国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Mn2+摻雜對(duì)晶質(zhì)氧化鐵結(jié)構(gòu)與紅外光譜特征的影響*

2020-08-24 14:37牛鵬舉許海娟魏世勇
土壤學(xué)報(bào) 2020年4期
關(guān)鍵詞:波數(shù)氧化鐵鐵礦

王 銳,方 敦,牛鵬舉,許海娟,魏世勇?

Mn2+摻雜對(duì)晶質(zhì)氧化鐵結(jié)構(gòu)與紅外光譜特征的影響*

王 銳1,2,方 敦3,牛鵬舉1,4,許海娟1,2,魏世勇1,2?

(1. 湖北民族大學(xué)化學(xué)與環(huán)境工程學(xué)院,湖北恩施 445000;2. 生物資源保護(hù)與利用湖北省重點(diǎn)實(shí)驗(yàn)室(湖北民族大學(xué)),湖北恩施 445000;3. 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430000;4. 安陽工學(xué)院文法學(xué)院,河南安陽 455000)

制備針鐵礦和赤鐵礦的混合晶質(zhì)氧化鐵(CIO)和不同摩爾比例()的Mn2+摻雜晶質(zhì)氧化鐵(CIO-Mn(=0.1、0.2、0.3和0.5))樣品。根據(jù)樣品的X-射線衍射(XRD)和透射電鏡(TEM)結(jié)果分析Mn2+摻雜對(duì)晶質(zhì)氧化鐵結(jié)構(gòu)與形貌的影響;對(duì)樣品的傅里葉紅外圖譜(FT-IR)的高波數(shù)(3 000~3 700 cm–1)和低波數(shù)(450~750 cm–1)兩個(gè)區(qū)間做分峰擬合,分析Mn2+摻雜晶質(zhì)氧化鐵的羥基官能團(tuán)和晶體結(jié)構(gòu)化學(xué)鍵的變化特征。結(jié)果顯示,為0.1~0.3的Mn2+摻雜抑制了針鐵礦和赤鐵礦等晶質(zhì)氧化鐵的形成;為0.5的Mn2+摻雜導(dǎo)致樣品中形成了摻錳磁鐵礦,且存在少量的針鐵礦而沒有明顯的赤鐵礦。CIO樣品中存在自由羥基、吸附水羥基、表面締合羥基和結(jié)構(gòu)羥基共四類羥基。在為0.1~0.3范圍內(nèi),隨著的增大,樣品中自由羥基和吸附水羥基的相對(duì)含量降低,而表面締合羥基和結(jié)構(gòu)羥基的相對(duì)含量增大。此外,Mn2+摻雜導(dǎo)致樣品中自由羥基和結(jié)構(gòu)羥基的吸收帶波數(shù)降低,而吸附水羥基和表面締合羥基的吸收帶波數(shù)隨的增大而增大。CIO樣品中Fe-O振動(dòng)在455 cm–1和619 cm–1附近紅外吸收帶的強(qiáng)度和峰形與樣品中針鐵礦顆粒的形貌有關(guān),478 cm–1和560 cm–1附近的紅外吸收與樣品中赤鐵礦的結(jié)晶度密切相關(guān)。分析表明,CIO-Mn樣品中的赤鐵礦結(jié)構(gòu)中陽離子空位與Mn2+耦合產(chǎn)生了567~589 cm–1附近的吸收,其強(qiáng)度隨著的增大而增強(qiáng)。CIO-Mn0.5樣品中形成了Mn2+替代Fe2+的摻錳磁鐵礦,導(dǎo)致樣品在593 cm–1處出現(xiàn)了Mn-O晶格振動(dòng)吸收帶。

晶質(zhì)氧化鐵;錳摻雜;紅外;羥基;晶體結(jié)構(gòu)

鐵氧化物是土壤中具有重要意義的活性成分,其對(duì)土壤-水體系中的營養(yǎng)元素和污染物的遷移轉(zhuǎn)化有重要的影響,能夠起到調(diào)控土壤肥力并且控制環(huán)境污染物遷移的作用[1-3]。土壤中的鐵氧化物主要包括了水鐵礦等非晶質(zhì)氧化鐵和多種晶質(zhì)氧化鐵,其中針鐵礦可存在于亞熱帶濕潤區(qū)的棕壤和黃棕壤等類型土壤中,而赤鐵礦是土壤發(fā)育程度較高的代表性晶質(zhì)氧化鐵[4-6]。

在自然土壤環(huán)境中,Mn與Fe往往共存,可形成鐵錳二元氧化物或錳摻雜鐵氧化物[7-10]。研究顯示,在針鐵礦的合成條件下,摩爾摻雜比例為0.1~0.2的Mn2+可促進(jìn)針鐵礦晶體顆粒沿軸方向伸長而形成大長徑比的針狀顆粒;當(dāng)Mn2+的摩爾摻雜比例為0.3~0.5時(shí),針鐵礦晶體的軸方向受到嚴(yán)重的抑制導(dǎo)致晶體沿軸方向生長成纖細(xì)須狀,同時(shí)生成了大量的摻錳磁鐵礦[11]。由于Mn2+摻雜比例不同,導(dǎo)致產(chǎn)物具有不同的晶體結(jié)構(gòu)與形貌、比表面積和表面分形度等表面結(jié)構(gòu)以及羥基密度等表面性質(zhì),進(jìn)而導(dǎo)致樣品對(duì)水體中硒的吸附性能產(chǎn)生較大的差異[11]。Liu等[10]研究了Mn2+摻雜針鐵礦的結(jié)構(gòu)及對(duì)Pb2+的吸附性能,得到了類似的研究結(jié)果。Madden和Hochella[12]研究發(fā)現(xiàn),吸附在赤鐵礦中的Mn2+與赤鐵礦之間的耦合作用形成了扭曲的Mn2+八面體配位結(jié)構(gòu),進(jìn)而提高了Mn2+被O2氧化的速率。Ristic等[13]制備了低濃度錳摻雜針鐵礦,經(jīng)過空氣熱處理以后制備了錳摻雜赤鐵礦,發(fā)現(xiàn)低濃度的錳摻雜(≤10%)僅僅改變了針鐵礦的形貌和磁性質(zhì),但對(duì)針鐵礦和衍生赤鐵礦的晶體結(jié)構(gòu)和紅外光譜特征并沒有明顯的影響。而Gurudayal等[14]研究發(fā)現(xiàn),低濃度的Mn2+摻雜赤鐵礦由于具有晶格Mn導(dǎo)致?lián)藉i赤鐵礦的費(fèi)米能級(jí)向?qū)Х较蛞苿?dòng)而增大了電子供體密度,最終改善了赤鐵礦的半導(dǎo)體性能。可見,Mn2+摻雜對(duì)針鐵礦、赤鐵礦等晶質(zhì)氧化鐵的結(jié)構(gòu)、性質(zhì)和性能具有重要的影響。然而,已有的研究主要關(guān)注點(diǎn)在于通過Mn2+摻雜改善晶質(zhì)氧化鐵的應(yīng)用性能,而未能充分研究晶質(zhì)氧化鐵及Mn2+摻雜晶質(zhì)氧化鐵的結(jié)構(gòu)與性質(zhì)變化等特征,導(dǎo)致Mn2+摻雜晶質(zhì)氧化鐵自身的結(jié)構(gòu)與性質(zhì)變化特征仍不清晰。

傅里葉變換紅外光譜(FT-IR)是一種被廣泛用于表征各種鐵氧化物官能團(tuán)的技術(shù),關(guān)于針鐵礦和赤鐵礦等晶質(zhì)氧化鐵的FT-IR已有較多報(bào)道[6,15-17]。盡管各種晶質(zhì)氧化鐵的FT-IR均有明顯的特征吸收帶,然而各種鐵氧化物在羥基等高波數(shù)范圍(>3 000 cm–1)和結(jié)構(gòu)鐵氧鍵(Fe-O)等低波數(shù)范圍(<800 cm–1)的紅外吸收因氫鍵作用和相似的晶體結(jié)構(gòu)Fe-O化學(xué)鍵而導(dǎo)致嚴(yán)重的重疊,導(dǎo)致FT-IR在鐵氧化物的羥基等精細(xì)官能團(tuán)結(jié)構(gòu)和晶體結(jié)構(gòu)的認(rèn)識(shí)存在困難。為了解決FT-IR吸收帶重疊而導(dǎo)致細(xì)節(jié)信息被掩蓋的不足,已有較多的研究者對(duì)FT-IR進(jìn)行分峰擬合數(shù)據(jù)處理(尤其是在煤炭領(lǐng)域的應(yīng)用[18-19]),以便得到被掩蓋的化學(xué)鍵結(jié)構(gòu)信息[20-21]。但是,運(yùn)用FT-IR分峰的數(shù)據(jù)處理方法研究針鐵礦和赤鐵礦等晶質(zhì)氧化鐵及其摻雜產(chǎn)物的羥基官能團(tuán)和晶體結(jié)構(gòu)的紅外特征卻鮮有報(bào)道。劉海波[22]結(jié)合傅里葉變換紅外發(fā)射光譜(FT-IES)和傅里葉變換全衰變紅外光譜(FT-ATR),并利用分峰擬合數(shù)據(jù)處理方法對(duì)針鐵礦的羥基進(jìn)行研究,確定了針鐵礦中存在4種羥基和3層表面吸附水等不同類型的羥基官能團(tuán)。可見,紅外光譜的分峰擬合數(shù)據(jù)處理技術(shù)是一種可以克服因吸收帶重疊而造成干擾的有效方法。

綜上,錳摻雜對(duì)氧化鐵的結(jié)構(gòu)和性質(zhì)均能產(chǎn)生重要的影響,但是有關(guān)錳摻雜氧化鐵自身結(jié)構(gòu)的認(rèn)識(shí)還不夠深入。FT-IR分析是認(rèn)識(shí)物質(zhì)的結(jié)構(gòu)和表面基團(tuán)的重要手段,且FT-IR分峰技術(shù)可有效消除紅外吸收帶重疊導(dǎo)致的干擾。因此,本研究擬以針鐵礦和赤鐵礦兩種晶質(zhì)氧化鐵為研究對(duì)象,通過制備不同摩爾比例的Mn2+摻雜樣品;根據(jù)不同摩爾比例Mn2+摻雜晶質(zhì)氧化鐵樣品的X-射線衍射(XRD)和透射電鏡(TEM)測(cè)試結(jié)果,研究Mn2+摻雜晶質(zhì)氧化鐵的結(jié)構(gòu)與形貌特征;通過FT-IR結(jié)合分峰擬合數(shù)據(jù)處理方法,分析Mn2+摻雜晶質(zhì)氧化鐵的羥基(3 000~3 700 cm–1)和Fe-O鍵(450~750 cm–1)的紅外光譜特征變化。這些研究有助于深入認(rèn)識(shí)土壤中晶質(zhì)氧化鐵及Mn2+摻雜產(chǎn)物的微觀結(jié)構(gòu)、表面基團(tuán)和表面化學(xué)特性。

1 材料與方法

1.1 實(shí)驗(yàn)試劑

制備樣品所用的主要試劑包括Fe(NO3)3·9H2O、Mn(NO3)2·4H2O和NaOH均為分析純級(jí),超純水(18.25 MΩ·cm–1)由超純水機(jī)(HK-UP-11-20)制備。

1.2 樣品的制備

根據(jù)文獻(xiàn)[23-24]的方法合成晶質(zhì)氧化鐵和Mn2+摻雜晶質(zhì)氧化鐵樣品。制備晶質(zhì)氧化鐵樣品的主要步驟如下:取10.10 g Fe(NO3)3·9H2O溶解于50 mL超純水的塑料燒杯中,在攪拌狀態(tài)下快速加入175 mL 2 mol·L–1的NaOH溶液,靜置20 min以后離心并用超純水洗滌,再取250 mL超純水均勻分散沉淀物,用2 mol·L–1的NaOH溶液將懸浮液的pH調(diào)節(jié)至7.0~8.0之間。然后在90℃下用保鮮膜密封老化15 d,最后離心并用超純水洗清3次以上,將所得沉淀在40℃烘箱中烘干、研磨。所得樣品即為晶質(zhì)氧化鐵,記為CIO。

制備Mn2+摻雜晶質(zhì)氧化鐵樣品的主要步驟為:向4份50 mL 0.5 mol·L–1Fe3+溶液中分別加入0.625、1.25、1.875和3.125 g Mn(NO3)2·4H2O溶解,各反應(yīng)體系中Mn2+的摩爾摻雜比例()分別為0.1、0.2、0.3和0.5。其他步驟與制備CIO樣品相同,所得樣品即為的Mn2+摻雜晶質(zhì)氧化鐵樣品,樣品分別記為CIO-Mn0.1、CIO-Mn0.2、CIO-Mn0.3和CIO-Mn0.5。

1.3 樣品的表征

X射線衍射(XRD)測(cè)試在X-射線衍射儀(XRD-7000,日本島津)上進(jìn)行。儀器條件及參數(shù)設(shè)置為:Cu Kα(λ = 0.154 06 nm),掃描速度8°·min–1,步長0.01°,掃描角度范圍10°~80°。

透射電鏡(TEM)測(cè)試:樣品用無水甲醇分散后,在透射電子顯微鏡儀(Tecnai G2 F20,美國FEI)上進(jìn)行透射電鏡(TEM)測(cè)試。

傅里葉紅外光譜(FT-IR)測(cè)試:采用KBr壓片法,取適量的粉末樣品與KBr混合研磨均勻,在紅外燈下烘干壓片后用傅里葉紅外光譜分析儀Nicolet iS5(Thermo Fisher Scientific)采集紅外數(shù)據(jù),測(cè)試范圍為4 000~400 cm–1,分辨率為4 cm–1。對(duì)采集的紅外數(shù)據(jù)做基線校準(zhǔn)后,用儀器自帶的軟件對(duì)測(cè)試結(jié)果中樣品的羥基紅外吸收帶(3 000~3 700 cm–1)和礦物晶格振動(dòng)紅外吸收帶(450~750 cm–1)做分峰擬合,峰形設(shè)為Gauss-Lorentz混合函數(shù),基線設(shè)為常數(shù)。

2 結(jié)果與討論

2.1 Mn2+摻雜對(duì)晶質(zhì)氧化鐵的結(jié)構(gòu)與形貌的影響

圖1為CIO及CIO-Mn(=0.1、0.2、0.3和0.5)樣品的XRD圖,樣品的TEM形貌圖見圖2。圖1顯示,CIO樣品具有針鐵礦(FeOOH,PDF#01-081- 0464)和赤鐵礦(Fe2O3,PDF#01-089-8104)兩種晶質(zhì)氧化鐵的衍射峰,這表明本研究所采用的晶質(zhì)氧化鐵合成方法得到的產(chǎn)物為針鐵礦和赤鐵礦混合相產(chǎn)物(圖2中CIO樣品的TEM圖片中針鐵礦為針狀顆粒,赤鐵礦為六邊形短柱狀顆粒),這與文獻(xiàn)[6]相符。當(dāng)為0.1時(shí),樣品的針鐵礦的(301)和(011)等晶面衍射峰以及赤鐵礦的(012)、(201)、(024)、(116)、(214)、(300)和(1010)等晶面衍射峰明顯減弱,類弱晶質(zhì)施威特曼石(Schwertmannite)(212)晶面結(jié)構(gòu)的衍射峰[6]增強(qiáng);針鐵礦顆粒呈長薄片狀,赤鐵礦顆粒不規(guī)則程度增大。當(dāng)增大至0.3時(shí),隨著的增大,樣品中赤鐵礦各衍射峰均減弱且相對(duì)強(qiáng)度變化不明顯;盡管針鐵礦的各衍射峰均減弱,但針鐵礦的(011)晶面衍射峰相對(duì)增強(qiáng),高晶面指數(shù)(301)晶面衍射峰顯著減弱而低晶面指數(shù)(101)晶面衍射峰相對(duì)變化較小。這表明當(dāng)≤0.3時(shí),適量的Mn2+摻雜抑制了針鐵礦晶體顆粒的形成,且對(duì)晶質(zhì)氧化鐵晶化的抑制作用程度與Mn2+的摩爾摻雜比例正相關(guān);此時(shí)樣品中針鐵礦的針狀形貌特征消失,而赤鐵礦則依次退化為紡錘體形和不規(guī)則球狀顆粒。當(dāng)增大至0.5時(shí),樣品中的針鐵礦的XRD衍射峰微弱(針鐵礦形貌表現(xiàn)為針狀),赤鐵礦XRD衍射峰基本消失,而出現(xiàn)了明顯的球狀顆粒(圖2)摻錳磁鐵礦(PDF#01-089-3854)的(220)、(311)、(400)、(511)和(440)等晶面衍射峰[11]。這可能是為0.5的Mn2+摻雜使合成體系滿足Mn(Ⅱ)/Fe(Ⅲ)≈0.5而形成了Mn2+替代Fe2+的摻錳磁鐵礦[6]。此前的研究顯示,在pH>12且溫度為70 ℃的針鐵礦合成體系中,當(dāng)Mn2+摩爾摻雜比例為0.3時(shí)導(dǎo)致產(chǎn)物中形成了摻錳磁鐵礦[11]。而本研究中,在pH為7~8且溫度為90 ℃的晶質(zhì)氧化鐵的合成體系中,CIO-Mn0.3樣品的XRD圖中并沒有出現(xiàn)摻錳磁鐵礦的衍射峰??梢?,Mn2+摻雜晶質(zhì)氧化鐵的產(chǎn)物與體系的pH、溫度等合成條件有關(guān)。

注:圖中表示針鐵礦的衍射峰,表示赤鐵礦的衍射峰,表示類弱晶質(zhì)施威特曼石的衍射峰,表示摻錳磁鐵礦的衍射峰。Note:,,and stands for XRD peak of goethite,hematite,schwertmannite and Mn-doped magnetite,respectively.

2.2 Mn2+摻雜對(duì)晶質(zhì)氧化鐵中羥基的影響

CIO樣品在3 000~3 700 cm–1范圍內(nèi)的紅外圖譜及分峰曲線見圖3,相應(yīng)的擬合參數(shù)列于表1。CIO樣品的羥基吸收帶出現(xiàn)了4個(gè)擬合吸收峰,相應(yīng)的擬合峰波數(shù)分別為3 573、3 433、3 240和3 123 cm–1。根據(jù)文獻(xiàn)[25-27],氫鍵羥基的吸收帶波數(shù)與形成氫鍵的電子供體和氫鍵構(gòu)型密切相關(guān);可大致分為四類:自由羥基、O-H…π氫鍵羥基、O-H…O-H自締合氫鍵羥基和O-H…O/N等羥基。

圖2 CIO及CIO-Mnx樣品的TEM圖

圖3 CIO樣品在3 000~3 700 cm–1范圍的紅外分峰圖譜

鐵氧化物表面通常因表面鐵羥基(Fe-OH)發(fā)生質(zhì)子化-去質(zhì)子化作用而帶電荷。與醇羥基相比,鐵氧化物的表面Fe-OH鍵力常數(shù)較小,相應(yīng)的紅外吸收帶會(huì)向低波數(shù)方向移動(dòng)。因此,CIO樣品羥基吸收帶中擬合曲線中出現(xiàn)的擬合峰ν1可歸屬為CIO樣品表面少量的自由Fe-OH。鐵氧化物表面的吸附水分子通常在3 400 cm–1附近出現(xiàn)強(qiáng)烈的氫鍵羥基吸收峰[22,28]。因此,CIO樣品在3 433 cm–1處的擬合峰ν2可歸屬為樣品表面吸附水分子形成的氫鍵羥基。CIO樣品的XRD及TEM結(jié)果顯示,樣品中存在針鐵礦和赤鐵礦兩種晶體結(jié)構(gòu)的晶質(zhì)氧化鐵以及微量的類施威特曼石礦物的弱晶質(zhì)鐵氧化物。針鐵礦的晶體結(jié)構(gòu)既有結(jié)構(gòu)氫鍵羥基,同時(shí)也存在表面懸掛羥基和結(jié)構(gòu)缺陷位點(diǎn)自由羥基[6]。Fe3+在低溫(<100 ℃)下水解脫水形成的赤鐵礦的轉(zhuǎn)化并不完全可導(dǎo)致赤鐵礦樣品中同樣存在少量的羥基。CIO樣品中多種類型表面Fe-OH可自締合或與表面的吸附水分子之間形成多種締合結(jié)構(gòu)的氫鍵羥基,因此可能導(dǎo)致CIO樣品的羥基吸收帶中擬合曲線中出現(xiàn)擬合峰ν3,這與劉海波[22]的研究結(jié)果一致。根據(jù)文獻(xiàn)[6],針鐵礦的體相結(jié)構(gòu)氫鍵羥基(Fe-O-H…O-Fe)的伸縮振動(dòng)吸收帶出現(xiàn)在3 140 cm–1附近,因此CIO樣品的紅外分峰結(jié)果中出現(xiàn)了3 123 cm–1處的擬合峰ν4為針鐵礦的體相結(jié)構(gòu)氫鍵羥基特征振動(dòng)吸收帶,這與純針鐵礦的紅外表征結(jié)果非常接近[15,22]。

CIO-Mn樣品中羥基官能團(tuán)的紅外圖譜及分峰曲線見圖4,相應(yīng)的擬合參數(shù)列于表2。CIO-Mn0.1、CIO-Mn0.2和CIO-Mn0.3樣品均在3 000~3 700 cm–1范圍內(nèi)出現(xiàn)了4個(gè)擬合峰,而CIO-Mn0.5則出現(xiàn)了5個(gè)擬合峰。與CIO樣品相比,為0.1~0.3時(shí),CIO樣品沒有出現(xiàn)新的相結(jié)構(gòu),相應(yīng)樣品的羥基吸收帶紅外圖譜中均沒有出現(xiàn)新的擬合峰,但是擬合峰ν1~ν4的峰位波數(shù)、含量(各種羥基含量用紅外吸收的積分面積相對(duì)比例計(jì),以吸附水羥基的紅外吸收積分面積為參考)和半峰寬隨著Mn2+摻雜量的增大而變化。當(dāng)為0.1時(shí),樣品中吸附水羥基的擬合峰ν2波數(shù)降低,隨著增大至0.3,擬合峰ν2波數(shù)逐漸增大至3 447 cm–1。此外,當(dāng)由0增大至0.3,樣品中吸附水羥基的含量顯著降低(相關(guān)系數(shù)=–0.950 6,顯著性指數(shù)=0.049 4)。

表1 CIO樣品在3000~3700 cm–1范圍的紅外分峰擬合參數(shù)

1)吸附水羥基的紅外吸收積分面積為參考。With integral area of infrared adsorption of hydrohydroxy as reference.

圖4 CIO-Mnx樣品在3 000~3 700 cm–1范圍的紅外分峰圖譜

表2 CIO-Mnx樣品在3 000~3 700 cm–1范圍的紅外分峰擬合參數(shù)

當(dāng)為0.1~0.3時(shí),CIO-Mn樣品中的自由羥基擬合峰ν1波數(shù)隨著的增大而明顯降低(=–0.984 1,=0.015 9),相應(yīng)的半峰寬由206 cm–1降至115 cm–1(=–0.944 1,=0.055 9),且CIO-Mn0.1樣品的自由羥基含量略有增大而CIO-Mn0.2和CIO-Mn0.3樣品中的自由羥基含量顯著降低。盡管CIO-Mn0.1樣品中表面締合Fe-OH的擬合峰ν3波數(shù)降低,但是CIO-Mn樣品中擬合峰ν3波數(shù)卻隨的增大而增大(=–0.995 2,=0.062 6),且含量以及半峰寬明顯增大。這表明Mn2+摻雜導(dǎo)致CIO的結(jié)晶度降低而形成具有豐富表面Fe-OH的鐵氧化物,并且Mn2+摻雜產(chǎn)生的表面Mn-OH也可與CIO中表面Fe-OH之間形成氫鍵而增大樣品表面M-OH(M=Fe和Mn)自締合氫鍵結(jié)構(gòu)的多樣性。樣品的XRD顯示,隨著的增大,樣品中晶質(zhì)氧化鐵的結(jié)晶度降低,導(dǎo)致形成了更多的表面締合M-OH,然而樣品中的吸附水羥基含量卻降低,這表明Mn2+摻雜比例的增大促使樣品中表面締合M-OH含量增大且傾向于自締合而導(dǎo)致吸附水分子含量降低。隨著由0增大至0.3,CIO-Mn樣品中CIO的體相結(jié)構(gòu)氫鍵羥基擬合峰ν4波數(shù)由3 123 cm–1降低至3 100 cm–1且受Mn2+摻雜比例的影響較小。但樣品中體相結(jié)構(gòu)羥基的含量由10.7%增大至33.6%,這可能與樣品中吸附水羥基的含量降低有關(guān)(=–0.951 5,=0.048 5);Mn2+摻雜樣品中體相結(jié)構(gòu)羥基擬合峰ν4的半峰寬明顯增大,這表明錳摻雜導(dǎo)致樣品中體相結(jié)構(gòu)羥基多樣性增大。

當(dāng)為0.5時(shí),CIO-Mn0.5樣品中的針鐵礦和赤鐵礦結(jié)構(gòu)消失,形成了新的磁鐵礦晶體結(jié)構(gòu)。這導(dǎo)致了樣品的擬合峰ν4幾乎消失(含量僅為1.5%),同時(shí)樣品中的表面締合M-OH含量(26.9%)介于CIO樣品中表面締合Fe-OH含量和CIO-Mn樣品中表面締合M-OH含量之間,且吸收峰ν3的波數(shù)與CIO樣品中表面締合Fe-OH接近;而自由M-OH含量略有降低,并且在波數(shù)為3 609 cm–1處出現(xiàn)了新的擬合峰(圖、表中標(biāo)記為##),這可能是CIO-Mn0.5樣品中形成了Mn2+替代Fe2+的摻錳磁鐵礦,因此導(dǎo)致樣品中形成了與自由Fe-OH類似的自由Mn-OH(3 609 cm–1)。

2.3 Mn2+摻雜對(duì)晶質(zhì)氧化鐵晶體結(jié)構(gòu)的影響

CIO樣品在450~750 cm–1范圍內(nèi)的紅外圖譜及分峰曲線見圖5,相應(yīng)的擬合參數(shù)列于表3。CIO樣品在450~750 cm–1范圍內(nèi)的紅外擬合圖譜中出現(xiàn)了6個(gè)擬合峰,其波數(shù)分別為690(ν5)、619(ν6)、595(ν7)、560(ν8)、478(ν9)和455(ν10)cm–1。其中,擬合峰ν6為CIO中針鐵礦晶格Fe-O的對(duì)稱伸縮振動(dòng)吸收峰,擬合峰ν10為CIO中針鐵礦結(jié)構(gòu)的特征峰;擬合峰ν8和ν9均為CIO中赤鐵礦的晶格Fe-O振動(dòng)吸收峰,且相應(yīng)吸收帶的波數(shù)與赤鐵礦的結(jié)晶度以及陽離子摻雜密切相關(guān)[6,13,15,29-30]。

CIO-Mn(=0.1、0.2、0.3和0.5)樣品450~750 cm–1范圍的紅外圖譜見圖6,相應(yīng)的擬合參數(shù)列于表4。樣品450~750 cm–1范圍內(nèi)的紅外分峰結(jié)果顯示,CIO-Mn0.1和CIO-Mn0.5顯示出了與CIO中針鐵礦的Fe-O對(duì)稱伸縮振動(dòng)吸收帶相同波數(shù)和峰形的擬合峰ν6,而擬合峰ν10消失;盡管CIO-Mn0.2樣品中出現(xiàn)了擬合峰ν6和ν10,但是其半峰寬均顯著增大;CIO-Mn0.3樣品中的擬合峰ν6則趨于消失且波數(shù)增大,而擬合峰ν10與CIO-Mn0.2樣品中的擬合峰ν10特征一致。樣品的XRD和TEM圖片顯示,CIO-Mn0.1和CIO-Mn0.5中針鐵礦均具有與CIO樣品中類似的針狀形貌針鐵礦,盡管CIO-Mn0.2和CIO-Mn0.3樣品中均存在針鐵礦的XRD衍射峰,但是其形貌均沒有表現(xiàn)出典型的針狀。因此,針鐵礦的擬合峰ν6和ν10的吸收強(qiáng)度和峰形可能與針鐵礦顆粒的晶體形貌密切相關(guān)。

圖5 CIO樣品在450~750 cm–1范圍的紅外分峰圖譜

表3 CIO樣品在450~750 cm–1范圍的紅外分峰擬合參數(shù)

圖6 CIO-Mnx樣品在450~750 cm–1范圍的紅外分峰圖譜

表4 CIO-Mnx樣品在450~750 cm–1范圍的紅外分峰擬合參數(shù)

與CIO樣品相比,CIO-Mn(=0.1、0.2和0.3)樣品紅外圖譜中赤鐵礦擬合峰ν8波數(shù)降低,這與鋁摻雜赤鐵礦的紅外圖譜特征類似[6]。此外,CIO-Mn0.3樣品分別在525和545 cm–1處出現(xiàn)了兩個(gè)分裂峰,這可能是較高比例的Mn2+摻雜抑制了赤鐵礦形成的同時(shí),Mn2+進(jìn)入赤鐵礦晶格陽離子空位與赤鐵礦的Fe-O振動(dòng)耦合所致[31]。由于Mn2+摻雜比例的增大抑制了赤鐵礦的形成,導(dǎo)致CIO-Mn0.1樣品中擬合峰ν9的吸收強(qiáng)度相對(duì)降低,CIO-Mn0.2和CIO-Mn0.3中擬合峰ν9消失或被半峰寬增大的擬合峰ν10所掩蓋。

CIO樣品在595 cm–1出現(xiàn)了一個(gè)弱的擬合峰ν7,而CIO-Mn(=0.1、0.2和0.3)樣品的紅外圖譜中,隨著(0.1~0.3)的增大,樣品分別在589、567和576 cm–1處出現(xiàn)了相對(duì)吸收強(qiáng)度逐漸增強(qiáng)的擬合峰ν7。赤鐵礦的晶體結(jié)構(gòu)中存在1/3的陽離子富氧空位[6],這可導(dǎo)致赤鐵礦晶體結(jié)構(gòu)中的陽離子富氧空位吸附Fe3+或Mn2+等陽離子而產(chǎn)生紅外振動(dòng)吸收帶[12]。因此,CIO-Mn樣品中擬合峰ν7可能是Mn2+取代Fe3+吸附并進(jìn)入赤鐵礦晶格陽離子空位,導(dǎo)致樣品的紅外圖譜中擬合峰ν7的吸收隨著增大而增強(qiáng),且波數(shù)降低而半峰寬增大。

CIO-Mn0.5樣品中沒有明顯的赤鐵礦結(jié)構(gòu),而出現(xiàn)了明顯的摻錳磁鐵礦結(jié)構(gòu)。磁鐵礦(Fe3O4)的晶體結(jié)構(gòu)中,鐵氧四面體結(jié)構(gòu)共用鐵氧八面體的氧原子而出現(xiàn)鐵氧八面體夾層四面體結(jié)構(gòu)[6]。磁鐵礦與赤鐵礦具有一定程度類似的化學(xué)鍵結(jié)構(gòu)(赤鐵礦中保留了鐵氧八面體結(jié)構(gòu)之間的空位,磁鐵礦中的Fe原子占據(jù)鐵氧八面體之間的空位而共用鐵氧八面體中的氧原子形成四面體結(jié)構(gòu)),而CIO-Mn0.5樣品中的主要物相為摻錳磁鐵礦,且CIO-Mn0.5樣品的紅外圖譜中出現(xiàn)了微弱的擬合峰ν8以及474 cm–1處明顯的擬合峰ν9。因此474 cm–1處出現(xiàn)的擬合峰ν9可歸屬為磁鐵礦的Fe-O晶格振動(dòng)吸收帶。由于CIO-Mn0.5樣品中形成了Mn2+替代Fe2+的摻錳磁鐵礦,CIO-Mn0.5樣品的紅外圖譜中沒有出現(xiàn)CIO-Mn樣品中波數(shù)降低的Mn2+耦合赤鐵礦Fe-O的ν7擬合峰,而是在593 cm–1出現(xiàn)了強(qiáng)烈的吸收。因此,CIO-Mn0.5樣品中593 cm–1處的擬合峰ν7可能是摻錳磁鐵礦中的Mn-O晶格振動(dòng)所致。

3 結(jié) 論

在中性pH和較低溫度下,摩爾比例為0.1~0.3的Mn2+摻雜抑制了針鐵礦和赤鐵礦等晶質(zhì)氧化鐵的形成,為0.5的Mn2+摻雜可導(dǎo)致生成球狀摻錳磁鐵礦。CIO及Mn2+摻雜CIO樣品的羥基可分為4類:自由羥基、吸附水羥基、表面締合羥基和體相結(jié)構(gòu)羥基,其羥基種類、紅外吸收帶波數(shù)及相對(duì)含量與密切相關(guān)。CIO樣品中619 cm–1和455 cm–1附近紅外吸收帶的強(qiáng)度和峰形與針鐵礦晶體顆粒結(jié)晶度和形貌有關(guān),而560 cm–1和478 cm–1附近紅外吸收帶則與樣品中赤鐵礦的結(jié)晶度相關(guān)。當(dāng)為0.1~0.3時(shí),Mn2+吸附并進(jìn)入赤鐵礦陽離子空位處與Fe-O振動(dòng)耦合而產(chǎn)生了567~589 cm–1附近的紅外吸收峰;當(dāng)為0.5時(shí),在474 cm–1和593 cm–1處產(chǎn)生了強(qiáng)烈的摻錳磁鐵礦晶格振動(dòng)吸收。

[1] Bradham K D,Diamond G L,Nelson C M,et al. Long-term in situ reduction in soil lead bioavailability measured in a mouse model[J]. Environmental Science & Technology,2018,52(23):13908—13913.

[2] Wang J B,Xu J,Xia J,et al. A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension[J]. Chemical Geology,2018,495:67—75.

[3] S? H U,Postma D,Hoang V H,et al. Arsenite adsorption controlled by the iron oxide content of Holocene Red River aquifer sediment[J]. Geochimica et Cosmochimica Acta,2018,239:61—73.

[4] Zhang Z Y. Composition and evolution characteristics of clay minerals in several horizontal zonality soil particles[D]. Wuhan:Huazhong Agricultural University,2016.[張志毅. 幾種水平地帶性土壤顆粒中粘土礦物的組成與演化特征[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016.]

[5] Ji J F,Chen J,Balsam W,et al. Quantitative analysis of hematite and goethite in the Chinese loess-paleosol sequences and its implication for dry and humid variability[J]. Quaternary Sciences,2007,27(2):221—229. [季峻峰,陳駿,W. Balsam,等. 黃土剖面中赤鐵礦和針鐵礦的定量分析與氣候干濕變化研究[J]. 第四紀(jì)研究,2007,27(2):221—229.]

[6] Cornell R M,Schwertmann U. The iron oxides,structure,properties,reactions occurences,uses[M]. Weinheim,Germany:Wiley-VCH,2003.

[7] Marino E,González F,Lunar R,et al. High-resolution analysis of critical minerals and elements in Fe–Mn crusts from the Canary Island Seamount Province(Atlantic Ocean)[J]. Minerals,2018,8(7):285.

[8] Dorau K,Papenfu? S,Mansfeldt T. Temperature- dependent oxide removal from manganese- and iron oxide-coated soil redox bars[J]. Journal of Soils and Sediments,2018,18(3):680—687.

[9] Luo Y,Ding J Y,Shen Y G,et al. Symbiosis mechanism of iron and manganese oxides in oxic aqueous systems[J]. Chemical Geology,2018,488:162—170.

[10] Liu H,Lu X C,Li M,et al. Structural incorporation of manganese into goethite and its enhancement of Pb(II)adsorption[J]. Environmental Science & Technology,2018,52(8):4719—4727.

[11] Wang R,Niu P J,Xu H J,et al. Effects of Mn-doping on structure,surface properties and selenium adsorption of goethite[J]. Acta Pedologica Sinica,2020,57(1):108—118. [王銳,牛鵬舉,許海娟,等. 錳摻雜對(duì)針鐵礦的結(jié)構(gòu)、表面性質(zhì)及吸附硒的影響[J]. 土壤學(xué)報(bào),2020,57(1):108—118.]

[12] Madden A S,Hochella M F Jr. A test of geochemical reactivity as a function of mineral size:Manganese oxidation promoted by hematite nanoparticles[J]. Geochimica et Cosmochimica Acta,2005,69(2):389—398.

[13] Risti? M,Kuzmann E,Homonnay Z,et al. Synthesis and properties of 1D manganese-doped hematite particles[J]. Journal of Alloys and Compounds,2018,767:504—511.

[14] Gurudayal,Chiam S Y,Kumar M H,et al. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese[J]. ACS Applied Materials & Interfaces,2014,6(8):5852—5859.

[15] Wang R,Zhu C J,Xiang W J,et al. Interactions between goethite and humic acid and the stability of goethite-humic acid complex[J]. Environmental Science,2017,38(11):4860—4867. [王銳,朱朝菊,向文軍,等. 針鐵礦與胡敏酸的交互作用及其復(fù)合物的穩(wěn)定性[J]. 環(huán)境科學(xué),2017,38(11):4860—4867.]

[16] Liu H T,Guo Y K,Wang N N,et al. Controllable synthesis and photocatalytic activity of ultrathin hematite nanosheets[J]. Journal of Alloys and Compounds,2019,771:343—349.

[17] Sallman B,Rakshit S,Lefèvre G. Influence of phosphate on tungstate sorption on hematite:A macroscopic and spectroscopic evaluation of the mechanism[J]. Chemosphere,2018,213:596—601.

[18] Painter P C,Snyder R W,Starsinic M,et al. Concerning the application of FT-IR to the study of coal:A critical assessment of band assignments and the application of spectral analysis programs[J]. Applied Spectroscopy,1981,35(5):475—485.

[19] Ibarra J,Mu?oz E,Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry,1996,24(6/7):725—735.

[20] Yang W C,Hore D K. Broadband models and their consequences on line shape analysis in vibrational sum-frequency spectroscopy[J]. The Journal of Chemical Physics,2018,149(17):174703.

[21] Manjushree M,Revanasiddappa H D. Interpretation of the binding interaction between bupropion hydrochloride with human serum albumin:A collective spectroscopic and computational approach[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,209:264—273.

[22] Liu H B. Research on structural evolution of thermally treated Al-substituted goethite and its response of surface reactivity[D]. Hefei:Hefei University of Technology,2013. [劉海波. 熱處理鋁代針鐵礦的結(jié)構(gòu)演化及其表面反應(yīng)性[D]. 合肥:合肥工業(yè)大學(xué),2013.]

[23] Schwertmann U,Cornell R M. Iron oxides in the laboratory:Preparation and characterization[M]. New York:John Wiley & Sons,2008.

[24] Niu P J. Effects of Mn and Cr-doping on formation,surface Properties and adsorption selenium of iron oxides[D]. Enshi,Hubei:Hubei University for Nationalities,2017. [牛鵬舉. 錳鉻摻雜對(duì)氧化鐵的形成、表面性質(zhì)及吸附硒的影響[D]. 湖北恩施:湖北民族學(xué)院,2017.]

[25] Hong J K,Han C J,Hu Y. Molecular thermodynamics for alcohol-hydrocarbon systems(I)association constants of alcohols from infrared spectra[J]. Journal of Chemical Industry and Engineering:China,1993,44(1):1—9. [洪建康,韓崇家,胡英. 醇/烴系統(tǒng)的分子熱力學(xué)(Ⅰ):紅外光譜法研究醇的締合常數(shù)[J]. 化工學(xué)報(bào),1993,44(1):1—9.]

[26] Wang K,Du F,Wang G D. The influence of methane and CO2adsorption on the functional groups of coals:Insights from a fourier transform infrared investigation[J]. Journal of Natural Gas Science and Engineering,2017,45:358—367.

[27] Painter P C,Sobkowiak M,Youtcheff J. FT-i.r. study of hydrogen bonding in coal[J]. Fuel,1987,66(7):973—978.

[28] Weng S F. Fourier translation infrared spectrum analysis[M]. 2nd ed. Beijing:Chemical Industry Press,2010. [翁詩甫. 傅里葉變換紅外光譜分析[M]. 2版. 北京:化學(xué)工業(yè)出版社,2010.]

[29] Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds part A:Theory and applications in inorganic chemistry[M]. 6th ed. New Jersey:John Wiley & Sons,2009.

[30] Bishop J L,Murad E,Dyar M D. Akaganeite and schwertmannite:Spectral properties and geochemical implications of their possible presence on Mars[J]. American Mineralogist,2015,100(4):738—746.

[31] Zhao W,Liu F,F(xiàn)eng X H,et al. FTIR study on the variance of substructure of birnessite before and after Pb2+adsorption[J]. Geochimica,2011,40(1):99—107. [趙巍,劉凡,馮雄漢,等. 水鈉錳礦吸附Pb2+亞結(jié)構(gòu)變化的紅外光譜研究[J]. 地球化學(xué),2011,40(1):99—107.]

Influence of Mn-doping on Structure and FT-IR Properties of Crystalline Iron Oxides

WANG Rui1, 2, FANG Dun3, NIU Pengju1, 4, XU Haijuan1, 2, WEI Shiyong1, 2?

(1. Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; 2. Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China; 3. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430000, China; 4. School of Literature and Law, Anyang Institute of Technology, Anyang, Henan 455000, China)

【】 Manganese (Mn) doping may affect iron oxide in structure and property, and then influence its performance in adsorption, catalysis and so on, especially its utilization in soils and environment. However, it is still little known about the detailed influence of Mn2+doping in microstructure owing to complex hydrogen bonding and similar chemical bonding of the iron oxide crystallines. 【】 In this study, samples of crystalline iron oxides (CIO) and samples of Mn2+doped CIO different in molar ratio () (CIO-Mn,=0.1, 0.2, 0.3 and 0.5, separately) were prepared out of goethite and hematite. Influences of Mn2+doping on iron oxide in crystal structure and morphology were analyzed with the aid of XRD and TEM. Peak fitting was performed of the two wave number ranges, high (3 000-3 700 cm–1) and low (450-750 cm–1) of the FT-IR graphs of the samples, and changes in hydroxyl functional group and crystalline chemical bonding of Mn2+-doped CIO were analyzed. 【】Results show that Mn2+-doping just inhibited the formation of CIO, such as goethite and hematite, whenwas less than 0.3, but promoted the formation of Mn-doped magnetite, some goethite and no visible hematite, whenwas 0.5. In the CIO samples existed four types of hydroxyls, that is free hydroxyls, adsorbed hydrohydroxyls, surface associated hydroxyls and structural hydroxyls. Withrising from 0.1 to 0.3, relative content of the first two types decreased, while the latters increased. Adsorption peaks of the free hydroxyls and structural hydroxyls red shifted with Mn2+doped, but those of adsored hydrohydroxyls decreased and those of surface associated hydroxyls behaved on the contrary whenincreased from 0.1 to 0.3. Whenwas 0.5, structural hydroxyls almost disappeared, relative content of the surface associate hydroxyls varied between that of CIO and that of CIO-Mn, and wavenumber of the adsorption band of surface associated hydroxyls was close to that of the CIO sample. Intensity and shape of the adsorption peaks of crystal structure Fe-O around 455 cm–1and 619 cm–1were related to the morphology of goethite, and those of the adsorption peaks around 478 cm–1and 560 cm–1were to the crystallinity of hematite. Intensity and wavenumber of the adsorption peak of hematite at 560 cm–1decreased whenincreased from 0.1 to 0.3, and adsorption peaks at 478 cm–1disappeared with Mn2+doped. When the R was 0.5, adsorption peaks almost disappeared at 543 cm–1, widened and intensified at 474 cm–1and 593 cm–1, and remained the same as that of CIO at 619 cm–1. According to analysis, the vacant sites for cations in the structure of hematite in CIO-Mnsamples might get coupled with Mn2+to form adsorption peaks around 567~589 cm–1, of which intensity increased with rising. In CIO-Mn0.5samples, Mn-doped magnetite formed with Mn2+replacing Fe2+, thus forming a lattice vibrated Mn-O adsorption band around 593 cm–1. 【】 According to the results of the study for CIO and CIO-Mn, a spot of Mn2+inhibited the crystallization of CIO, which increased the varieties of hydroxy on the surface of CIO-Mnand changed the composition of hydroxyl in the samples. That the Mn2+replaced the Fe3+adsorbed at vacancies in CIO caused a strong absorption around 567~589 cm–1in IR spectra. But the mass of Mn2+doping could change the CIO from goethite and hematite to Mn-doped magnetite, which appeared the different FT-IR characterizations of hydroxyl and crystalline structure.

Crystalline iron oxides; Mn2+-doping; FT-IR; Hydroxyl; Crystal structure

S153.6

A

10.11766/trxb201901110021

王銳,方敦,牛鵬舉,許海娟,魏世勇. Mn2+摻雜對(duì)晶質(zhì)氧化鐵結(jié)構(gòu)與紅外光譜特征的影響[J]. 土壤學(xué)報(bào),2020,57(4):898–907.

WANG Rui,F(xiàn)ANG Dun,NIU Pengju,XU Haijuan,WEI Shiyong. Influence of Mn-doping on Structure and FT-IR Properties of Crystalline Iron Oxides[J]. Acta Pedologica Sinica,2020,57(4):898–907.

* 國家自然科學(xué)基金項(xiàng)目(41561053)資助 Supported by the National Natural Science Foundation of China(No. 41561053)

,E-mail:ylwang@nuist.edu.cn

王銳(1992—),男,湖北黃岡人,碩士研究生,主要從事材料與環(huán)境化學(xué)研究。E-mail:1750620006@qq.com

2019–01–11;

2019–03–04;

2019–07–01

(責(zé)任編輯:盧 萍)

猜你喜歡
波數(shù)氧化鐵鐵礦
鐵礦渣高強(qiáng)海綿磚配合比設(shè)計(jì)
一種基于SOM神經(jīng)網(wǎng)絡(luò)中藥材分類識(shí)別系統(tǒng)
ZNJQ-1150型智能加球機(jī)在大紅山鐵礦的運(yùn)用
納米氧化鐵的制備及形貌分析
水合氧化鐵與黃腐酸對(duì)土壤硝化作用的影響
漫畫與幽默
加熱氣氛對(duì)Q345B鋼表面氧化鐵皮結(jié)構(gòu)的影響
6 個(gè)不同廠家的黑白胡椒粉紅外光譜分析
二維空間脈動(dòng)風(fēng)場(chǎng)波數(shù)-頻率聯(lián)合功率譜表達(dá)的FFT模擬
標(biāo)準(zhǔn)硅片波數(shù)定值及測(cè)量不確定度
怀仁县| 民县| 噶尔县| 泽州县| 龙里县| 三门县| 涞源县| 枣阳市| 旬阳县| 南陵县| 德庆县| 德格县| 竹北市| 双鸭山市| 宜宾市| 白银市| 土默特左旗| 临清市| 临邑县| 夏津县| 南康市| 大庆市| 永清县| 雅安市| 泰州市| 保德县| 揭阳市| 沭阳县| 吉木乃县| 始兴县| 定州市| 福贡县| 芮城县| 潮安县| 刚察县| 福清市| 德州市| 乐安县| 寿光市| 绥化市| 阜南县|