謝?生,王續(xù)霏,毛旭瑞,周高磊,閆?冬
基于分集接收技術(shù)的可見(jiàn)光接收機(jī)前端電路
謝?生1,王續(xù)霏1,毛旭瑞2,周高磊3,閆?冬3
(1. 天津大學(xué)微電子學(xué)院天津市成像與感知微電子技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 中國(guó)科學(xué)院半導(dǎo)體研究所,北京 100083;3. 天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院,天津 300072)
為了減弱噪聲對(duì)可見(jiàn)光通信質(zhì)量的影響,提高可見(jiàn)光通信系統(tǒng)的抗干擾性,基于臺(tái)積電180nm CMOS工藝,提出了一種抗噪能力較強(qiáng)的可見(jiàn)光接收機(jī)前端電路.電路主要包括跨阻放大器、限幅放大器、直流偏移消除網(wǎng)絡(luò)和輸出緩沖級(jí).輸入端對(duì)信號(hào)進(jìn)行兩路接收,通過(guò)印制電路板繪制把外部?jī)蓚€(gè)光電二極管相連,對(duì)接收到的光電流信號(hào)進(jìn)行等增益合并,合并信號(hào)作為輸入信號(hào)提供給光接收機(jī)模擬放大電路,這種設(shè)計(jì)實(shí)現(xiàn)了分集接收技術(shù),提高了光通信系統(tǒng)的信噪比.跨阻放大器采用調(diào)節(jié)型共源共柵結(jié)構(gòu),共源結(jié)構(gòu)作為反饋環(huán)路,降低芯片的輸入阻抗,共漏結(jié)構(gòu)提高了跨阻放大器的帶負(fù)載能力.限幅放大器采用改進(jìn)Cherry Hooper型限幅放大器結(jié)構(gòu),引入反饋電阻降低級(jí)間等效電阻,擴(kuò)展有效帶寬,并通過(guò)增加負(fù)載電阻為支路提供偏置電流,有效提高了電路的輸出范圍.測(cè)試結(jié)果表明,在電源電壓為1.8V、光電探測(cè)器等效電容為5pF時(shí),光接收機(jī)的跨阻增益為88dBΩ,-3dB帶寬為510MHz,在誤碼率小于3.8×10-3的條件下實(shí)現(xiàn)了600Mb/s的數(shù)據(jù)傳輸.芯片功耗為43.62mW,整體面積為624μm×823μm,當(dāng)誤碼率為10-9時(shí),基于分集接收的光接收機(jī)的靈敏度為-11.5dBm.對(duì)比實(shí)驗(yàn)表明,分集接收技術(shù)降低了可見(jiàn)光通信的誤碼率,提高了通信質(zhì)量,因此基于分集接收技術(shù)的光接收機(jī)有望應(yīng)用于室內(nèi)可見(jiàn)光通信系統(tǒng)領(lǐng)域.
半導(dǎo)體技術(shù);可見(jiàn)光通信;光接收機(jī);分集接收
隨著無(wú)線電通信的快速發(fā)展,可用頻譜變得十分有限,可見(jiàn)光通信(visible light communication,VLC)利用可見(jiàn)光作為媒介進(jìn)行信息傳輸,這種通信無(wú)需占用無(wú)線電頻譜,具有廣闊的應(yīng)用前景,逐步成為下一代無(wú)線通信的重要研究方向[1-3].VLC系統(tǒng)中的光源主要采用發(fā)光二極管(light emitting diode,LED)、無(wú)機(jī)微型發(fā)光二極管(mlight emitting diode,mLED)和激光二極管(laser diode,LD)等[4-5].使用LD源可實(shí)現(xiàn)高帶寬系統(tǒng),2015年,Chi等[6]使用450nm GaN-LD和分立的APD接收機(jī)實(shí)現(xiàn)了9Gb/s的數(shù)據(jù)傳輸,但是LD源無(wú)法同時(shí)實(shí)現(xiàn)通信和照明,在應(yīng)用上受到一定限制.mLED適用于微型VLC系統(tǒng)當(dāng)中,2019年,Li等[7]設(shè)計(jì)了一款智能mLED顯示器-VLC系統(tǒng),可以實(shí)現(xiàn)2Mb/s的傳輸速率,在10cm處的最大數(shù)據(jù)速率為550kb/s,該系統(tǒng)未來(lái)可以集成在智能手機(jī)等小型系統(tǒng)當(dāng)中.采用低成本LED源的VLC系統(tǒng)可同時(shí)實(shí)現(xiàn)照明和數(shù)據(jù)傳輸,有效地推動(dòng)了可見(jiàn)光無(wú)線通信(light-fidelity,Li-Fi)網(wǎng)絡(luò)系統(tǒng)、物聯(lián)網(wǎng)和車(chē)聯(lián)網(wǎng)等領(lǐng)域的發(fā)展.為了解決LED調(diào)制帶寬低的問(wèn)題,2016年Fahs等[8]提出一個(gè)采用二進(jìn)制啟閉鍵控(on-off keying,OOK)調(diào)制方法的VLC系統(tǒng),該系統(tǒng)可以在12m的鏈路中實(shí)現(xiàn)2.5Gb/s的數(shù)據(jù)傳輸,但傳輸數(shù)據(jù)的誤碼率較高.LED源的光強(qiáng)較弱,信號(hào)在傳輸過(guò)程中容易受到信道噪聲的影響,導(dǎo)致系統(tǒng)的誤碼率增高,為了改善這一問(wèn)題,2015年Nuwan-priya?等[9]提出了一款通過(guò)改變光電探測(cè)器(photodetec-tor,PD)的方向來(lái)實(shí)現(xiàn)高度不相關(guān)信道的VLC-多進(jìn)多出(multiple in multiple out,MIMO)系統(tǒng),該系統(tǒng)可以改善光學(xué)無(wú)線系統(tǒng)的覆蓋范圍,提高可見(jiàn)光通信?系統(tǒng)的可移動(dòng)性,利用多信道調(diào)制減弱信道噪聲的?影響.
在VLC-MIMO系統(tǒng)中,PD必須間隔很寬或采用角度分集接收,否則會(huì)導(dǎo)致接收端產(chǎn)生病態(tài)信道矩陣,信號(hào)解調(diào)失敗[10].目前設(shè)計(jì)的VLC-MIMO系統(tǒng)硬件設(shè)計(jì)較為復(fù)雜,對(duì)接收到的多路信號(hào)需要進(jìn)行復(fù)雜解調(diào),為保證多路信號(hào)解調(diào)成功,對(duì)接收信道的不相關(guān)性要求較高[11],為避免這些問(wèn)題,本文設(shè)計(jì)了一款基于分集接收技術(shù)的光接收機(jī),適用于LED源,接收機(jī)輸入端利用兩個(gè)光電探測(cè)器對(duì)光路進(jìn)行接收,有效提高了數(shù)據(jù)傳輸效率,并把接收到的信號(hào)進(jìn)行等增益合并,降低輸入信號(hào)的信道噪聲,該接收機(jī)在輸入端直接對(duì)接收到的信號(hào)進(jìn)行合并,不進(jìn)行多信號(hào)解調(diào),所以不會(huì)產(chǎn)生病態(tài)矩陣.
光接收機(jī)輸入端采用分集接收技術(shù),將多個(gè)光電探測(cè)器的輸出電流等增益合并[12],有效抵抗信道衰落,由于無(wú)線傳播環(huán)境中,同一信號(hào)的獨(dú)立樣本之間是不相關(guān)的,等增益合并提高了輸入信號(hào)的信噪比,有效降低了整體電路的誤碼率.分集接收技術(shù)中的合并方式主要分為:最大比合并(maximum ratio combining,MRC)、選擇式合并(selective combining,SC)及等增益合并(equal gain combining,EGC)[13],與MRC和SC相比,EGC實(shí)現(xiàn)容易,降低了電路設(shè)計(jì)的難度,并且隨著支路數(shù)量的增加,EGC的性能十分接近MRC的性能,所以本文采用EGC技術(shù).實(shí)現(xiàn)EGC技術(shù)的電路結(jié)構(gòu)如圖1所示,在輸入端對(duì)PD的輸出信號(hào)直接相連,得到合并后的信號(hào).
圖1?實(shí)現(xiàn)等增益合并的電路結(jié)構(gòu)
式中:為總支路數(shù);為設(shè)單支路噪聲功率,則單支路信噪比為
則可推得多支路平均信噪比為
由于信道滿足瑞利分布,由式(3)可推得
分集接收光接收機(jī)結(jié)構(gòu)如圖2所示,包含跨阻放大器(trans-impedance amplifier,TIA)、限幅放大器(limiting amplifier,LA)、直流偏移消除電路(DC offset cancellation,DCOC)和輸出緩沖級(jí)(Buffer).其中PD1、PD2實(shí)現(xiàn)兩路接收功能,PD3、PD4作為匹配結(jié)構(gòu)不接收信號(hào),被遮蓋.由于跨阻放大器的后續(xù)電路是差分結(jié)構(gòu),而跨阻放大器是單端輸出,所以在本文設(shè)計(jì)的光接收機(jī)電路中,采用兩個(gè)完全相同的TIA,其中TIA1電路驅(qū)動(dòng)后續(xù)差分電路的正極,TIA2電路并無(wú)輸入信號(hào),僅為后端差分放大器的負(fù)極提供與正極相同的直流工作點(diǎn)[14].
在整體電路中,PD將可見(jiàn)光轉(zhuǎn)化為微弱的電流信號(hào),光電流通過(guò)跨阻放大器轉(zhuǎn)化并放大為較小的電壓信號(hào);限幅放大器由兩級(jí)改進(jìn)Cherry Hooper型放大器級(jí)聯(lián)而成,它對(duì)前級(jí)輸出的電壓信號(hào)進(jìn)一步放大,限幅放大器的兩端跨接了直流偏移消除電路,可消除電路直流工作點(diǎn)的漂移;輸出緩沖級(jí)可以提高電路的帶負(fù)載能力,同時(shí)起到阻抗匹配的作用,降低輸出功率的損耗.
圖2?光接收機(jī)結(jié)構(gòu)
為了增強(qiáng)接收到的可見(jiàn)光信號(hào),探測(cè)器面積通常較大,故結(jié)電容較大,影響電路帶寬.所以在本文中選擇調(diào)節(jié)型共源共柵型(regulated cascode,RGC)跨阻放大器,RGC結(jié)構(gòu)具有較小的輸入阻抗,減弱了輸入電容對(duì)接收機(jī)帶寬的衰減.其結(jié)構(gòu)如圖3所示.
圖3?RGC型跨阻放大器
輸入級(jí)為1和2組成的共柵放大器,第2級(jí)為2和3組成的共源級(jí)電路,第2級(jí)電路為輸入級(jí)提供偏置和反饋.圖4為RGC結(jié)構(gòu)的小信號(hào)等效電路,可推得其等效輸入阻抗及-3dB帶寬為
習(xí)近平總書(shū)記在講話中表示“青年是祖國(guó)的未來(lái)、民族的希望?!盵1]十九大報(bào)告中提出“要廣泛開(kāi)展理想信念教育,深化中國(guó)特色社會(huì)主義和中國(guó)夢(mèng)宣傳教育,弘揚(yáng)民族精神和時(shí)代精神?!盵2]紅色教育是培養(yǎng)青年大學(xué)生以愛(ài)國(guó)主義為核心的民族精神和以改革創(chuàng)新為核心的時(shí)代精神的有效途徑,將虛擬現(xiàn)實(shí)技術(shù)運(yùn)用于紅色教育中,可以讓學(xué)生沉浸式多感官地體驗(yàn)式學(xué)習(xí),提升學(xué)習(xí)專(zhuān)注度,加深感性認(rèn)識(shí)和理解,改善傳統(tǒng)教育弊端,提升教育效果。
式(5)表明,RGC型跨阻放大器比共柵放大器的等效輸入阻抗縮小了1+m23倍,這是共源級(jí)電路的反饋?zhàn)饔?,但是由于加入了?級(jí),使得電路中引入了新的低頻極點(diǎn),其-3dB帶寬如式(6)所示.在電路的設(shè)計(jì)過(guò)程中,通過(guò)增大管子的寬長(zhǎng)比來(lái)增加MOS管的跨導(dǎo),這樣不僅能夠降低等效輸入阻抗,而且有利于降低電路的噪聲.跨阻放大器作為電路的第1級(jí),它的噪聲影響較大,在電路設(shè)計(jì)時(shí)應(yīng)該權(quán)衡增益帶寬及噪聲之間的關(guān)系.
圖4?小信號(hào)等效電路
傳統(tǒng)的限幅放大器由多個(gè)差分放大器級(jí)聯(lián)而成,限幅放大器的傳輸函數(shù)等于單級(jí)級(jí)聯(lián)傳輸函數(shù)的線性疊加,即
限幅放大器的-3dB帶寬為
式中0=1/DD,表示單級(jí)限幅放大器的帶寬,隨著級(jí)數(shù)的增加帶寬發(fā)生嚴(yán)重衰減,傳統(tǒng)的Cherry Hooper型限幅放大器利用反饋電阻降低這種衰減,因此廣泛應(yīng)用于寬帶接收系統(tǒng)中,其結(jié)構(gòu)如圖5所示,電路中的反饋電阻為F.
圖5?傳統(tǒng)Cherry Hooper型限幅放大器
根據(jù)單邊等效電路可以推得
若RF遠(yuǎn)大于1/gm3,則傳統(tǒng)的Cherry Hooper型限幅放大器的增益約等于負(fù)載為RF的共源級(jí)放大器的增益.由于增加了反饋電阻RF,使得M1漏極與M3柵極之間的等效電阻變小,拉高了級(jí)聯(lián)產(chǎn)生的極點(diǎn),有效提升了帶寬,但這種結(jié)構(gòu)的缺點(diǎn)是輸出電壓范圍很小,在大信號(hào)工作狀態(tài)下易導(dǎo)致輸出信號(hào)失真,所以在本文中采用改進(jìn)Cherry Hooper型限幅放大器,其結(jié)構(gòu)如圖6所示,這種結(jié)構(gòu)利用R1對(duì)負(fù)載電阻RD進(jìn)行分流,使得RD上的壓降變小,限幅放大器的輸出電壓范圍變大,同時(shí)不會(huì)影響到原電路的直流工作點(diǎn),限幅放大器的輸出信號(hào)通常較大,所以這種改進(jìn)對(duì)提升接收機(jī)的性能十分重要.為減小R1對(duì)M1漏極與M3柵極之間等效電阻的影響,R1的值應(yīng)遠(yuǎn)大于1/gm3.
本文中采用兩級(jí)級(jí)聯(lián)的限幅放大器結(jié)構(gòu),經(jīng)過(guò)多級(jí)放大,電路的直流工作點(diǎn)發(fā)生漂移,所以本文中在整體限幅放大器的輸入輸出端級(jí)聯(lián)了直流偏移消除網(wǎng)絡(luò),其結(jié)構(gòu)由RC低通濾波器和差分放大器組成,如圖7所示.
圖7?直流偏移消除電路
在電路的輸出端利用低通濾波器取出偏移的直流電壓,通過(guò)差分放大器負(fù)反饋到輸入端,以穩(wěn)定直流工作點(diǎn).其低頻截止頻率為
式中:LA為限幅放大器的增益;F為反饋電路增益,由(10)式可知,為更好地濾除高頻信號(hào)須保證F和F的值足夠大.
光接收機(jī)前端電路采用TSMC 180nm CMOS工藝制造,芯片顯微照片如圖8所示,整體面積為624μm×823μm.圖9為測(cè)試PCB圖.
圖10為芯片的電學(xué)測(cè)試系統(tǒng),利用網(wǎng)絡(luò)分析儀(Agilent N5230C)對(duì)芯片的幅頻特性進(jìn)行測(cè)試,測(cè)試輸入功率為-35dBm,圖11給出了幅頻特性曲線,由圖可知,在芯片的工作帶寬內(nèi)(300~700MHz),接收電路的跨阻增益大約為88dBW,-3dB帶寬為510MHz.
圖8?芯片顯微鏡圖
圖9?PCB圖
圖10?電學(xué)測(cè)試系統(tǒng)
圖11?跨阻增益曲線
圖12為芯片的光路測(cè)試系統(tǒng),發(fā)射端采用本實(shí)驗(yàn)室設(shè)計(jì)的驅(qū)動(dòng)電路調(diào)節(jié)光源帶寬[15],有利于高速光信號(hào)的傳輸.接收端利用誤碼率測(cè)試儀(Agilent ParBERT 81250)對(duì)芯片進(jìn)行測(cè)試.光路中的PD采用Hamamatsu的S10784光電二極管(在660nm處的響應(yīng)度為0.45A/W).
圖12?光路測(cè)試系統(tǒng)
通過(guò)遮蓋圖2中的PD2可以使芯片工作在單路輸入的條件下,光學(xué)實(shí)驗(yàn)分別測(cè)試了芯片在單路輸入和分集接收條件下的眼圖及誤碼率(bit error rate,BER).測(cè)試輸入端信號(hào)采用OOK調(diào)制,碼長(zhǎng)為27-1,測(cè)試的發(fā)射端輸入信號(hào)功率為-30dBm,測(cè)試光路長(zhǎng)50cm.芯片的輸出端與采樣示波器相連,示波器顯示了不同速率的眼圖,如圖13所示.
圖13?單路接收機(jī)和分集接收機(jī)眼圖
隨著傳輸速率的增大,眼圖的張開(kāi)度變小,輸出電壓擺幅下降,相比于單路光接收機(jī),采用分集接收技術(shù)的光接收機(jī)眼圖的時(shí)間抖動(dòng)較大,但是在500Mb/s的傳輸速率下,眼圖張開(kāi)度仍然較大,能夠?qū)崿F(xiàn)高質(zhì)量的信號(hào)傳輸.由圖13可知,分集接收的光接收機(jī)輸出信號(hào)擺幅大于單路光接收機(jī),由于發(fā)射端輸入信號(hào)功率相同,此時(shí)兩種光接收機(jī)接收到的光強(qiáng)相同,說(shuō)明相比于單路光接收機(jī),分集接收的光接收機(jī)接收到的光強(qiáng)更大,有利于提升系統(tǒng)的信噪比特性,增強(qiáng)抗干擾能力.
為對(duì)比兩種接收機(jī)的誤碼率特性,利用Matlab軟件對(duì)示波器顯示的接收端輸出信號(hào)進(jìn)行分析,計(jì)算出不同速率下的信號(hào)誤碼率,圖14給出了兩種接收機(jī)的誤碼率曲線.
由圖14可知,分集接收的誤碼率小于單路接收的誤碼率,在BER小于3.8×10-3的條件下,分集接收可實(shí)現(xiàn)600Mb/s的數(shù)據(jù)傳輸速率,單路接收可實(shí)現(xiàn)510Mb/s的數(shù)據(jù)傳輸速率.
靈敏度是光接收機(jī)的重要指標(biāo),在不同鏈路長(zhǎng)度和不同誤碼率的條件下,光接收機(jī)的靈敏度不同.本文在測(cè)試誤碼率時(shí),利用光功率計(jì)(THORLABS PM100D)在接收端對(duì)接收到的光強(qiáng)進(jìn)行測(cè)量,可得到不同誤碼率下的靈敏度參數(shù),為了較為客觀地與文獻(xiàn)[16-17]進(jìn)行對(duì)比,本文測(cè)得在誤碼率為1×10-9的條件下,單路光接收機(jī)的靈敏度為-6.7dBm,分集光接收機(jī)的靈敏度為-11.5dBm,所以分集光接收機(jī)比單路光接收機(jī)更靈敏,這主要是由于分集光接收機(jī)的PD個(gè)數(shù)較多,相當(dāng)于增大了有效接收面積,從而提高了光接收機(jī)的靈敏度.表1將本文的工作與其他VLC通信系統(tǒng)文獻(xiàn)進(jìn)行了數(shù)據(jù)對(duì)比,由表可知本文所設(shè)計(jì)的分集接收光接收機(jī)在整體性能上更具優(yōu)勢(shì),并且其靈敏度較高,抗噪性能較好.
圖14?不同數(shù)據(jù)速率下測(cè)量的誤碼率
表1?光接收機(jī)前端模擬電路的性能對(duì)比
Tab.1?Performance comparison of the front-end analog circuits for the optical receivers
本文基于TSMC 180nm CMOS工藝,設(shè)計(jì)了一款應(yīng)用于可見(jiàn)光通信的光接收機(jī)前端模擬電路,該接收機(jī)有效提高了VLC系統(tǒng)輸出信號(hào)的信噪比,提升了系統(tǒng)的通信質(zhì)量.測(cè)試結(jié)果表明,本文設(shè)計(jì)的光接收機(jī)在輸入電容為5pF時(shí),跨阻增益為88dBW,??-3dB帶寬為510MHz,在誤碼率小于3.8×10-3的條件下實(shí)現(xiàn)了600Mb/s的數(shù)據(jù)傳輸,輸出端實(shí)現(xiàn)50W匹配,可實(shí)現(xiàn)雙路信號(hào)接收,且靈敏度高、抗噪性強(qiáng),可滿足高增益高精度光接收機(jī)的應(yīng)用需求.
[1] Fahs B,Chellis J,Senneca M J,et al. A 6-m OOK VLC link using CMOS-compatible pn photodiode and red LED[J]. IEEE Photonics Technology Letters,2016,28(24):2846-2849.
[2] Ong Z,Chung W Y. Long range VLC temperature monitoring system using CMOS of mobile device camera[J]. IEEE Sensors Journal,2016,16(6):1508-1509.
[3] Bamiedakis N,McKendry J J D,Xie E,et al. Ultra-low cost high-density two-dimensional visible-light optical interconnects[J]. Journal of Light Wave Technology,2019,37(13):3305-3314.
[4] Li X,Hussain B,Wang L,et al. Design of a 2.2-mW 24-Mb/s CMOS VLC receiver SOC with ambient light rejection and post-equalization for Li-Fi applications[J]. Journal of Light wave Technology,2018,36(12):2366-2375.
[5] Fan Zhao,Zhu Changju,Guo Weilian,et al. Resonant tunneling diode(RTD)terahertz active transmission line oscillator with graphene-plasma wave and two graphene antennas[J]. Electronics,2019,8(35):1164-1176.
[6] Chi Y C,Hsieh D H,Tsai C T,et al. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM[J]. Optics Express,2015,23(10):13051-13059.
[7] Li X,Hussain B,Kang J,et al. SmartmLED display-VLC system with a PD-based/camera-based receiver for NFC applications[J]. IEEE Photonics Journal,2019,11(1):1-8.
[8] Fahs B,Chowdhury A J,Hella M M. A 12-m 2.5-Gb/s lighting compatible integrated receiver for OOK visible light communication links[J]. Journal of Light Wave Technology,2016,34(16):3768-3775.
[9] Nuwanpriya A,Ho S W,Chen C S. Indoor MIMO visible light communications:Novel angle diversity receivers for mobile users[J]. IEEE Journal on Selected Areas in Communications,2015,33(9):1780-1792.
[10] Wang T Q,He C,Armstrong J. Performance analysis of aperture-based receivers for MIMO IM/DD visible light communications[J]. Journal of Light Wave Technology,2017,35(9):1513-1523.
[11] Lu I,Lai C H,Yeh C H,et al. 6.36Gb/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation[C]//Optical Fiber Communications Conference & Exhibition. Los Angeles,USA:IEEE,2017,16929996-1-16929996-3.
[12] Zhu B,Cheng J,Cheng H T,et al. An asymptotic study of hierarchical diversity receptions over Rician channels with arbitrary correlation[J]. IEEE Transactions on Vehicular Technology,2015,65(5):3299-3311.
[13] Chun B. A hybrid selection/equal-gain combining over correlated Nakagami-m fading channels[J]. IEEE Communications Letters,2007,11(2):161-163.
[14] Costanzo R,Yang Z,Raduazo N,et al. A 10GHz bandwidth balanced photo receiver with 41V/W optical conversion gain[C]//European Microwave Integrated Circuits Conference(EUMIC). Nuremberg,Germany,2017:151-154.
[15] Yan D,Mao X,Xie S,et al. Design fully integrated driver circuit for phosphorescent white light-emitting-diode high speed real-time wireless communication[J]. IEEE Photonics Journal,2019,11(2):1-10.
[16] Li H,Chen X,Guo J,et al. A 550Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application[J]. Optics Express,2014,22(22):27203-27213.
[17] Chen R Y,Yang Z Y. CMOS transimpedance amplifier for visible light communications[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2015,23(11):2738-2742.
Visible Receiver Front-End Circuit Based on Diversified Receiving Technology
Xie Sheng1,Wang Xufei1,Mao Xurui2,Zhou Gaolei3,Yan Dong3
(1.School of Microelectronics,Tianjin University,Tianjin 300072,China;2. Institute of Semiconductors,Chinese Academy of Science,Beijing 10083,China;3. School of Electronical and Information Engineering,Tianjin University,Tianjin 300072,China)
In this paper,a visible light receiver front-end circuit with strong anti-noise ability based on TSMC 180nm CMOS technology is proposed to reduce the influence of noise on the quality of visible light communication and improve the anti-interference of visible light communication systems. The circuit mainly includes transimpedance amplifiers,a limiting amplifier,a DC offset elimination network,and a buffer. An input end receives signals in two ways,and two external photodiodes are connected via PCB drawing to realize an equal gain combination of received photocurrent signals. The combined signals are provided to the analog amplifier circuit of the optical receiver as the input signals. The design realizes diversity receiving technology and improves the signal-to-noise ratio of the optical communication system. The transimpedance amplifier adopts the regulated cascode structure,the common source structure is used as the feedback loop to reduce the input impedance of the chip,and the common drain structure improves the load capacity of the transimpedance amplifier. The improved Cherry Hooper limiting amplifier structure is adopted by introducing a feedback resistor to reduce the interstage equivalent resistance and expand the effective bandwidth. By increasing the load resistance,the bias current is provided to the branch,which can effectively improve the output range of the circuit. Experimental results show that when the power supply voltage is 1.8V and the equivalent capacitance of the photodetector is 5pF,the transimpedance gain of the optical receiver is 88dBΩ and the -3dB bandwidth is 510MHz. With a bit error rate less than 3.8×10-3,a 600Mb/s data transmission is realized. The chip power consumption is 43.62mW and the overall area is 624μm×823μm;when the BER is 10-9,the sensitivity of the diversity-based receiver is -11.5dBm. A comparative experimental study shows that diversity receiving technology can reduce the bit error rate of VLC,thus improving the communication quality. Therefore,the optical receiver based on diversity receiving technology can be applied in the field of indoor visible light communication systems.
semiconductor technology;visible light communication;optical receiver;diversified reception
TN43
A
0493-2137(2020)10-1062-07
10.11784/tdxbz201909040
2019-09-17;
2019-11-22.
謝?生(1978—??),男,副教授,xie_sheng06@tju.edu.cn.
王續(xù)霏,wangxufei@tju.edu.cn.
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)資助項(xiàng)目(2017YFB0403603).
Supported by the National Basic Research Program of China(No.2017YFB0403603).
(責(zé)任編輯:王曉燕)