax and caspase-3 proteins in the lens, with significant differences between group E and groups C and D (P<0.05).
\ Conclusion\ AOS can delay D-galactose-induced cataract in C57BL/6J mice, which may be associated with the inhibition of lens cell apoptosis.
[KEY WORDS]\ cataract; galactose; apoptosis; aging; lens, crystalline; epithelial cells
白內(nèi)障是由增齡、免疫和代謝異常、局部營養(yǎng)障礙、創(chuàng)傷等多種原因引起的晶狀體代謝紊亂,使晶狀體蛋白發(fā)生變性,最終導(dǎo)致晶狀體混濁。白內(nèi)障是導(dǎo)致老年人視力障礙的主要原因之一,位居我國致盲性眼病首位[1]。目前白內(nèi)障的治療仍以手術(shù)治療為主,但藥物治療同樣重要。研究發(fā)現(xiàn),晶狀體上皮細胞凋亡在白內(nèi)障發(fā)生和發(fā)展過程中起重要的作用[2-3]。D-半乳糖介導(dǎo)的嚙齒動物衰老模型已廣泛應(yīng)用于衰老相關(guān)性疾病及抗衰老研究。褐藻膠寡糖(AOS)屬于海藻寡糖,具有抗氧化、抗腫瘤、抗炎、抑制凋亡等生物學活性。AOS對D-半乳糖誘導(dǎo)的白內(nèi)障的作用鮮有報道。本實驗通過D-半乳糖誘導(dǎo)制備C57BL/6J小鼠白內(nèi)障模型,探討AOS對D-半乳糖誘導(dǎo)C57BL/6J小鼠白內(nèi)障的影響及其可能的作用機制,為白內(nèi)障的藥物治療提供新思路。
1 材料與方法
1.1 實驗材料
C57BL/6J小鼠購于濟南鵬躍實驗動物繁育中心;AOS購于青島博智匯力生物科技有限公司;D-半乳糖、BCA蛋白濃度測定試劑盒購于北京索萊寶公司;Bax兔多克隆抗體、Bcl-xl和β-actin兔單克隆抗體、caspase-3鼠單克隆抗體購于美國Cell Signaling Technology公司;山羊抗兔IgG、山羊抗鼠IgG二抗購于武漢伊萊瑞特公司;RIPA裂解液購于上海碧云天公司。
1.2 實驗方法
1.2.1 小鼠分組及處理 45只8周齡C57BL/6J雄性小鼠于青島大學實驗動物中心(SPF級)適應(yīng)性飼養(yǎng)1周后用于實驗。實驗期間保持室內(nèi)溫度18~22 ℃,相對濕度40%~60%,明/暗周期為12 h,小鼠自由進食和飲水。應(yīng)用隨機數(shù)字表法將45只小鼠分為對照組(A組)、D-半乳糖組(B組)、D-半乳糖+AOS低劑量組(C組)、D-半乳糖+AOS中劑量組(D組)和D-半乳糖+AOS高劑量組(E組),每組9只。A組小鼠于頸背部皮下注射滅菌注射用水(5 mL·kg-1·d-1)8周,其余各組小鼠均頸背部皮下注射D-半乳糖(200 mg·kg-1·d-1)8周。自實驗第5周開始,A、B兩組小鼠給予蒸餾水10 mL·kg-1·d-1灌胃處理4周,C、D、E組小鼠分別給予AOS 50、100、150 mg·kg-1·d-1灌胃處理4周。該動物實驗經(jīng)青島大學動物福利和倫理管理委員會批準,且遵守《動物保護與使用指南》。
1.2.2 晶狀體混濁度觀察及評分 實驗結(jié)束后,摘取小鼠眼球并在生理鹽水中清洗3次,解剖顯微鏡下分離晶狀體。根據(jù)SIPPEL[4]描述的晶狀體混濁度評分標準,將晶狀體混濁度分為0~5分。0分:晶狀體透明,無空泡;1分:晶狀體透明,空泡少于3個;2分:晶狀體透明,空泡多于3個;3分:空泡覆蓋整個晶狀體表面;4分:晶狀體部分混濁;5分:晶狀體完全混濁。
1.2.3 蘇木精-伊紅染色(HE染色) 應(yīng)用HE染色觀察晶狀體細胞形態(tài)變化。將摘取的眼球在生理鹽水中清洗3次,迅速置于40 g/L甲醛緩沖溶液中固定,二甲苯脫蠟,梯度乙醇脫水,石蠟包埋,切片后經(jīng)過脫水、HE染色、透明、封片處理后,應(yīng)用光學顯微鏡觀察晶狀體上皮細胞形態(tài)結(jié)構(gòu)變化。
1.2.4 Western blot方法檢測晶狀體Bax、Bcl-xl和caspass-3蛋白的表達 收集各組小鼠至少10個晶狀體樣本,應(yīng)用4 ℃磷酸鹽緩沖液沖洗3次,濾紙吸干后稱質(zhì)量,按質(zhì)量體積比1∶9加入4 ℃的磷酸鹽緩沖液,于冰上經(jīng)研磨棒充分研磨后,制成100 g/L的晶狀體勻漿,低溫12 000 r/min離心5 min,留取上清液。加入RIPA裂解液提取蛋白,應(yīng)用BCA試劑盒測定蛋白濃度。根據(jù)蛋白濃度加入晶狀體蛋白進行SDS-PAGE凝膠電泳,當溴酚藍到達底部時將分離膠轉(zhuǎn)移至PVDF膜上(200 mA、90 min),封閉液封閉2 h,分別加入1∶1 000稀釋的Bax、Bcl-xl和caspase-3一抗工作液,4 ℃孵育過夜;TBS-T洗膜1 h后加入1∶5 000稀釋的二抗工作液,室溫孵育2 h;TBS-T洗膜1 h,應(yīng)用ECL發(fā)光液顯影,并應(yīng)用Quantity One 軟件進行灰度分析。以目的蛋白與內(nèi)參蛋白灰度值的比值表示各蛋白表達。
1.3 統(tǒng)計學方法
應(yīng)用SPSS 21.0軟件進行統(tǒng)計學分析,計量資料結(jié)果以±s表示,多組數(shù)據(jù)比較采用One-way ANOVA檢驗,組間兩兩比較采用LSD法。P<0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 各組小鼠晶狀體混濁度得分比較
A組、B組、C組、D組、E組小鼠晶狀體混濁度得分分別為:0.44±0.72、4.44±0.73、3.67±0.71、2.78±0.97、1.22±0.67。與對照組比較,D-半乳糖組晶狀體混濁度評分明顯升高,差異有統(tǒng)計學意義(F=4.347,P<0.05);與D-半乳糖組相比,不同濃度AOS干預(yù)組晶狀體混濁度評分明顯降低,并且呈濃度依賴性降低,差異有統(tǒng)計學意義(P<0.05)。
2.2 各組小鼠晶狀體HE染色結(jié)果比較
對照組小鼠晶狀體上皮細胞呈單層排列,整齊有序;D-半乳糖組小鼠晶狀體上皮細胞稍腫脹,細胞排列不均勻;AOS 150 mg·kg-1·d-1灌胃處理顯著改善了晶狀體上皮細胞的形態(tài)結(jié)構(gòu)及排列紊亂。見圖1A~C。
2.3 各組小鼠晶狀體Bax、Bcl-xl和caspase-3蛋白表達比較
與對照組相比,D-半乳糖組小鼠晶狀體Bcl-xl蛋白表達明顯減少,Bax、caspase-3的蛋白表達明顯增加,差異有統(tǒng)計學意義(F=6.62~9.16,P<0.05);與D-半乳糖組相比,D-半乳糖+AOS各劑量組(C、D、E組)小鼠晶狀體Bcl-xl的蛋白表達明顯增加,Bax、caspase-3的蛋白表達明顯減少,差異有統(tǒng)計學意義(P<0.05);不同濃度AOS干預(yù)組小鼠晶狀體Bcl-xl的蛋白表達呈濃度依賴性增加,E組與C組比較差異有統(tǒng)計學意義(P<0.05);不同濃度AOS干預(yù)組小鼠晶狀體Bax、caspase-3蛋白表達呈濃度依賴性減少,E組與C組、D組差異有統(tǒng)計學意義(P<0.05)。見圖2、表1。
3 討論
白內(nèi)障是老年人常見致盲性眼病,衰老是老年人白內(nèi)障的重要病因之一。研究表明,晶狀體上皮細胞受損與白內(nèi)障的發(fā)生和發(fā)展有密切聯(lián)系,除先
天性白內(nèi)障外,晶狀體上皮細胞凋亡在多種類型白內(nèi)障發(fā)生中起重要作用[5-6]。
D-半乳糖誘導(dǎo)的亞急性衰老模型被廣泛應(yīng)用于構(gòu)建衰老嚙齒類動物模型,廣泛應(yīng)用于增齡性聽力下降[7]、白內(nèi)障[8]、記憶障礙[9]、腎臟衰老[10]、心臟衰老[11]等研究。高劑量半乳糖可誘導(dǎo)產(chǎn)生過量活性氧,從而促進晶狀體上
皮細胞的脂質(zhì)過氧化[12]。此外,多項研究表明,D-
半乳糖通過損傷晶狀體上皮細胞促進白內(nèi)障形成[13-14]。晶狀體上皮細胞凋亡是多種類型白內(nèi)障發(fā)生的細胞學基礎(chǔ)[6,15-16]。研究表明,經(jīng)D-半乳糖處理后的動物表現(xiàn)為氧化應(yīng)激損傷與糖基化反應(yīng)同時存在,導(dǎo)致晶狀體上皮細胞的細胞核和線粒體功能、結(jié)構(gòu)損傷,進一步引起細胞凋亡[17-18]。此外,D-半乳糖在氧化酶的作用下分解形成木酮糖和CO2,并產(chǎn)生氧自由基和H2O2,導(dǎo)致晶狀體氧化損傷,進一步導(dǎo)致晶狀體混濁[19]。本實驗結(jié)果表明,應(yīng)用D-半乳糖處理后的小鼠晶狀體混濁度評分明顯增加,細胞凋亡相關(guān)蛋白Bcl-xl蛋白的表達明顯降低,Bax、
caspase3蛋白表達明顯增加,表明D-半乳糖可以誘導(dǎo)白內(nèi)障的發(fā)生,其機制可能與細胞凋亡有關(guān)。
根據(jù)晶狀體的混濁程度可進行白內(nèi)障病情分級。晶狀體混濁通常從周邊開始出現(xiàn)空泡,逐漸向中心發(fā)展,最終出現(xiàn)核混濁[20]。病理改變主要表現(xiàn)為晶狀體細胞結(jié)構(gòu)破壞以及晶狀體纖維水腫、崩解等[21-22]。AOS因其無免疫原性、無毒性、可生物降解等優(yōu)點而被應(yīng)用于生物醫(yī)學領(lǐng)域。已有研究表明,AOS對肺動脈高壓[23]、心血管疾病[24]、腎臟損傷[25]等具有重要保護作用,但其對白內(nèi)障的影響卻鮮有研究。本研究結(jié)果顯示,D-半乳糖組小鼠晶狀體混濁度評分明顯升高,AOS干預(yù)顯著改善了晶狀體上皮細胞的形態(tài)結(jié)構(gòu)及排列紊亂,表明D-半乳糖誘導(dǎo)了C57BL/6J小鼠白內(nèi)障的發(fā)生,AOS顯著延緩了D-半乳糖誘導(dǎo)的C57BL/6J小鼠白內(nèi)障的進展。本研究顯示,應(yīng)用不同濃度的AOS干預(yù)后,小鼠晶狀體混濁度呈濃度依賴性降低,高劑量組降低效果最為明顯;晶狀體上皮細胞的形態(tài)結(jié)構(gòu)及排列紊亂得到明顯改善;且細胞凋亡相關(guān)蛋白Bcl-xl表達呈劑量依賴性增加,而Bax、caspase3蛋白表達呈劑量依賴性減少,以高劑量組效果最為明顯。表明AOS可以延緩白內(nèi)障的發(fā)生,其機制可能與抑制細胞凋亡有關(guān)。
細胞凋亡是為了維持內(nèi)環(huán)境穩(wěn)定,在基因調(diào)控
下的細胞程序性死亡,受多種基因如Bcl-2家族
Bax、Bcl-xl以及caspase家族中的caspase-3等調(diào)控。Bax屬于Bcl-2家族中重要的凋亡調(diào)節(jié)基因,Bax的過度表達可以拮抗Bcl-2的保護作用,從而促進細胞凋亡。Bcl-xl是Bcl-2家族基因中重要的拮抗細胞凋亡基因,可與Bax結(jié)合形成異二聚體,發(fā)揮抑制細胞凋亡的作用[26-28]。JING等[29]在研究過氧化氫誘導(dǎo)的人晶狀體上皮細胞凋亡時發(fā)現(xiàn),Bax、caspase-3的mRNA表達明顯增加,表明其在細胞凋亡中發(fā)揮重要作用。caspase-3是近年來發(fā)現(xiàn)的在細胞凋亡中起關(guān)鍵作用的蛋白酶[30-31]。有研究表明,老年白內(nèi)障病人和中青年白內(nèi)障病人晶狀體上皮細胞凋亡與caspase-3的表達水平呈正相關(guān)。本實驗結(jié)果顯示,與對照組相比較,D-半乳糖組小鼠晶狀體Bcl-xl蛋白表達明顯減少,Bax、caspase-3蛋白表達明顯增加;與D-半乳糖組相比,AOS干預(yù)各組小鼠晶狀體Bcl-xl的蛋白表達呈劑量依賴性增加,Bax、caspase-3蛋白表達呈劑量依賴性減少,以高劑量組效果最為明顯,表明白內(nèi)障的發(fā)生與細胞凋亡相關(guān)蛋白Bcl-xl、Bax和caspase-3的表達有關(guān)。
綜上所述,AOS顯著延緩了D-半乳糖誘導(dǎo)的C57BL/6J小鼠白內(nèi)障的進展,其機制可能與AOS抑制晶狀體細胞凋亡有關(guān)。但其具體分子調(diào)控機制仍需進一步研究。
[參考文獻]
[1]PASCOLINI D, MARIOTTI S P. Global estimates of visual impairment: 2010[J].? The British Journal of Ophthalmology, 2012,96(5):614-618.
[2]于春艷,于春榮,敬舒,等. 北五味子總木脂素對D-半乳糖誘導(dǎo)的小鼠腦衰老自噬和凋亡的影響[J].? 吉林大學學報(醫(yī)學版), 2014,40(6):1210-1215.
[3]BIANCHI E, SCARINCI F, GRANDE C, et al. Immunohistochemical profile and VEGF, TGF-β and PGE2 in human pterygium and normal conjunctiva: experimental study and review of the literature[J].? International Journal of Immunopathology and Pharmacology, 2012,25(3):607-615.
[4]SIPPEL T O. Changes in the water, protein, and glutathione contents of the lens in the course of galactose cataract development in rats[J].? Investigative Ophthalmology,1966,5(6):568-575.
[5]HUANG Xiurong. Inhibition effects of compound leech eye drops on apoptosis of lens epithelial cells and expressions of Bcl-2 and Bax genes in rats[J].? Journal of Chinese Integrative Medicine, 2007,5(6):681-685.
[6]LI W C, KUSZAK J R, DUNN K, et al. Lens epithelial cellapoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals[J].? The Journal of Cell Biology, 1995,130(1):169-181.
[7]DU Z, YANG Q, LIU L, et al. NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats[J].? Neuroscience, 2015,286(21):281-292.
[8]VINSON J A. Oxidative stress in cataracts[J].? Pathophysiology: the Official Journal of the International Society for Pathophysiology/ISP, 2006,13(3):151-162.
[9]SUNG N, SEO M, JIN-SEOK S, et al. Ascorbic acid mi-
tigates D-galactose-induced brain aging by increasing hippocampal neurogenesis and improving memory function[J].? Nu-
trients, 2019,11(1):176-193.
[10]LIU Buhui, TU Yu′e, HE Weiming, et al. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy[J]. Aging, 2018,10(12):4197-4212.
[11]BEI Y H, WU X T, CRETOIU D, et al. miR-21 suppression prevents cardiac alterations induced by D-galactose and doxorubicin[J].? Journal of Molecular and Cellular Cardiology, 2018,115(9):130-141.
[12]DAI? Jie,? ZHOU Jun,? LIU Hongmei,? et al. Selenite and ebselen supplementation attenuatesd-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens[J].? Journal of Biological Inorganic Chemistry. 2016,21(8):1037-1046.
[13]CHANG Yungming, CHANG Henhong, KUO Weiwen, et al. Anti-apoptotic and pro-survival effect of alpinate oxyphyllae fructus (AOF) in a D-galactose-induced aging heart[J].? International Journal of Molecular Sciences, 2016,17(4):466-485.
[14]XU Yao, LI Yong, MA Limei, et al. D-galactose induces premature senescence of lens epithelial cells by disturbing autophagy flux and mitochondrial functions[J].? Toxicology Letters, 2018,289(6):99-106.
[15]LONG? A C, COLITZ C M H, BOMSER J A. Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death[J].? Experimental Biology & Medicine, 2004,229(10):1072-1080.
[16]LI W C, JEROME R K, WANG G M, et al. Calcimycin-induced lens epithelial cell apoptosis contributes to cataract formation[J].? Experimental Eye Research, 1995,61(1):91-98.
[17]林媛,黎秉富,呂俊華. 氨基胍對D-半乳糖致大鼠眼晶狀體損傷的影響及其機制[J].? 中國病理生理雜志, 2009,25(5):1004-1008.
[18]張世平,譚海榮,潘竟鏘,等. D-半乳糖致蛋白質(zhì)糖基化動物模型的建立[J].? 基礎(chǔ)醫(yī)學與臨床, 2006,26(1):92-95.
[19]武飛. 天葵提取物對D-半乳糖誘導(dǎo)的大鼠白內(nèi)障的防治作用及對免疫功能影響的實驗研究[D].? 貴陽:貴陽醫(yī)學院, 2015.
[20]馮春燕,黃秀榕,祁明信,等. 異補骨脂素對氧化損傷的人晶狀體上皮細胞的防護作用及其機制[J].? 中華眼科雜志, 2011,47(4):353-355.
[21]劉祁,李東旭,王阜蕾,等. 大鼠半乳糖性白內(nèi)障晶狀體上皮細胞的病理變化[J].? 眼科新進展, 2016,36(12):1101-1104.
[22]KUBO E, URAKAMI T, FATMA N, et al. Polyol pathway-dependent osmotic and oxidative stresses in aldose reductase-mediated apoptosis in human lens epithelial cells: role of AOP2[J].? Biochemical and Biophysical Research Communications, 2004,314(4):1050-1056.
[23]YI Hu, FENG Zhe, FENG Wenjing, et al. AOS ameliorates monocrotaline-induced pulmonary hypertension by restraining the activation of P-selectin/p38MAPK/NF-κB pathway in rats[J].? Biomedicine & Pharmacotherapy, 2019,109(3):1319-1326.
[24]GUO Junjie, XU Fengqiang, LI Yonghong, et al. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis[J].? Drug Design Development and Therapy, 2017,11(11):2387-2397.
[25]TERAKADO S, UENO M, TAMURA Y, et al. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in dahl salt-sensitive rats fed a high-salt diet[J].? Clinical and Experimental Hypertension, 2012,34(2):99-106.
[26]HUSKA J D, LAMB H M, HARDWICK J M. Overview of BCL-2 family proteins and therapeutic potentials[J].
Methods in Molecular Biology (Clifton, N.J.), 2019,1877(2):1-21.
[27]KOLLEK M, MLLER A, EGLE A, et al. Bcl-2 proteins in development, health, and disease of the hematopoietic system[J].? The FEBS Journal, 2016,283(15):2779-2810.
[28]JAE-SUN S, JI-HYANG H, SEUNG-WOOK C. Targeting of P53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy[J].? Biochemical and Biophysical Research Communications, 2014,443(3):882-887.
[29]GAO Jing, WANG Tao, WANG Meng. Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies[J].? BMC Ophthalmology, 2018,18(1):48-56.
[30]李延輝,葉仕英,何小杰,等. 不同年齡白內(nèi)障晶狀體上皮細胞中caspase-3、Fas/FasL的表達及意義[J].? 中國當代醫(yī)藥, 2014,12(31):15-17.
[31]YANG Liuqin, FANG Dianchun, WANG Rongquan, et al. Effect of NF-κB, survivin, Bcl-2 and Caspase-3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand[J].? World Journal of Gastroenterology, 2004,10(1):22-25.
(本文編輯 黃建鄉(xiāng))
[收稿日期]2020-02-29; [修訂日期]2020-03-28
[基金項目]國家自然科學基金面上項目(3157100089)
[第一作者]馮美蘋(1990-),女,碩士研究生。
[通信作者]毛擁軍(1964-),男,博士,教授,博士生導(dǎo)師。
E-mail:mmc168@126.com。