胡海剛,危鵬搏,段 爭(zhēng),唐 潮,錢云霞
生鮮餌料離散式投餌機(jī)設(shè)計(jì)與試驗(yàn)
胡海剛1,危鵬搏1,段 爭(zhēng)1,唐 潮1,錢云霞2
(1. 寧波大學(xué)海運(yùn)學(xué)院,寧波 315211;2. 寧波大學(xué)海洋學(xué)院,寧波 315211)
針對(duì)目前專為生鮮餌料設(shè)計(jì)的投餌機(jī)種類較少,且兇猛肉食性水產(chǎn)生物生鮮餌料喂養(yǎng)過程中密集投喂易引起奪食致傷致死的現(xiàn)象,該研究以虎斑烏賊為例,基于離心式投餌原理,提出生鮮餌料離散式投餌機(jī)設(shè)計(jì)思路,設(shè)計(jì)以西門子PLC為控制核心,MCGS觸摸屏為人機(jī)交互界面的自動(dòng)投餌機(jī)。該投餌機(jī)設(shè)計(jì)了適用于生鮮餌料的振動(dòng)分篩盤實(shí)現(xiàn)生鮮餌料逐條拋投,擁有餌料拋投速度、方向、仰角的實(shí)時(shí)可控的子系統(tǒng)以及多段程投餌模式,實(shí)現(xiàn)離散式投餌。投餌機(jī)基礎(chǔ)性能測(cè)試和投餌模式驗(yàn)證試驗(yàn)結(jié)果表明,多段程投餌模式可實(shí)現(xiàn)縱向拋投距離1.8~8.0 m,橫向拋投距離0~3.9 m,拋投面積約26 m2范圍內(nèi)的餌料離散拋投,覆蓋81.2 %的8 m×4 m室內(nèi)養(yǎng)殖池;該投餌機(jī)轉(zhuǎn)盤轉(zhuǎn)速小于900 r/min時(shí),平均餌料破碎率低于3.3 %,轉(zhuǎn)速高于900 r/min時(shí)餌料破碎率激增,最大有效拋投距離10.5 m。該研究可為今后生鮮餌料投餌機(jī)和離散式投喂提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);投餌機(jī);生鮮餌料;離散式投餌;復(fù)數(shù)矢量法
近年來海產(chǎn)養(yǎng)殖規(guī)模逐漸擴(kuò)大,其中多數(shù)為兇猛肉食性品種,如烏賊、鱸魚、石斑等,其養(yǎng)殖環(huán)境多為低密度養(yǎng)殖、生鮮餌料(多為冷藏小魚蝦)投喂,傳統(tǒng)顆粒餌料投餌機(jī)不完全適用于此類品種。以虎斑烏賊()為例,因其生長(zhǎng)快、經(jīng)濟(jì)效益高等特點(diǎn),逐漸成為東南沿海人工海水養(yǎng)殖的熱門對(duì)象[1-2]?;邽踬\生性兇猛,養(yǎng)殖密度較低,1 m3水體養(yǎng)殖3~5只成年烏賊[3],且對(duì)養(yǎng)殖環(huán)境要求較高[4-5],故適合室內(nèi)養(yǎng)殖。在攝食餌料時(shí)會(huì)因餌料投喂不足或者投喂過于集中等原因,出現(xiàn)為奪食相互攻擊導(dǎo)致受傷、死亡的現(xiàn)象[1]。
傳統(tǒng)投餌機(jī)多為顆粒餌料設(shè)計(jì),結(jié)構(gòu)簡(jiǎn)單、運(yùn)行模式單一,餌料落點(diǎn)密集[6-8],易引起奪食行為,且由于烏賊養(yǎng)殖密度低,餌料殘餌量高。因此餌料落點(diǎn)分布較為均勻的離散式投餌在虎斑烏賊養(yǎng)殖投喂過程中極為重要。隨著農(nóng)業(yè)技術(shù)的發(fā)展,出現(xiàn)許多優(yōu)秀的投餌設(shè)備可實(shí)現(xiàn)離散化投餌,其方案多為管道或?qū)к壿斔宛D料進(jìn)行定點(diǎn)投料[9-14],或是使用投餌船于湖面、海面進(jìn)行巡航式餌料投喂[15-16]。上述管道、導(dǎo)軌類方案主要為顆粒飼料設(shè)計(jì)不適用于體積大、不規(guī)則的生鮮餌料。且投餌船主要用于室外大水面環(huán)境,不適用于虎斑烏賊等室內(nèi)養(yǎng)殖品種,因此設(shè)計(jì)一種針對(duì)生鮮餌料的固定式投餌機(jī)具有重要的意義。
基于上述問題,本文設(shè)計(jì)了一種離心式自動(dòng)投餌機(jī),以西門子S7-200PLC作為控制核心,并選用MCGS觸摸屏組態(tài)人機(jī)交互界面(Human Machine Interface,HMI)監(jiān)控運(yùn)行參數(shù)[17-19],使生鮮餌料逐條拋投,餌料拋投速度、方向、仰角實(shí)時(shí)可調(diào)。并設(shè)計(jì)多段程投餌模式,將投餌過程劃分多段,覆蓋不同距離、方向的養(yǎng)殖水域,實(shí)現(xiàn)離散式投餌。
不同于餌料落點(diǎn)密集的傳統(tǒng)顆粒餌料投餌方式,離散化投餌可使餌料落點(diǎn)零散分布于養(yǎng)殖區(qū)域,降低奪食現(xiàn)象造成的損失。為實(shí)現(xiàn)室內(nèi)養(yǎng)殖環(huán)境下生鮮餌料拋投落點(diǎn)的離散化,提出以下設(shè)計(jì)思路:
1)生鮮餌料逐條拋出,使餌料落點(diǎn)不集中于個(gè)別區(qū)域;
2)拋投速度可調(diào),不同的拋投速度實(shí)現(xiàn)不同距離的餌料落點(diǎn);
3)拋投水平方向角可調(diào),使餌料落點(diǎn)呈扇面分布,可實(shí)現(xiàn)餌料大水面覆蓋。同時(shí)水平方向角變化速率可影響?zhàn)D料落點(diǎn)的疏密程度;
4)拋投仰角可調(diào),仰角往復(fù)變化,落點(diǎn)軌跡呈鋸齒狀分布,餌料分布較之仰角固定式更加均勻;
5)設(shè)計(jì)多段程投餌模式,將矩形養(yǎng)殖水域劃分近、中、遠(yuǎn)程,同時(shí)將投餌過程劃分3段,每段的拋投速度、水平方向角速度、仰角等參數(shù)不同,餌料落點(diǎn)各自覆蓋近、中、遠(yuǎn)程的水域,使餌料落點(diǎn)較為均勻、離散化,不會(huì)因?yàn)槁潼c(diǎn)過于集中引起烏賊奪食現(xiàn)象。
基于上述設(shè)計(jì)思路設(shè)計(jì)的投餌機(jī)由下料系統(tǒng)、振動(dòng)分篩系統(tǒng)、拋投仰角控制系統(tǒng)、拋投速度控制系統(tǒng)和水平方向角控制系統(tǒng)組成,其整體結(jié)構(gòu)如圖1所示。
1.料斗 2.旋轉(zhuǎn)下料器 3.下料步進(jìn)電機(jī) 4.振動(dòng)分篩盤 5.振動(dòng)電機(jī) 6.控制柜 7.電動(dòng)推桿 8.轉(zhuǎn)盤交流電機(jī) 9.轉(zhuǎn)筒步進(jìn)電機(jī) 10.轉(zhuǎn)盤 11.轉(zhuǎn)筒 12.小料斗
機(jī)架主體由型號(hào)40 mm×40 mm 和 80 mm×40 mm 的鋁合金型材搭建而。成生鮮餌料投入料斗后,定量下料系統(tǒng)中的下料步進(jìn)電機(jī)(型號(hào)42CM06,保持轉(zhuǎn)矩0.34 N·m)控制旋轉(zhuǎn)下料器(直徑200 mm)慢速旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)下料器空心槽朝下時(shí),槽中餌料落入振動(dòng)分篩盤中。振動(dòng)分篩系統(tǒng)由振動(dòng)分篩盤和振動(dòng)電機(jī)(型號(hào)TO-0.4,額定功率0.04 kW,額定轉(zhuǎn)速3 000 r/min,振動(dòng)力350 N)組成,通過變頻器(臺(tái)達(dá)VFD-L,輸出頻率范圍1~400 Hz)調(diào)整振動(dòng)頻率,使進(jìn)料口投下的生鮮餌料相互分離、排序,沿振動(dòng)分篩盤的導(dǎo)引壁逐條依次落入轉(zhuǎn)筒(直徑400 mm)中。轉(zhuǎn)筒中轉(zhuǎn)盤(直徑390 mm)受轉(zhuǎn)盤交流電機(jī)(型號(hào)HMA-6334,額定功率0.25 kW,額定轉(zhuǎn)速1 320 r/min,額定轉(zhuǎn)矩2.2 N·m)驅(qū)動(dòng)高速旋轉(zhuǎn),使餌料沿轉(zhuǎn)筒開口處切線方向拋出。轉(zhuǎn)盤運(yùn)行過程中拋投仰角控制系統(tǒng)中的電動(dòng)推桿(型號(hào)LX600,行程100 mm,速度5 mm/s,負(fù)載力1 000 N)往復(fù)伸縮,推動(dòng)轉(zhuǎn)盤轉(zhuǎn)筒繞固定轉(zhuǎn)軸旋轉(zhuǎn)實(shí)現(xiàn)拋投仰角變化。同時(shí)水平方向角控制系統(tǒng)中轉(zhuǎn)筒步進(jìn)電機(jī)(型號(hào)57CM18,保持轉(zhuǎn)矩1.3 N·m)通過轉(zhuǎn)筒底部齒輪組(傳動(dòng)比8:1)轉(zhuǎn)動(dòng)轉(zhuǎn)筒,改變轉(zhuǎn)筒開口方向,實(shí)現(xiàn)餌料定向拋投。
振動(dòng)分篩系統(tǒng)由分篩盤、振動(dòng)電機(jī)和變頻器組成,對(duì)生鮮餌料進(jìn)行振動(dòng)分篩處理。振動(dòng)分篩盤如圖2所示,分篩盤上折出階梯式導(dǎo)引槽,增強(qiáng)振動(dòng)分篩效果使成團(tuán)落下的魚蝦逐漸分離。分篩盤上焊接導(dǎo)引壁,生鮮魚蝦沿導(dǎo)引壁逐條下滑進(jìn)拋投設(shè)備,且導(dǎo)引壁逐漸收縮成5 cm開口,防止多條魚蝦同時(shí)落入拋投設(shè)備。分篩盤下安裝振動(dòng)電機(jī),為分篩盤提供振源。
利用ABAQUS軟件對(duì)振動(dòng)分篩盤進(jìn)行諧響應(yīng)分析,獲得如圖3所示頻響曲線,選用Lanczos法對(duì)振動(dòng)篩進(jìn)行模態(tài)分析,振動(dòng)篩的前6階固有頻率分布在0~20 Hz內(nèi),當(dāng)激勵(lì)源的頻率為10 Hz時(shí),此時(shí)振動(dòng)篩發(fā)生了共振,振幅最大,同時(shí),共振會(huì)產(chǎn)生嚴(yán)重的噪聲,損壞工作部件[20]。從頻響曲線圖中可知,當(dāng)頻率約等于60 Hz時(shí),振動(dòng)篩的位移響應(yīng)較大,分篩效果好,因此外界激勵(lì)頻率取60 Hz時(shí)較為合理,本投餌機(jī)采用臺(tái)達(dá)VFD-L變頻器產(chǎn)生60 Hz交流電控制振動(dòng)電機(jī)振動(dòng)頻率。
1.導(dǎo)引壁 2.導(dǎo)引槽
振動(dòng)分篩盤進(jìn)行實(shí)物試驗(yàn)時(shí),生鮮小蝦由于質(zhì)量較輕,在10~90 Hz范圍內(nèi)皆可逐條滑入拋投設(shè)備,故選用質(zhì)量較大的生鮮小魚進(jìn)行試驗(yàn)。試驗(yàn)結(jié)果如圖3,頻率在0~20 Hz范圍內(nèi)振動(dòng)分篩盤有明顯共振現(xiàn)象,不適宜試驗(yàn)。頻率在20~45 Hz范圍內(nèi)生鮮小魚堆積不動(dòng)或滑落速度緩慢。頻率在45~70 Hz范圍內(nèi)生鮮小魚滑落速度明顯,能夠逐條滑入拋投設(shè)備。頻率超過70 Hz時(shí)生鮮小魚堆積不動(dòng),現(xiàn)象同20~45 Hz且噪音極大。
圖3 不同振動(dòng)頻率下振動(dòng)分篩盤試驗(yàn)結(jié)果
水平方向角控制系統(tǒng)控制餌料拋出時(shí)的水平方向。其結(jié)構(gòu)圖如圖4,轉(zhuǎn)筒上下板邊緣嵌入固定滾輪凹槽中,4個(gè)固定滾輪形成一個(gè)限制轉(zhuǎn)筒移動(dòng),不限制旋轉(zhuǎn)的支架。齒輪組中的從動(dòng)齒輪固定在轉(zhuǎn)筒底部,步進(jìn)電機(jī)通過驅(qū)動(dòng)主動(dòng)齒輪精準(zhǔn)控制轉(zhuǎn)筒角速度及其開口朝向。轉(zhuǎn)筒兩側(cè)支架上安裝光電開關(guān),光電開關(guān)觸發(fā)時(shí)步進(jìn)電機(jī)反轉(zhuǎn),限制轉(zhuǎn)筒最大轉(zhuǎn)向角度,防止操作失誤使轉(zhuǎn)筒開口朝向投餌機(jī)內(nèi)部。
1.轉(zhuǎn)筒 2.轉(zhuǎn)筒支架 3. 固定滾輪 4.光電開關(guān) 5.轉(zhuǎn)盤 6.轉(zhuǎn)盤交流電機(jī) 7.轉(zhuǎn)筒步進(jìn)電機(jī) 8.齒輪組 9.遮光片
拋投仰角控制系統(tǒng)負(fù)責(zé)控制生鮮餌料拋出時(shí)與水平面的夾角。其結(jié)構(gòu)如圖5a,本投餌機(jī)選用電動(dòng)推桿實(shí)現(xiàn)拋投仰角控制,通過電動(dòng)推桿的伸縮使轉(zhuǎn)筒、轉(zhuǎn)盤等拋投設(shè)備繞轉(zhuǎn)軸旋轉(zhuǎn),從而控制拋投仰角。
為確定電動(dòng)推桿所受最大負(fù)載,便于電動(dòng)推桿選型,選取連桿作為受力分析對(duì)象,其靜力學(xué)分析如圖5b,由于電動(dòng)推桿運(yùn)行速度慢不考慮加速度,且轉(zhuǎn)軸直徑小,產(chǎn)生的摩擦阻力矩遠(yuǎn)小于桿件自重產(chǎn)生的力矩,故不考慮摩擦力矩的影響。
1.轉(zhuǎn)軸 2.轉(zhuǎn)筒 3.連桿4.支架5.電動(dòng)推桿
1. Rotating shaft 2. Rotary drum 3. Link rod 4. Holder 5. Electric pusher
注:1為轉(zhuǎn)軸處受轉(zhuǎn)筒轉(zhuǎn)盤重力,N;F為轉(zhuǎn)軸對(duì)桿件的支持力,N;2為桿件受電機(jī)和桿件自身重力,N;1為桿件尾端受電動(dòng)推桿推力,N;1為電動(dòng)推桿與水平面的夾角,(°);1為1與連桿的壓力角,(°);2為2與連桿的壓力角,(°);為坐標(biāo)原點(diǎn)。
Note:1is the gravity of rotary, N;Fis the supporting force of the rotating shaft to the link rod, N;2is the gravity of link rod and motor, N;1is the push force of the electric pusher at the end of the link rod, N;1is the angle between the electric pusher and the horizontal plane, (°);1is the pressure angle between the1and the link rod, (°);2is the pressure angle between the2and the link rod, (°);is coordinate origin.
圖5 電動(dòng)推桿-連桿結(jié)構(gòu)圖與受力圖
Fig.5 Structure and force analysis diagram of electric pusher-link rod
根據(jù)靜力學(xué)原理,以連桿上端轉(zhuǎn)軸作為坐標(biāo)原點(diǎn):
式中1x為1水平分力,N;1y為1豎直分力,N;F為N水平分力,N;F為F豎直分力,N;2為連桿長(zhǎng)度,m。
求得推桿推力1:
通過試驗(yàn)樣機(jī)測(cè)量和圖解法測(cè)繪可得出1和2大致取值范圍1∈[3°,25°],2∈[70°,85°],2經(jīng)電子秤(型號(hào)ACS-55,精度0.1 g)測(cè)量約為120 N,推桿最大推力1max=22.7 N,根據(jù)企業(yè)提供的參數(shù),電動(dòng)推桿型號(hào)選擇LX600,行程100 mm,速度5 mm/s,負(fù)載力1 000 N。
該投餌機(jī)以西門子S7-200PLC作為核心控制器控制轉(zhuǎn)筒步進(jìn)電機(jī)、變頻器、電動(dòng)推桿等器件,實(shí)現(xiàn)水平方向角、拋投速度、拋投仰角等運(yùn)行參數(shù)的實(shí)時(shí)控制,并設(shè)計(jì)多段程投餌模式,控制生鮮餌料拋投落點(diǎn)。
西門子S7-200PLC集成了2個(gè)脈沖輸出接口(I0.0和I0.1),為轉(zhuǎn)筒步進(jìn)電機(jī)提供脈沖信號(hào),控制轉(zhuǎn)筒轉(zhuǎn)速和開口朝向,最大支持100 kHz[20-21]。由于西門子S7-200PLC的輸出信號(hào)為+24 V而步進(jìn)電機(jī)驅(qū)動(dòng)器的控制信號(hào)為+5 V,故PLC輸出端子與驅(qū)動(dòng)器之間串聯(lián)一2 kΩ電阻,起分壓作用。通過選擇步進(jìn)電機(jī)驅(qū)動(dòng)器上的撥碼開關(guān)設(shè)置微步細(xì)分?jǐn)?shù),設(shè)定步進(jìn)電機(jī)每轉(zhuǎn)一圈所需脈沖數(shù)。
PLC中通過PTO-MAN和PTO-CTRL指令實(shí)現(xiàn)步進(jìn)電機(jī)的啟停,通過計(jì)算特定轉(zhuǎn)速對(duì)應(yīng)脈寬并存入脈沖控制寄存器,PLC自動(dòng)調(diào)整輸出脈寬,實(shí)現(xiàn)轉(zhuǎn)筒步進(jìn)電機(jī)的速度控制及啟停,間接控制水平方向角。光電開關(guān)觸發(fā)后,PLC將輸入步進(jìn)電機(jī)驅(qū)動(dòng)器DIR+的信號(hào)取反,實(shí)現(xiàn)步進(jìn)電機(jī)的反向旋轉(zhuǎn)。并使用高速計(jì)數(shù)器記錄脈沖輸出個(gè)數(shù),可將脈沖數(shù)換算成當(dāng)前水平方向角,實(shí)現(xiàn)人機(jī)交互界面當(dāng)前水平方向角的實(shí)時(shí)監(jiān)控。
拋投速度控制系統(tǒng)中轉(zhuǎn)盤作為核心部件由三相交流電機(jī)驅(qū)動(dòng),轉(zhuǎn)盤高速轉(zhuǎn)動(dòng)為生鮮餌料提供拋投初速度。臺(tái)達(dá)變頻器VFD-L調(diào)整電機(jī)的輸入電流頻率,控制轉(zhuǎn)盤轉(zhuǎn)速,實(shí)現(xiàn)餌料拋投速度控制,該變頻器可實(shí)現(xiàn)400 Hz以內(nèi)交流電輸出。
本投餌機(jī)采用的臺(tái)達(dá)VFD-L變頻器支持RS-485串口的MODBUS通信協(xié)議[22],西門子S7-200PLC同樣支持該通信協(xié)議。分別配置變頻器和PLC的通信參數(shù)即可調(diào)用MBUS_MSG通信指令修改變頻器頻率命令寄存器2001H的參數(shù),從而調(diào)整輸出頻率,實(shí)時(shí)控制拋投速度。
拋投仰角控制系統(tǒng)可看作帶滑塊的連桿機(jī)構(gòu),故可通過復(fù)數(shù)矢量法分析各連桿的運(yùn)動(dòng)及桿對(duì)于鉸鏈的相對(duì)關(guān)系[23-24],并使用MATLAB數(shù)學(xué)分析工具得到拋投仰角與推桿通電時(shí)間的函數(shù)關(guān)系。
建立如圖6所示的幾何模型,該機(jī)構(gòu)的封閉復(fù)數(shù)矢量方程為:
注:1為推桿長(zhǎng)度,m;2為連桿長(zhǎng)度,m;3為固定機(jī)架長(zhǎng)度,m;1為推桿與水平面的夾角,(°);2為連桿與水平面的夾角,(°);3為固定機(jī)架與水平面的夾角,(°);為拋投仰角,(°)
Note:1is the length of the pusher, m;2is the length of the link rod, m;3is the length of the fixed frame, m;1is the angle between the pusher and the horizontal plane, (°);2is the angle between the link rod and the horizontal plane, (°);3is the angle between the fixed frame and the horizontal plane, (°);is elevation angle,(°).
圖6 拋投仰角控制系統(tǒng)幾何模型圖
Fig.6 Geometric model diagram of casting elevation angle system
按歐拉公式展開,實(shí)部與虛部分別相等,并消去2得:
化簡(jiǎn)為:
式中系數(shù)
代入三角函數(shù)萬能公式得:
其中電動(dòng)推桿行程100 mm,速度5 mm/s,推桿未伸出長(zhǎng)度為250 mm,故推桿長(zhǎng)度1=0.25+0.005,m。各初始參數(shù)帶入公式(6),又因2與拋投仰角相差90°得:
式中為推桿運(yùn)行時(shí)間,s。
運(yùn)用MATLAB軟件繪制函數(shù)圖像,如圖7所示。
電動(dòng)推桿行程100 mm,速度5 mm/s,推桿最大運(yùn)行時(shí)間20 s,從圖7可知,推桿運(yùn)行時(shí)間0~20 s內(nèi),推桿運(yùn)行時(shí)間與拋投仰角的關(guān)系函數(shù)幾乎呈一條直線,通過0 s和20 s時(shí)的仰角數(shù)值,構(gòu)建一次函數(shù)代替實(shí)際關(guān)系函數(shù),使PLC快速計(jì)算出到達(dá)特定仰角所需時(shí)間,利用TON定時(shí)器指令控制電動(dòng)推桿接正向電壓的時(shí)間,運(yùn)行至特定仰角后推桿接反向電壓,推桿收縮,如此向推桿提供周期性方波電壓,實(shí)現(xiàn)仰角往返變化。
圖7 拋投仰角-推桿運(yùn)行時(shí)間關(guān)系函數(shù)圖
人機(jī)交互界面(HMI)設(shè)計(jì)選用MCGS TCP7062Ti昆侖通態(tài)觸摸屏作為操作界面,觸摸屏操作系統(tǒng)使用自帶MCGS嵌入版組態(tài)軟件編輯。觸摸屏主要功能包括參數(shù)實(shí)時(shí)監(jiān)控,如當(dāng)前轉(zhuǎn)盤轉(zhuǎn)速、拋投仰角、水平拋頭方向角等運(yùn)行參數(shù),以及屏上啟動(dòng)停止功能。
MCGS TCP7062Ti昆侖通態(tài)觸摸屏兼容西門子PLC的PPI通信協(xié)議,通信速率為19.2 K~12 Mbit/s[25-28],可實(shí)現(xiàn)高速通信,采集PLC處投餌機(jī)運(yùn)行參數(shù),實(shí)時(shí)顯示在操作界面上。
為實(shí)現(xiàn)離散化投餌,設(shè)計(jì)多段程投餌模式,通過3段拋投,改變各階段轉(zhuǎn)筒角速度、轉(zhuǎn)盤轉(zhuǎn)速、最大拋投仰角、階段持續(xù)時(shí)間等運(yùn)行參數(shù),使餌料落點(diǎn)覆蓋近、中、遠(yuǎn)程不同養(yǎng)殖區(qū)域,實(shí)現(xiàn)離散投餌。
投餌機(jī)運(yùn)行流程如下:投餌機(jī)啟動(dòng)旋轉(zhuǎn)下料步進(jìn)電機(jī),投餌機(jī)逐條下料,同時(shí)運(yùn)行上述的多段程運(yùn)行模式,每一階段按照運(yùn)行參數(shù)設(shè)定定時(shí)器,PLC按照該段轉(zhuǎn)筒角速度設(shè)定輸出的脈沖寬度,調(diào)整轉(zhuǎn)筒旋轉(zhuǎn)角速度,控制水平方向角及餌料落點(diǎn)在橫向投餌距離上的疏密程度;PLC調(diào)整輸出給電動(dòng)推桿的周期性方波信號(hào)的周期值,使拋投仰角于初始仰角和該段最大拋投仰角之間往復(fù)運(yùn)動(dòng),餌料落點(diǎn)呈鋸齒狀分布;PLC修改變頻器輸出頻率,轉(zhuǎn)盤按該段轉(zhuǎn)速旋轉(zhuǎn),控制餌料拋投速度,各階段轉(zhuǎn)盤轉(zhuǎn)速合理選取即可實(shí)現(xiàn)餌料落點(diǎn)在近、中、遠(yuǎn)程不同養(yǎng)殖區(qū)域的覆蓋。定時(shí)結(jié)束時(shí)重新載入下一投餌階段的運(yùn)行參數(shù),重復(fù)上述步驟直到所有階段運(yùn)行完成,停止各設(shè)備。
為直觀分析多段程投餌模式拋投效果,對(duì)多段程投餌模式的拋投落點(diǎn)進(jìn)行運(yùn)動(dòng)學(xué)計(jì)算,并仿真、繪制餌料落點(diǎn)分布圖像。餌料運(yùn)動(dòng)模型示意圖如圖8,考慮空氣阻力的情況下,由于餌料拋投初速度小于15 m/s,且生鮮雜魚餌料截面積小于10 cm2,故空氣阻力正比于速度,空氣阻力(N)為[29]:
=6π(8)
式中為流體黏性系數(shù),Pa·s;為運(yùn)動(dòng)物體等效半徑,m;為物體運(yùn)動(dòng)速度,m/s。常溫時(shí)=1.82×10-5Pa·s,<20 mm,<15 m/s,故<1.02×10-4N,遠(yuǎn)小于餌料受到重力可視作無空氣阻力便于計(jì)算[29-30]。
注:v0為初速度,m/s;v0z為初速度豎直分速度m/s;v0x為初速度水平分速度m/s;f為空氣阻力,N;h為餌料拋投初始高度,m;mg為餌料所受重力,N;L為餌料拋投距離,m;θ為拋投仰角,(°)。
由圖8可得運(yùn)動(dòng)微分方程為:
取初始條件=0時(shí),=0,=可解得:
對(duì)于餌料的落點(diǎn)計(jì)算,代入實(shí)際參數(shù)可列下列方程:
式中2為餌料下落所需時(shí)間,s。
解出落點(diǎn)距離及落點(diǎn)在水平面上的坐標(biāo):
其中為拋投水平方向角, (°)。L為餌料落點(diǎn)的橫向拋投距離,m;L為餌料落點(diǎn)的縱向拋投距離,m。
投餌總持續(xù)時(shí)間與投餌量相關(guān),在總持續(xù)時(shí)間不變的條件下,不斷調(diào)整各拋投階段的往返角度、轉(zhuǎn)筒角速度、轉(zhuǎn)盤轉(zhuǎn)速和各階段持續(xù)時(shí)間,從而調(diào)整落點(diǎn)的拋投仰角、水平方向角、拋投初速度0、各階段的落點(diǎn)數(shù)。使第一階段落點(diǎn)橫向拋投距離在1.5~2.5 m范圍,縱向拋投距離在2~3 m范圍;第二階段落點(diǎn)橫向拋投距離在1~3 m范圍,縱向拋投距離在4~6 m范圍;第三階段落點(diǎn)橫向拋投距離在0.5~3.4 m范圍,縱向拋投距離在6.5~7.5 m范圍;總投餌面積大于16 m2的運(yùn)行參數(shù)如表1。
根據(jù)拋投的實(shí)際情況,假設(shè)平均每2 s拋投一條生鮮餌料,由MATLAB軟件可得拋投仿真圖9。仿真結(jié)果表明:第一階段落點(diǎn)橫向拋投距離1.2~3 m,縱向拋投距離2~3 m;第二階段落點(diǎn)橫向拋投距離0.6~3.8 m,縱向拋投距離3.9~6 m;第三階段落點(diǎn)橫向拋投距離0~3.9 m,縱向拋投距離6.5~7.8 m。總投餌面積17.95 m2。實(shí)現(xiàn)了餌料均勻、離散化拋投,符合多段程離散化投餌要求。
圖9 多段程投餌模式落點(diǎn)結(jié)果
于2019年11月07日在浙江寧波象山縣來發(fā)水產(chǎn)育苗場(chǎng)內(nèi)進(jìn)行投餌試驗(yàn)(圖10a)。育苗場(chǎng)養(yǎng)殖池規(guī)格8 m× 4 m,為便于觀察該運(yùn)行模式下餌料落點(diǎn),養(yǎng)殖池未蓄水。采用表1中的多段程投餌模式參數(shù)進(jìn)行試驗(yàn)。由于餌料易落地后滑行,下落速度不均勻等原因,試驗(yàn)投餌距離及面積大于仿真結(jié)果。實(shí)際縱向拋投距離1.8~8.0 m,橫向拋投距離0~3.9 m,投餌面積約為26.0 m2,可覆蓋81.2 %的養(yǎng)殖池面積。
圖10 現(xiàn)場(chǎng)試驗(yàn)及投餌機(jī)性能測(cè)試結(jié)果
生鮮餌料由轉(zhuǎn)盤拋出,速度過大時(shí)餌料易破碎,餌料破碎率過大易導(dǎo)致水體污染,故性能測(cè)試對(duì)象為該投餌機(jī)餌料破碎率,結(jié)果如圖10b。轉(zhuǎn)盤速度大于900 r/min時(shí)餌料破碎率激增;轉(zhuǎn)盤速度900 r/min時(shí)平均餌料破碎率為3.3%,小于水產(chǎn)行業(yè)標(biāo)準(zhǔn)要求的5%[31]。測(cè)試結(jié)果表明該投餌機(jī)最大有效轉(zhuǎn)速為900 r/min,最大有效縱向投餌距離為900 r/min轉(zhuǎn)速下的10.5 m,即投餌距離超過10.5 m的環(huán)境不適宜此投餌機(jī)。
1)針對(duì)兇猛肉食性品種的低密度、生鮮餌料投喂養(yǎng)殖環(huán)境,設(shè)計(jì)生鮮餌料離散式投餌機(jī),實(shí)現(xiàn)拋投速度、方向、仰角的實(shí)時(shí)可調(diào),并設(shè)計(jì)多段程投餌模式實(shí)現(xiàn)餌料的離散拋投。
2)對(duì)拋投仰角控制系統(tǒng)中的電動(dòng)推桿—連桿機(jī)構(gòu)進(jìn)行了靜力學(xué)分析,確定推桿最小負(fù)載力為22.7 N,并使用復(fù)數(shù)矢量法計(jì)算推桿運(yùn)行軌跡,得出仰角-推桿運(yùn)行時(shí)間關(guān)系曲線接近一次函數(shù)曲線,可使用PLC定時(shí)器實(shí)現(xiàn)拋投仰角精準(zhǔn)控制。
3)餌料落點(diǎn)試驗(yàn)結(jié)果表明,多段程投餌模式可實(shí)現(xiàn)縱向拋投距離1.8~8.0 m,橫向拋投距離0~3.9 m,拋投面積約為26.0 m2可覆蓋81.2%的養(yǎng)殖池面積,滿足虎斑烏賊養(yǎng)殖需求,能實(shí)現(xiàn)離散投餌,餌料落點(diǎn)不聚集,不易引起烏賊的奪食行為。
本研究重點(diǎn)是對(duì)生鮮餌料離散式投餌機(jī)的結(jié)構(gòu)、控制系統(tǒng)設(shè)計(jì),滿足離散式投餌的基本需求,未對(duì)多段程投餌模式進(jìn)行深度優(yōu)化,同時(shí)后續(xù)將進(jìn)行遠(yuǎn)程無線實(shí)時(shí)監(jiān)控系統(tǒng)的研究。
[1] 李建平,蔣霞敏,趙晨曦,等. 虎斑烏賊室內(nèi)規(guī)?;B(yǎng)殖技術(shù)研究[J]. 生物學(xué)雜志,2019,36(2):68-72.
Li Jianping, Jiang Xiamin, Zhao Chenxi, et al. Research on the indoor scale breeding technique of Sepia pharaonis[J]. Journal of Biology, 2019, 36(2): 68-72. (in Chinese with English abstract)
[2] 王鵬帥,蔣霞敏,阮鵬,等. 虎斑烏賊的胚胎耗氧率[J].應(yīng)用生態(tài)學(xué)報(bào),2016,27(7):2357-2362.
Wang Pengshuai, Jiang Xiamin, Ruan Peng, et al. Oxygen consumption rate of Sepia pharaonic embryos[J]. Chinese Journal of Applied Economy, 2016, 27(7): 2357-2362. (in Chinese with English abstract)
[3] 莫新. 虎斑烏賊養(yǎng)殖技術(shù)[J]. 科學(xué)養(yǎng)魚,2015(6):42-43.
Mo Xin. Cultivation technology of Sepia pharaonis[J]. Scientific Fish Farming, 2015(6): 42-43. (in Chinese with English abstract)
[4] Peng RB, Jiang M W, Huang C, et al. Toxic effects of ammonia on the embryonic development of the cuttlefish Sepia pharaonis[J]. Aquaculture Research, 2019, 50(2): 505-512.
[5] Peng R B, Wang P S, Jiang M W, et al. Effect of salinity on embryonic development of the cuttlefish sepia pharaonis[J]. Journal of the World Aquaculture Society, 2017, 48(4): 666-675.
[6] 徐皓,張建華,丁建樂,等. 國(guó)內(nèi)外漁業(yè)裝備與工程技術(shù)研究進(jìn)展綜述[J]. 漁業(yè)現(xiàn)代化,2010,37(2):1-8.
Xu Hao, Zhang Jianhua, Ding Jianle, et al. The review of the research progress of fishery equipment and engineering technology at home and abroad[J]. Fishery Modernization, 2010, 37(2): 1-8. (in Chinese with English abstract)
[7] 莊保陸,郭根喜. 水產(chǎn)養(yǎng)殖自動(dòng)投餌裝備研究進(jìn)展與應(yīng)用[J]. 南方水產(chǎn)科學(xué),2008,4(4):67-72.
Zhuang Baolu, Guo Genxi. The evolution and application of automatic feeding system in aquaculture[J]. South China Fisheries Science, 2008, 4(4): 67-72. (in Chinese with English abstract)
[8] 葛一健. 我國(guó)投飼機(jī)產(chǎn)品的發(fā)展與現(xiàn)狀分析[J]. 漁業(yè)現(xiàn)代化,2010,37(4):63-65.
Ge Yijian. Analysis of development and present situation of feeding machine in China[J]. Fishery Modernization, 2010, 37(4): 63-65. (in Chinese with English abstract)
[9] 宋協(xié)法,路士森. 深水網(wǎng)箱投餌機(jī)設(shè)計(jì)與試驗(yàn)研究[J]. 中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2006(3):405-409.
Song Xiefa, Lu Shisen. Design and experimental study of a new feeder for deep sea cages[J]. Repriodical of Ocean University of China: Natural Science, 2006(3): 405-409. (in Chinese with English abstract)
[10] Aarseth K A, Perez V, B?e J K, et al. Reliable pneumatic conveying of fish feed[J]. Aquacultural Engineering, 2006, 35(1): 14-25.
[11] Papandroulakis N, Dimitris P, Pascal D. An automated feeding system for intensive hatcheries[J]. Aquacultural Engineering, 2002, 26(1): 13-26.
[12] 袁凱. 投飼機(jī)器人關(guān)鍵技術(shù)研究[D]. 上海:上海海洋大學(xué),2013.
Yuan Kai. Research on the Key Technology of Feeding Robot[D]. Shanghai: Shanghai Ocean University, 2013. (in Chinese with English abstract)
[13] Gundogdu M Y. Design improvements on rotary valve particle feeders used for obtaining suspended airflows[J]. Powder Technology, 2004, 139(1): 76-80.
[14] Papandroulakis N, Dimitris P, Pascal D. An automated feeding system for intensive hatcheries[J]. Aquacultural Engineering, 2002, 26(1): 13-26.
[15] 孟祥寶,黃家懌,謝秋波,等. 基于自動(dòng)巡航無人駕駛船的水產(chǎn)養(yǎng)殖在線監(jiān)控技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):276-281.
Meng Xiangbao, Huang Jiayi, Xie Qiubo, et al.Online monitoring for agriculture based on unmanned automatic cruise boat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 276-281. (in Chinese with English abstract)
[16] 孫月平,趙德安,洪劍青,等. 河蟹養(yǎng)殖船載自動(dòng)均勻投餌系統(tǒng)設(shè)計(jì)及效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):31-39.
Sun Yueping, Zhao Dean, Hong Jianqing, et al. Design of automatic and uniform feeding system carried by workboat and effect test for raising river crab[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 31-39. (in Chinese with English abstract)
[17] 胡昱,郭根喜,湯濤林,等. 基于 MCGS 的深水網(wǎng)箱自動(dòng)投餌遠(yuǎn)程控制系統(tǒng)的設(shè)計(jì)[J]. 漁業(yè)科學(xué)進(jìn)展,2010,31(6):110-115.
Hu Yu, Guo Xigen, Tang Taolin, et al. Design of auto-feeding system for deep water net cage based on MCGS[J]. Progress in Fishery Science, 2010,31(6): 110-115. (in Chinese with English abstract)
[18] 張振國(guó). PLC 技術(shù)在電氣工程自動(dòng)化控制中的應(yīng)用[J]. 電子技術(shù)與軟件工程,2015(9):163.
Zhang Zhenguo. Application of PLC technology in electrical engineering automation control[J]. Electronic Technology & Software Engineering, 2015(9): 163. (in Chinese with English abstract)
[19] 鄒偉,楊平,徐德. 基于 MCGS 組態(tài)軟件的上位機(jī)控制系統(tǒng)設(shè)計(jì)[J]. 制造業(yè)自動(dòng)化,2008,30(12):103-108.
Zou Wei, Yang Ping, Xu De. Host computer control system design based on MCGS configuration software[J]. Manufacturing Automation, 2008, 30(12): 103-108. (in Chinese with English abstract)
[20] Duan Zheng, Hu Haigang, Wei Pengbo. Study on external excitation of oscillating screen system of feeding machine[C]//2019 14th IEEE Internation Conference on Electric Measurement & Instruments, 2019: 1228-1233.
[21] 張萬忠. 可編程控制器入門與應(yīng)用實(shí)例:西門子 S7-200 系列[M]. 北京:中國(guó)電力出版社,2005.
[22] 張豪. 基于MODBUS通訊協(xié)議的三菱PLC控制臺(tái)達(dá)變頻器的研究[J]. 科技資訊,2009,26:16-17.
Zhang Hao. Research on mitsubishi PLC control system based on MODBUS communication protocol[J]. Science & Technology Information, 2009, 26: 16-17. (in Chinese with English abstract)
[23] 申永勝. 機(jī)械原理教程[M]. 北京:清華大學(xué)出版社,2005.
[24] 同長(zhǎng)虹,黃建龍,張小棟,等. 基于復(fù)數(shù)矢量法的游梁式抽油機(jī)位置精度分析[J]. 機(jī)械設(shè)計(jì)與制造,2009(1):35-37.
Tong Changhong, Huang Jianlong, Zhang Xiaodong, et al. The position accuracy analysis on rocker-type oil pumping unit based on complex-vector method[J]. Machinery Design & Manufacture, 2009(1): 35-37. (in Chinese with English abstract)
[25] 呂華芳,楊漢波,叢振濤,等. 基于 PLC 控制的室內(nèi)降雨入滲自動(dòng)測(cè)定系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):144-149.
Lv Huafang, Yang Hanbo, Cong Zhentao, et al. Indoor automatic measurement system for rainfall infiltration based on PLC[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 144-149. (in Chinese with English abstract)
[26] 于蒙,鄒志云,趙丹丹,等. 基于PLC和觸摸屏的自動(dòng)閥門測(cè)試控制系統(tǒng)設(shè)計(jì)[J]. 石油化工自動(dòng)化,2013,49(3):38-40.
Yu Meng, Zou Zhiyun, Zhao Dandan, et al. Design of automatic valve test control system based on PLC and touch screen[J]. Automation in Petro-chemical Industry, 2013, 49(3): 38-40. (in Chinese with English abstract)
[27] Zhou L, Chen J, Xu L. The research and application of freeport communication of SIEMENS PLC[C]//2008 International Seminar on Future BioMedical Information Engineering. IEEE, 2008: 318-321.
[28] Zhu Y, Wu K. S7-200 PPI Host-Slave Communication[J]. Techniques of Automation and Applications, 2006(5):21-23.
[29] 閆琴,李斌. 有阻尼斜拋物體運(yùn)動(dòng)的分析[J]. 石河子大學(xué)學(xué)報(bào):自然科學(xué)版,2004,22(6):522-524.
Yan Qin, Li Bin. Movement analysis of oblique tossed object with damping[J]. Journal of Shihezi University: Natural Science, 2004, 22(6): 522-524. (in Chinese with English abstract)
[30] 張健. 考慮空氣阻力和風(fēng)速影響的斜拋運(yùn)動(dòng)的數(shù)值分析[J]. 科技風(fēng),2017(14):251-254.
Zhang Jian. Numerical analysis of oblique projectile motion considering the effects of air resistance and wind speed[J]. Techonlogy Wind, 2017(14): 251-254. (in Chinese with English abstract)
[31] 中華人民共和國(guó)水產(chǎn)行業(yè)標(biāo)準(zhǔn):SC/T 6023-2011[S].北京:中國(guó)農(nóng)業(yè)出版社,2011.
Design and experiment of discrete feeder for fresh feed
Hu Haigang1, Wei Pengbo1, Duan Zheng1, Tang Chao1, Qian Yunxia2
(1.,,315211,; 2.,,315211,)
Fish feeding is a key process in fishery industry. With the advancement of fishery modernization, traditional manual feeding has been replaced by mechanized feeders. But most of existing feeders are designed for pellet feed, which are not quite suit for carnivorous aquatic species such as weevers, groupers, squids etc. Those species mainly feed frozen little fishes and shrimps called fresh feed. Taking Sepia pharaonis for example, the intensive droppoints of fresh feed caused by traditional feeders will make squids to fight for food and result in injury and death. Such phenominon highly raises the cost and reduces the production efficiency. In this study, the design idea of feeder with discrete casting for fresh feed was put forward. Firstly, in order to ensure that the feeder had a good effect on discrete droppoints of fresh feed, the multi-stage casting mode was specially designed. In this mode, the casting speed, direction and elevation angle of feeder can be adjusted in real time, which maked the droppoints of fresh feed relatively uniform and not gather in small area. In addition, to ensure feeding automation, the feeder was equiped with Siemens PLC and MCGS touching screen as the control core and human machine interface for user to adjust and monitor above running parameters. The static analysis of the electric pusher was done to ensure the necessary maximum load. And the complex-vector method was used to calculate the relation curve between running time of electric pusher and elevation angle to realize the accurate control of casting elevation angle. The relationship between elevation angle and pusher running time was close to the straight line. Furthermore, MATLAB was used to simulate the droppoints of the multi-stage casting mode and determine running parameters in the mode and the test was held in squid breeding site to confirm the basic performance and effect of the casting mode. The multi-stage casting mode test results showed that the feeder could realize the discrete casting with longitudinal casting distance range from1.8 to 8.0 m, crosswise casting distance range from 0 to 3.9 m, the casting area 26 m2. And this mode can cover 81.2 % of 8 m×4 m indoor breeding pool. Since the test was held in dry pool and fresh feed slide in the ground, the casting area was greater than that shown in the simulation of 17.95 m2. The performance test results showed that the average feed breakage rate was 3.3% when the rotating speed of the feeding machine was less than 900 r/min, while the rotating speed was higher than 900 r/min the breakage rate increased rapidly. Therefore, the maximum effective throwing distance was 10.5 m in speed of 900 r/min. The results showed the feeder and multi-stage casting mode were effective to realize the discrete casting with relatively uniform droppoint distribution, which reduced the behavior of fighting for food to death .The study can provide references for feeders design and discrete feeding.
agricultural machinery; design; test; feeder; fresh feed; discrete casting; complex-vector method
胡海剛,危鵬搏,段爭(zhēng),等. 生鮮餌料離散式投餌機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):87-94.doi:10.11975/j.issn.1002-6819.2020.15.011 http://www.tcsae.org
Hu Haigang, Wei Pengbo, Duan Zheng, et al. Design and experiment of discrete feeder for fresh feed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 87-94. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.011 http://www.tcsae.org
2020-03-20
2020-07-17
浙江省公益技術(shù)項(xiàng)目(2017C32014);寧波市科技富民項(xiàng)目(2017C10006);浙江省科技計(jì)劃項(xiàng)目(2019C02055)
胡海剛,副教授。主要從事船舶工程安全技術(shù)與機(jī)電控制研究。Email:huhaigang@nbu.edu.cn
10.11975/j.issn.1002-6819.2020.15.011
S969.31
A
1002-6819(2020)-15-0087-08